ETS de
Ingenieria

Informatica

Master Universitario de Investigaci en
Ingeniefa de Software y Sistemas Infoatncos

SOPORTE PARA LA CONFIGURACI ON AUTOM ATICA DE
LINEAS DE PRODUCTOS

D. Héctor Pérez Morago

Dirigida por Dr. D. Ruben Heradio Gil
Dr. D. David Fernandez Amoros

Departamento de Ingeniefa del Software y Sistemas Infornaticos
Escuela Tecnica Superior de Informatica
UNED

Ingenieria de Software cod.-31105128 Curso: 2013-2014
Convocatoria: Junio

logoETSI.eps

ETS de
Ingenieria

Informatica

Master Universitario de Investigaei en
Ingeniefa de Software y Sistemas Infoaticos

SOPORTE PARA LA CONFIGURACON AUTOMATICA DE
LINEAS DE PRODUCTOS

D. Héctor Pérez Morago

Dirigida por Dr. D. Ruben Heradio Gil
Dr. D. David Fernandez Amoro6s

Trabajo tipo A

Departamento de Ingeniefa del Software y Sistemas Infornaticos
Escuela Tecnica Superior de Informatica
UNED

Ingenieria de Software cod.-31105128 Madrid, Junio det201

logoISSI.eps
logoETSI.eps

ETS de
Ingenieria

Informatica

® Autorizacion

Autorizacion

Autorizo/amos a la Universidad Nacional de Educacion ddbida a difundir y utilizar, con fines académicos,
no comerciales y mencionando expresamente a sus autareslataemoria de este Trabajo Fin de Master, como el
codigo, la documentacion y/o el prototipo desarrollado.

Firma del/los Autor/es

Juan del Rosal, 16
28040, Madrid

Tel: 91 398 89 10

Fax: 91 398 89 09

WWW. | SSi . uned. es

logoISSI.eps
logoETSI.eps
www.issi.uned.es

Abstract

To compete in the global marketplace, manufacturers tryifterdntiate their products by focusing on
individual customer needs. Fulfilling this goal requiresng@anies to shift from mass production to mass
customization. Under this approach, customized produetsiat designed individually but as a family
of related derivatives. That is, a generic architecturepedhproduct platform, is designed to support the
derivation of customized products through a configuratimtess that determines which components the
product comprises. When a customer configures a derivéypieally not every combination of available
components is valid. To guarantee that all dependenciegaathpatibilities among the derivative con-
stituent components are satisfied, automated configuraterased. Flexible product platforms provide
a big number of interrelated components, and so the configaraf all but trivial derivatives involves
considerable effort to select which components the dévivathould include. Our approach alleviates
that effort by speeding up the derivative configuration ggirheuristic based on the Information Theory
concept of entropy. The effectiveness of the approach igraralty validated using a real case study
taken from the automotive industry.

Keywords: Entropy Based Heuristic; Mass Customization; Product @odition

Resumen

Para competir en un mercado globalizado, las empresas Hetedeun esfuerzo para diferenciar sus pro-
ductos centrandose en las necesidades especificas denbsscIPara alcanzar este objetivo, las empresas
deben cambiar sus modelos de produccién pasandopdedaccbn en masdmass production) a lpro-
duccbn personalizadgdmass customization). Bajo esta nueva perspectiva, latuptos personalizados
no son creados individualmente sino como familias de produ@lacionados. Aqui, una arquitectura
genérica, llamada plataforma de productos (productgtalf, es disefiada con el fin de dar soporte a la
derivacion de productos personalizados mediante el poode configuracion que indica que componen-
tes tiene un producto. Cuando un cliente configura un proddetrivative) no todos las combinaciones
de los componentes estan permitidas. Los configuradordses@mientas automaticas desarrolladas con
el fin de garantizar que todas las dependencias e inconljgititds entre componentes son satisfechas.
Las plataformas de productos proporcionan un gran numermoohponentes interrelacionados, por lo
que la configuracion, de incluso los productos mas tegiatonlleva un considerable esfuerzo. Nuestra
propuesta alivia tal esfuerzo acelerando el proceso degewation de un producto, utilizando para ello
una heuristica basada en el concepto de entropia de la tinformacion. La efectividad de nuestra
propuesta ha sido empiricamente validada utilizando sa da estudio real tomado de la industria auto-
movilistica.

Keywords: Mass Customization; Product Configuration; Entropy Basedrldtic

List of Figures
List of Tables

1 Introduction

2 Motivational Example

3 Related Work

Contents

4 Entropy-based approach to sort configuration questions

4.1 Preliminaries

41.1

4.1.2 Straightforward approach to compute component fitities

Information Theory

4.2 Efficient computation of the probabilities of the vatebof a Boolean formula froma BDD

42.1
4.2.2
4.2.3

4.2.4

Definitions

Data Stru
Algorithm
4231

Entropy driven configuration

42.4.1

Ctures

Computational cost .

Example

5 Experimental evaluation

5.1 Experimentaldesign

5.1.1 Case study 1: Renault Megane

5111
51.1.2

Results
Statistical significance

Vii

11
11
11
12

15
16
18
19
23
24

CONTENTS

5.1.2 Case study 2: Electronic Shopping e 28

5.1.2.1 Statistical significance e 31

5.1.3 ThreatstoValidity e e e 32

6 Conclusions 33
Bibliography 35

Vi

2.1

4.1
4.2
4.3

5.1
5.2
5.3

List of Figures

FD for car automated driving capabilitieso 6
BDD fory according to the variable ordering < X < X3 <Xa . .« « v v v 0o 16
Probability computation for BDB.1 e 20
Configuring derivativd PP, LRF~FRF, SA,-EA} using component entropy 24
Number of configuration steps according to the used apprfor Renault Megane 27
Number of configuration steps according to the used agfrtor Electronic Shopping 30
Time required to compute component probabilities 32

Vii

List of Tables

2.1 \Valid derivatives for Figur@.1 7
2.2 Brute Force Approach to Compute the Optimal Orderingegrdge 8
4.1 Equivalence between configuration models and propasitiogic formulaes 13
4.2 Truthtablefoy = (X AX) V(X3 AXa) « v v v o e e e e e e e 15
4.3 Content of thdbddarray for Figured.1. e 17
4.4 Content of thear_orderingarray for the Figur&l.1 17
4.5 \Variables iteratively traversed for BBD in Figutel 22
5.1 Result of the experiments for Renault Megane L. 27
5.2 95% CI of the population mean for RenaultMegane 27
5.3 ANOVAtestfor RenaultMegane e e 28
5.4 Power analysis for Renault Megane 28
5.5 Tukey HSD testfor Renault Megane i 29
5.6 Result of the experiments for Electronic Shopping 29
5.7 95% CI of the population mean for Electronic Shopping 29
5.8 ANOVAtest for Electronic Shopping e 31
5.9 Power analysis for Electronic Shopping 31
5.10 Tukey HSD test for Electronic Shopping w ot o o e 31

CHAPTER

Introduction

To increase variety, improve customer satisfaction, redaad-times, and shorten costs, many companies have
shifted frommass productiorio mass customizatiofcSJ0}. This shift of paradigm enriches the mass production
economies of scale with custom manufacturing flexibilitydeyeloping families of related products instead of single
products. From this perspective, designing a product faisithe process of capturing and modeling multiple product
variants to satisfy different market niches. A generic dedture, namegroduct platform is designed to support the
creation of customized products calle€rivatives

Product platforms usually support a high quantity of ddiwes. For instance, the number of derivatives for
product platforms in the automotive industry may range fahfor the smallest Peugeot and Nissan car models, to
106 or 1 for the BMW 3-Series and Mercedes C-Class, respectivelyof]. To achieve that flexibility, a number
of configuration options are available. For example, thegeeti206 and Mercedes C-Class car models have 86 anc
389 customer selectable options, respectively. Typiaadtyall option combinations are valid. There may be option
incompatibilities (e.g.,“manual transmissions are nohpatible with V8 engines”), option dependencies (e.g.pfsp
cars require manual gearbox”), etc. Configuring a validwdiie implies ensuring that all constraints between its
constituent components are satisfied. Checking by hane tbasstraints is unfeasible for all but the most trivial
product platforms, so derivative configuration is usuatigisted by automatezbnfigurators [S\W94.

1Some examples of commercial configurators areConfigit (http://wwv. configit-software. cont),
SAP Product Configurator (htt ps://scn. sap. com docs/ DOC- 25224), Oracle Configurator
(http://docs. oracl e.com cd/ B12190_11/current/acrobat/ 115czi nst g. pdf), etc. In addition, many automotive
companies have their own configurators. For instakiok;o usesKOLA, ScaniausesSPECTRAMercedesisesSMARAGD etc.

http://www.configit-software.com/
https://scn.sap.com/docs/DOC-25224
http://docs.oracle.com/cd/B12190_11/current/acrobat/115czinstg.pdf

1. INTRODUCTION

Our work enriches existing configurators by reducing the Ineinof steps required to configure a valid derivative
It takes advantage of the fact that, due to the component asitigm constraints, some decisions may be automatica
derived from other decisions previously made. So the ordemich decisions are made has a strong influence on:
number of decisions required to complete a derivative. Rstaince, given the constraint “sport cars require mant
gearbox” a customer might configure a sport car using twosg@atiorderings: one requiring two steps (i.e., step
select “manual gearbox”, and step 2: select “sport car"grnmther one using just a single step (i.e., select “spoft ca
so decision select “manual gearbox” is implicitly made).

As van Nimwegen et al. V\N\BvOSO0€ note, customers sometimes prefer to first answer questimisare im-
portant to them, or easy to answer, before being led throbglréamaining questions/[lBvOS04. In this sense,
our approach respects customer preferences. Instead ofiingpa fixed ordering, it suggests orderings dynamical
reacting to the customer decisions. In particular, the ggedo get a derivative is performed in successive steps.
each step, the customer gets a question ranking, selectsfdhe questions and answers it. In the next step, t
guestion ranking is readjusted to account for the cust@rarswer. The computation of the ranking is grounde
on the Information Theory concept ehtropy which was introduced by Shannoft{a4§ and measures the average
uncertainty of a random variable.

At the first configuration step, the uncertainty is total. Wib information at all, the configurator cannot figure ot
which derivative the customer desires. As the process adgaconfiguration options are eliminated according to t
customer decisions and so the information about the findigumation increases (i.e., the set of included/exclude
components grows). Consequently, the entropy decreasdsen \ttie derivative is totally configured there is n
uncertainty and the entropy is zero.

As we will see, our approach and the heuristics propose@inlf] [MDSD14] require computing the probabil-
ities of all variables in a Boolean formula. The usual way éofprm such task is calling repeatedly a logic engint
e.g., a SAT solver or a Binary Decision Diagram (BDD) librawpe time for each variablé<fK10]. Unfortunately,
this approach has an high computational cost and thus irapoisg response times, hindering customer-configurat
interactivity. To overcome such problem, this paper pregan algorithm that computes efficiently variable proba
ilities using BDDs. Since more complex logics than the Peimmal one, which include integer arithmetic, trangtiv
closure, etc., can be reduced to Boolean functiéig(4 [Jacl), and thus encoded as BDDs, our algorithm i
general enough to support most configuration model notation

The validity of our approach has been tested on two benctsnaidely used by the configuration and softwar
product line communities: the Renault Megane platform joles by the car manufacturing company Renault DV

and the Electronic Shopping case studyj0d. Results show that our approach requires less configaratieps

http://ww. renaul t.fr/

http://www.renault.fr/

than related work, and that our BDD algorithm gets short@asp times, supporting this way not only our approach
but also other methods proposed in related work.

The remainder of this paper is structured as follows. Chapteresents the running example we will use to
motivate and illustrate our work. Chapt8rsummarizes related work to our approach. Chagtartroduces the
concept of entropy and describes how to compute it from agorgtion model. Later, our entropy-driven approach
is described in detail. Chaptérreports the experimental validation of our approach. Bin@hapter6 outlines the
conclusions of our work.

CHAPTER

Motivational Example

This section illustrates the problem our approach tacks@sguan example provided byWDSB0Y, where deriv-
atives are cars with different automated driving capaédlit

To model the configurable options of a product family, a nundbelifferent notations are available. For instance,
Feature Diagrams (FDK[CH"90], Decision Diagramscec93, the Configit language, the SAP Product Configurator
language, the Oracle Configurator language, etc. Intagdgtimost of those notations are semantically equivalent
[CGR'12, SHTBO7. In fact, automated configurators instead of processingigoration models directly, usually
translate them into a propositional logic representatsuch as a logic formula in conjunctive normal form, a BDD,
etc. That logic representation is then processed usinthefself tools, such as SAT solvers, BDD engines, etc. (see
Section4.1.2for an explanation on the configuration model to logic tratish). The input to our approach is the
logic representation of the configuration model, so it ijpehdent of the original notation used to specify the model.

To show what a configuration model looks like, please refdfignire 2.1 which models our running example as
a FD' (a hierarchically arranged set of features with differatations among them). Figug1lincludes three kinds
of hierarchical relations:

e optional denoted by simple edges ending with an empty circle; eags may (or may not) include an Auto-
mated Driving Controller (ADC).

e mandatory denoted by simple edges ending with a filled circle; e. g,dér has an ADC, it must include some
kind of Collision Avoidance Braking (CAB).

Lthis paper follows the generic semantics for FDs given byoBbens et al. §HTB07.

2. MOTIVATIONAL EXAMPLE

e alternative denoted by edges connected by an arc; e. g., Standard Aeeid®A) and Enhanced Avoidance
(EA) are the mutually exclusive options for Collision Avaitte Braking (CAB).

Car Mandator
© . Y
&Optional
/P\Alternative
Automated
Driving
Controller Sensors
(ADC) (S)
Collision Parallel Lateral Forward
Avoidance Parking Range Range
Braking (PP) Finder Finder
(CAB) 1 (LRF) (FRF)
. A A
L. requires | '
1
Standard Enhanced) X
Avoidance Avoidance |-----------..tequves !
(SA) (EA)

Figure 2.1: FD for car automated driving capabilities

To manage the complexity of modeling the similarities arftboetnces among the derivatives of a product famil;
the FD notation follows aivide and conquestrategy. Derivative variabilities are modeled by progresly decom-
posing complicated and abstract features into simpler,amds elemental features, which are directly implemente
by physical components, are reached. The hierarchicattateiof a FD graphically depicts such conceptual d
composition. From here on, derivatives will be expressadrerating the final components they include, i.e., usir
references to the terminal nodes of the FD. For exan{i®t€, LRF, FRF;-SA, EA} expresses the configuration of ¢
car with components PP, LRF, FRF, EA and without SA.

The FD notation supports narrowing the configuration spacadaling additional crosstree constraints. For ir
stance, Figur@.1represents as “PPA%S LRF” the fact that cars with Parallel Parking need to incltite Lateral
Range Finder component. Thus, a car derivative with compier{GP,—'LRF, -FRF, SA,-EA} complies with the
FD relations, but is not valid because violates the conﬁtrﬂiPw LRF".

For a configuration model with options and no component interdependencies, the numbe@ssitje configur-
ations is 2. Due to the feature relations and additional crosstreet@nts, the number of valid configurations in the
example is reduced fronP2= 32 to the 13 ones summarized in TaBld

To configure a car, the decision maker needs to answer a sggjabquestions. For example, the sequence:

(1) is EA in the configuration? nd2) FRF? nqg (3) LRF? yes(4) PP? yes

10_motivational_example/figures/EPS/car_example.eps

Valid Derivatives
-PP,-LRF, -FRF,-SA, -EA
-PP,-LRF, FRF,-SA, -EA
-PP, LRF-FRF,=SA, -EA
-PP, LRF, FRF-SA, -EA
-PP,-LRF, -FRF, SA,-EA
-PP, LRF-FRF, SA,-EA
-PP,-LRF, FRF,-SA, EA
-PP, LRF, FRF-SA, EA
-PP,-LRF, FRF, SA-EA
-PP, LRF, FRF, SA-EA
PP, LRF~FRF, SA,-EA
PP, LRF, FRF-SA, EA
PP, LRF, FRF, SA-EA

OO N|O(O|B_|W[IN|F

=
o

[y
[N

=
N

=
w

Table 2.1: Valid derivatives for Figur.1

configures car 11 in Tabl2.1 Current automated configurators guarantee the derivafiealid products ensuring
the satisfaction of all model constraints. When the firststjoa is answered, the configurator deduces that the car
being configured necessarily includes SA (otherwise tregradtive relation between EA and SA would not be hold).
This way, the configurator is indirectly saving the decisioaker from answering the irrelevant questisr&A in the
configuration?

The goal of our work is to make the most of the configuration ehadnstraints going beyond current configurators
to minimize the number of questions required to specify avdtve. To do so, our approach tries to find an optimal
guestion ordering that maximizes the number of decisionisnaatically derived from other questions previously
answered.

A straightforward approach to get such optimal questioridng is computing for each valid product all possible
orderings, and thus finding the ordering with less questiorsverage for every product. Tal2€ sums up the needed
computations. For instance, the next-to-last column sunzesthe number of questions needed for deriva{i®,
LRF, FRF, SA-EA}. OrderingPP < LRF < FRF < SA< EAneeds 3 questiond,RF < PP < FRF < SA< EAneeds
4, and so on. Afterwards, the average number of questionsafcin ordering is computed. Using this approach in
the previous example, orderim®P < LRF < FRF < SA< EAwould be selected as an optimal one. As a result, the
guestion sequence for derivative 11 in Tabl&would be shortened to:

(1) is PP in the configuration? ye&) FRF? nq (3) SA? yes

removing the need for answeriifg_RF is in the configuration
Unfortunately, this approach requires n! computations, whera is the number of components of the configur-
ation model andnis a number 2", So it is extremely expensive in computational terms ands chae scale except

2. MOTIVATIONAL EXAMPLE

orderings (n!) derivatives (< 2") average number
{-PP,-LRF,-FRF,-SA, -EA} [{-PP,-LRF, FRF,-SA, -EA} | ... [{PP, LRF, FRF, SA-EA} || of questions
PP< LRF < FRF< SA < EA 4 4 3 (4+4+ . +3)/13
LRF < PP< FRF < SA < EA 4 4 4 (4+4+ . +4)/13
LRF < FRF< SA<EA <PP 4 4 4 (4+4+. . +4)/13

Table 2.2: Brute Force Approach to Compute the Optimal Ordering on Ager

for the most trivial configuration models. To overcome thelalgility limitations of the former approach, this pape
proposes an heuristic solution grounded on the Informakinenry concept oéntropy

CHAPTER

Related Work

Research on automated configurators is mainly focusemosistency checkirgndoptimization[S\W98 Jun0§.

For example, reasoning engines such as BDD libraries, SKEisoand Logic-Truth Maintenance systems have been
used to detect invalid derivatives (i.e., those which mlsome option dependency or incompatibility)GR 11,
SHN"07, Men09; to provide explanations for configuration flaw&/'BS*10, Jan1(, to optimize configurations (i.e.,

to find configurations whose cost is less or equal than a gimeh [plHRV11, SAHT11, SRK"11], etc.

Despite the importance of the interactive question ordgpioblem that our work tackles, which was pointed out
by Steinberg more than thirty years agig3(, there is little research on it. A recent approach that ifigatly deals
with this problem is provided by Chen et aiC11], who propose to minimize the number of configuration steps b
sorting the components according to thawbability* of being included in a derivative. Such probability is corguli

by Equation3.1
Number of valid derivatives that include

Total number of valid derivatives
In addition to Chen et al.'s approach, Mazo et all[([SD14] proposes the following heuristics for ordering

PI(0) = (3-1)

configuration questions:

Heuristic 1 Components with the smallest domain first: choose first timepoment with the smallest domain. The
domain of a component is the set of possible values that thgponent can take according to its domain
definition and the constraints in which the component islirea.

Lin their original paper and with a fully equivalent meani@hen et al. use the tergelectivityinstead ofprobability. As our approach
follows an entropy driven heuristic and, the Informatiore®ty concept of entropy is defined in terms of probabilitye(Sectiord.1.), we
have preferred to uggrobability throughout this paper.

3. RELATED WORK

Heuristic 2 The most constrained components first: choose the comptramarticipates in the largest number o
constraints.

Heuristic 3 Components appearing in most products first. This heuigstgactly the same as Chen et al's approac

Heuristic 4 Automatic completion when there is no choice. This heurigtrovides a mechanism to automatically
complete the configuration of variables where only one vafuikeir domain is possible [...] it also works wher
a variable has several values on its domain but only one id"vatrictly speaking, this is not a heuristic, but
a propagation mechanism that all configuration systemsldsaupport. In remainder of this paper, we will
assume that all heuristics include this mechanism.

Heuristic 5 Components required by the latest configured componentdhisbse the component that has the large
number of constraints with the past-configured components.

Heuristic 6 Components that split the problem space in two first: settfiesstcomponents that divide the problen
space in two parts of approximately the same size. Unfortlyydviazo et al. do not provide a way to implemen
this heuristic which takes into account all model constraiim particular, Mazo et al. propose a simplificatiol
by just using the tree structure of a FD, or the variation {oaf an orthogonal variability modePBL05, but
not processing the cross-tree constraints.

As it will be discussed in Sectiof.2.4 our approach may be though as an implementation of HeuBsthat,
in addition, takes into account all configuration model ¢asts. In Chapteb it will be shown that our approach
provides better outcomes than Heuristics 1, 2, 3 (i.e., Glagproach), and 5.

10

CHAPTER

Entropy-based approach to sort
configuration questions

This chapter presents our heuristic to minimize the numbesteps required to configure a derivative from a
configuration model. Subsectighl.lintroduces the theoretical background of our approach. Aswll see, our
heuristic, as other ones summarized in ChaBteequires computing the component probabilities. Subsedtl.2
discusses the scalability limitations of the approach comgnused to compute those probabilities. To overcome such
limitations, in Subsectiod.2 we propose an algorithm that provides an efficient probgbdomputation. Finally,
Subsectiort.2.4describes our heuristic.

4.1 Preliminaries
4.1.1 Information Theory

The following definitions were originally introduced by Smen [Sha4{. Let us start with the concept ehtropy
Let X be a discrete random variable with alphafietnd probability mass function Bg(= P{X = x}, x € X; the
entropyH of X is defined by EquatioA.1:

H(X) = = > Prx)(log,Pr(x)) (4.1)

XeX

11

4. ENTROPY-BASED APPROACH TO SORT CONFIGURATION QUESTIONS

Let us present the concept abnditional entropywhich is the entropy of a random variable conditional on tf

knowledge of another random variable.

Let X andY be two discrete random variables. The conditional enttd(¥]Y) of X givenY is defined by Equation
4.2

H(XIY) = > Pre)H(XIY = y) (4.2)
e

Finally, let us introduce the concept ofutual information also calledinformation gain which represents the
reduction in a variable uncertainty due to another randornabiz.

Consider two random variables X and Y with a joint probapititass function Piy) and marginal probability
mass functions Pxj and Pry). The mutual informatiori (X;Y) is defined by Equatiod.3 as the relative entropy

between the joint distribution and the product distribatRr(X)Pr(y):

Y Pr(x,y)
NKW_;memﬁﬁﬁWi (4.3)

Entropy and mutual information satisfy the following praies that will be used throughout this paper:
1. HX) >0

2. H(X) < log,#X, with equality if and only ifX is distributed uniformly ovefX (in this paper, the number of

elements of a s& is denoted as%)

3. 1(X;Y) = H(X) = H(XY) = H(Y) = H(YIX) = [(Y; X)

4.1.2 Straightforward approach to compute component probabilities

A widespread approach to support the automated managereanfiguration models is translating them to pro
positional logic formulas $W9g [SHN"07], which are processed using off-the-self tools, such as SéiVers
[BHvM™09] or BDD engines Bry36]. Table4.1summarizes the translations needed to encode our runnamgp

into propositional logit. Equationd.4is the equivalent logic formula to Figugel

1a more detailed explanation on how to translate feature faate logic may be found inTBKO09].

12

4.1 Preliminaries

Type of Feature model Translation to
relationship representation propositional logic
mandatory A—-B (=AVB)A(=BVA)

optional A—-B -BVA
alternative A AL1(=Bi vV A) A (=AVIL; B) Ai<j(=Bi v =B))

Bi Bz ... By
. requires
requires A—— B -AVB

Table 4.1: Equivalence between configuration models and propositioge formulaes

C — ADCis translated to
ADC - CABis translated to

(=ADC v C)A
(-ADC v CAB) A (-CAB v ADC)A

CAB s translated to 4SA vV CAB) A (-EA Vv CAB) A (-CAB v SAV EA) A (-SAV -EA)A

A

SA EA
ADC — PPis translated to (=PPVv ADC)A
C —e Sis translated to (=SVC)A (=CV S)A
S —o LRFis translated to (-LRFV S)A
S — FRFis translated to (=FRFvV S)A
PP% LRFis translated to (=PPV FRF)

(4.4)

Once a configuration model is encoded into a logic formula

e the total numben; of valid derivatives is equivalent to the number of satisfyassignments af (i.e., those
that evaluateg to true).

e the numbem, of valid derivatives that include components equivalent to the number of satisfying assign-
ments ofy A C.

Since the probability of a component {E% and the computation of the number of satisfying assignsnehaa
Boolean formula is supported by most BDD engines and SATessl{in particular, #SAT counters are a type of
SAT solvers specifically oriented to compute such numbes}raightforward approach to compute the component
probabilities is calling repeatedly a logic engine using c¢; as input KZK10]. Unfortunately, this approach has
an high computational cost and does not scale for all buatraonfiguration models. While the SAT problem is
known to be NP-complete_[oo71, it is widely believed that the #SAT problem is even harder{/M*09]. If nis

13

4. ENTROPY-BASED APPROACH TO SORT CONFIGURATION QUESTIONS

the number of components, computing the component praotieditequires calling a #SAT solvertimes, which is
extremely time-consuming. Similarly, computing the numbgsatisfying assignments with a BDD has compulte
tional complexityO(m) [Bry86], wherem is the number of nodes of the BDD. Hence, the complexity of mating
the component probabilities by calling repeatedly the BDiBiee isO(n - m), which is excessively time-consuming
for most configuration models.

For instance, it is well known by the car manufacturing comityuthat the first issue of car configurators is
performance ACF1(. Thus, as soon as customers make a configuration choicemieyto find out what the con-
sequences of the choice are. From a marketing perspedtisejripleasant for customers to wait for several secon
to know whether their requirements are correct or not in seofnconfiguration. As it will be shown experimentally
in Chapters, computing the component probabilities by calling repaigta BDD may force the costumer to wait for
more than 600 seconds for just a single configuration step!

To overcome the aforementioned scalability limitatiomsthe following section we propose a BDD algorithn
that computes component probabilities in almost lineaetiom.

4.2 Efficient computation of the probabilities of the variablesof a Boolean formula
from a BDD

BDDs are a way of representing Boolean functions. They ared) directed, acyclic graphs, which consist of sevet
decision nodes and terminal nodés\[86]. There are two types of terminal nodes called O-terminal Bterminal.
Each decision nodg is labeled by a Boolean variablg and has two child nodes calléow andhigh (which are
usually depicted by dashed and solid lines, respectivalfle edge from nodg to a low (or high) child represents
an assignment of; to O (resp. 1). Such a BDD is callederedif different variables appear in the same order o
all paths from the root. A BDD is said to reducedif the following two rules have been applied to its graph: (i
isomorphic subgraphs are merged, and (ii) nodes whose tildran are isomorphic are eliminated.

Let us use formula = (X3 A X2) V (X3 A X4) as running example for this subsection. Tabl2is the truth table
for y. Figure4.1is its BDD! representation using the variable orderiag< x» < X3 < X4°.

The remainder of this subsection is structured as followisstli, some definitions required to understand ot
algorithm are given. Next, the data structures the algoritises are described from a theoretical perspective. Th
the algorithm is presented. Finally, the algorithm comfiatel cost is discussed.

Lin popular usage, the term BDD almost always refers to RetiGedered Binary Decision DiagrarilR04]. In this paper, we will follow
that convention as well
2note that a logic formula may be encoded with different BDBsoading to the variable ordering used to synthesize the BDiiously,

our algorithm produces the same results for equivalent B@Bs BDDs that encode the same formula)

14

4.2 Efficient computation of the probabilities of the variables of a Boolean formula from a BDD

X
&
&

PPk RPRPrPR~oOOOloo oo
PPk RoOOOO|RPRRERROOOO
R~ OOl oOO|lkrkr OO|krRroO
b Or Ok OFr Ok 0 r Ok o » off
R kP PRk OOO|lFr oo Oolkr oo ols

Table 4.2: Truth table fony = (xg A X2) V (X3 A X4)

4.2.1 Definitions

The satisfying set of a Boolean formudx, ..., Xn), denotedS,, is defined by Equatiod.5.

Sy = {(X1, ..., X)W (X1, ..., Xn) = true} (4.5)

The satisfying set of the variable of a Boolean formula/ (X1, ..., Xi—1, Xi, Xi+1, ..., Xn), denotecBMXi:"ue, is defined
by Equatiord.6.

Sl -irue = {(X1, oy Xi—1, tTUE, Xt 1, -.or X)W (X2, .os Xi—1, tHUE Xiy1, ..., Xn) = true} (4.6)

For instance, according to Tabde2, #S,, = 7 since there are 7 rows whegeevaluates to trde and #5,x, = 5
becausey = 1 in 5 of the 7 rows whergr = 1.
The satisfying probability of a Boolean formuldx, ..., X»), denoted Pi), is defined by Equatiod.7.

#S,
Pr()) = —r (4.7)

The satisfying marginal probability of a variablein a Boolean formula
Y(X1, ooy Xiz1s Xis Xi+1, ..., Xn), denoted MP|x =true), is defined by Equatiod.8.

#Sl/’|xi =true

M Pr(‘MXA =true) = on (4'8)

throughout this paper 0/1 and false/true are used integefzdoty

15

4. ENTROPY-BASED APPROACH TO SORT CONFIGURATION QUESTIONS

The satisfying probability of a variabbg in a Boolean formula
(XL, ey Xiz1s Xis Xit1, ---» Xn), denoted Py =wrue), IS defined by Equatiod..

#Syy —tue

#Sy
For instance, looking at Tabl.2, it is easy to see that Rr(= 2—74 MPr(lx,=true) = 2—54 and Prily,=true) =
%. For convenience, in the remainder of the paper we denotg,Ri(,c) and MPr{|x -wue) as Pr&) and MPr;),

Prlx =true) = (4.9)

respectively.

Figure 4.1: BDD for y according to the variable ordering < X < X3 < X4

4.2.2 Data Structures

Let us represent a BDD with hasnodes and encodes a Boolean formula witkariables by using the following data
structures:

e The variable ordering used to synthesize the BDD is repteddry an array declared as follows:
var_ordering: array[0..n-1] of string
e Each node is represented by a record declared as follows:

type node = record
i ndex: 0..n
I ow, high: node
mar k: Bool ean
end

16

3_overall_methodology/figures/EPS/good.eps

4.2 Efficient computation of the probabilities of the variables of a Boolean formula from a BDD

Where:
1. indexis the index of the variables in the ordering. The terminalasof the BDD (i.e., 0 and 1) have
indexn.
2. low andhigh are the low and high node successors

3. markis used to mark which nodes have been visited during a tralvefshe graph. As we will see, our
algorithm is called at the top level with the root node as argnt and with the mark fields of the nodes
being either all true or all false. It then systematicallgitd every node in the graph by recursively visiting
the subgraphs rooted by the two childtew andhigh. As it visits a node, it complements the value of the
mark field, so that it can later determine whether a child has dyrdseen visited by comparing the two
marks.

e The BDD is represented by an array declared as follows:

bdd: array[0..mM of node

The terminal nodes of the BDD, 0 and 1, are stored at posificarsd 1 of thebdd array, respectively.

For instance, Table$.3and4.4represent the content bid andvar_orderingfor the BDD in Figure4.1, respect-
ively.

position | index low high mark
0 4 nil nil false
1 4 nil nil false
2 3 0 1 false
3 2 0 2 false
4 1 3 1 false
5 0 3 4 false

Table 4.3: Content of thebddarray for Figuret.1

position | content

0 “x1”
1 “x"
2 “X3"
3 “Xq"

Table 4.4: Content of thevar_orderingarray for the Figurd.1

17

4. ENTROPY-BASED APPROACH TO SORT CONFIGURATION QUESTIONS

4.2.3 Algorithm

Pr(x) is computed jointly by Algorithmd, 2 and3. Figure4.2 summarizes the computations for the BDD in Figur
4.1 Let us examine how our approach proceeds:

Algorithm 1 computes Pr) as Pr§) = Mpprb(f;) by calling the auxiliary Algorithm& and3.

Algorithm 2 computes Prf). A nice mental picture to understand Algorittihis thinking in pouring 1 liter of water
from the BDD root to the terminal nodes. 1 liter goes througg oot, then half a liter goes through the lov
branch and half a liter through the high branch. This prooedavances until the water reaches the leave
Hence, MPrk;) is the amount of water that node 1 has.

In Figure4.1, through nodess goes 1 liter (i.e., formulaatprob[5]t = 1). Half of it goes tovs and the other

half to v4. Whereas through, passe% liter, throughvs goes the% liter that comes fronvs and half of the
1

water that comes frorw, (i.e., formulasatprob[3] =5 + 5 = %).

Algorithm 3 computes MPi;). In particular, let us examine how it computes MBJ(In the truth Table4.2,
evaluates to true whexp is true five times:

1. In four of themyx, is true. When the caljet_marginal_prob(4, ...) is made, lines 10-23 compute the
marginal probability ok, for the explicit pathvs — v4. The probabilities due to the low and high branche
of v; are stored into the pralow and probhigh variables, respectively. As bdd[4].low0, a recursive
call is made to compute the total probability due to the loscgedants of, (i.e., get_marginal_prob(3,
...)). As aresult:

3 3

total prob[3] = proh low,, + prob high,, = 0 + 1616

Notice that problowy, is not simply equal to totaprob[3], because totgdrob[3] depends also on the
probability that comes from the link --> v3. To get just the probability due to the ling --> v3, problow
has to be adjusted using tfeemula_sat_prob array as:

NN
|_\

ol total prob[3] . muasatprobls] 3 .
ronpiow = - _ =
g formula_satprob([3] 3 16

Since bdd[4].high = 1, pralhigh is directly computed as:

. formulasatprob[4] % 1
prob high = 5 =5°13

laccording to Tabled4.3and4.4, the root node has labef and it is in the position 5 of thbdd array

18

4.2 Efficient computation of the probabilities of the variables of a Boolean formula from a BDD

Finally:
prob[bdd[4]index] = proh high = %

2. In one of thenx, is false. The two following implicit paths that have been osed from the reduced
BDD: (i) v5 --> v4 --> v3, and (ii) vs --» v4 — v3. Nevertheless, path --» v4 — vz should be considered to
compute the marginal probability of. Lines 24-31 account for that kind of implicit paths, adingtthe
marginal probability with the variables omitted in the matRor instance, when the algorithm is called for
vs, the marginal probability ok, is updated with half the pralow of vs.

To sum up:

prob.low,,

MPr(x2) = MPr(vs --> V4 — V3) + MPr(vs — vg) = >

1
+ prob[bdd[4findex] = 2 +

Algorithm 1: getprob

Input bddandvar_orderingarrays;
Output an array which store®r(x) in position i ;
var formula_satprob, totalprob: array[0..length(bdd)-1] of float;;
prob: array[0..length(varordering)-1] of float; i: int;;
begin
for (i=0; i < length(bdd); i++) do
L totalprobl[i] = 0.0;

~N o O A~ W N e

[ee]

for (i=0; i < length(varordering); i++) do

9 L prob[i] = 0.0;

10 formulasat prob = getformula_sat prob(bdd);

11 getmarginalprob(length(bdd)-1, totgbrob, formulasatprob, prob, bdd, vaordering);

12 for (i=0; i < length(varordering); i++) do
13 | probli] = el
p formulasatprob[1]’
14 return prob
15 end

4.2.3.1 Computational cost

Let m be the number of nodes of the BDD, andhe number of variables of the Boolean formula. Algorit@m
requires traverse all the nodes, so its computational caxitplis O(m). Algorithm 3 also traverses all the BDD
nodes. In addition, to account for the implicit paths rembfrem the reduced BDD, the variables omitted on the
edges that come from each node need to be traversed (whicméshy lines 24-31). Tablé.5 summarizes those
traversals for Figurd.l For instance, whew, is recursively traversed, the variabbesand x4 need to be iteratively

19

4. ENTROPY-BASED APPROACH TO SORT CONFIGURATION QUESTIONS

Algorithm 2: getformula_satprob

1 Input bddarray;
2 Output an array which in position 1 storeBr();
3 var formulasatprob: array[0..length(bdd)-1] of float; i: int;

4 begin
5 for (i=0; i < length(bdd)-1; i++) do
6 L formulasatprob[i] = 0.0/ / non-root nodes prob is initialized to 0

formulasatprob[i]=1.0// root node prob is 1
i=length(bdd)-1;

whilei>1do// for all non-term nal nodes
formulasatprobf] .

10 formulasat prob[bdd[i].low] += —=5—

T i _ formulasatprobf] .
11 formulasatprob[bdd][i]. high] +====2222l
12 i-=1
13 return formula.satprob
14 end

x1, v5
formula_sat_prob=1

prob_low=1/8, prob_high=5/16
marginal_prob=5/16, prob=5/7

x2, v4
formula_sat_prob=1/2
prob_low=1/16, prob_high=1/4
marginal_prob=5/16, prob=5/7

x3, v3
formula_sat_prob=3/4
prob_low=0, prob_high=3/16

marginal_prob=5/16, prob=5/7

x4, v2
formula_sat_prob=3/8

prob_low=0, prob_high=3/16
marginal_prob=5/16, prob=5/7

0 1
formula_sat_prob=9/16 formula_sat_prob=7/16

Figure 4.2: Probability computation for BD[.1

20

3_overall_methodology/figures/EPS/good_computations.eps

4.2 Efficient computation of the probabilities of the variables of a Boolean formula from a BDD

Algorithm 3: getmarginalprob

1 Input v: 0..length(bdd)-1; totaprob, formulasatprob: array[0..length(bdd)-1] of float;;
2 prob: array[0..length(varordering)-1] of float;bdd and var_ordering arrays

3 Output prob is passed by reference and, at the end of the algoritteoution,;
4 it storesMPr(x;) in position i ;

5 var prob_low, proh high: float; i: int;

6 begin

7 problow = 0.0;

8 proh_high = 0.0;

9 bdd[v].mark = not bdd[v].mark;

/1 explicit path recusive traversal

10 if bdd[v].low == 1 then

11 | problow = Lrmuasapron,

12 else ifbdd[v].low # 0 then

13 if bdd[v].mark# bdd[bdd[v].low].markthen

14 L getmarginalprob(bdd[v].low, totalprob, formulasatprob, prob, bdd, vaordering);
15 | | prohow = e T

16 if bdd[v].high == 1 then

17 | proh.high = frmuasaterobiy

18 else ifbdd[v].high # 0 then

19 if bdd[v].mark# bdd[bdd[v].high].markthen

20 L getmarginalprob(bdd[v].high, totalprob, formulasatprob, prob, bdd, vaordering);

totaLproblbdd].high. rmuasatprobi
formulasatprob[bddp].high]

21 prob.high =
22 totalprob[v] = prohlow + proh high;

23 prob[bdd[v].index] += probhigh;

/1 inplicit path iterative traversal

24 i = bdd[v].index + 1;

25 while i<bdd[bdd[v].low].indexdo
26 probli] += —pr°;é°w;

27 i+=1

28 i = bdd[v].index + 1;

29 while i<bdd[bdd][v].high].indexdo
30 probli] += 2oxhien,

31 i+=1

32 end

21

4. ENTROPY-BASED APPROACH TO SORT CONFIGURATION QUESTIONS

traversed because the edge— 1 omits them (i.e., the variable encoded by naglexy, jumps directly to 1 omitting
the intermediate variableg and x4 in the orderingx; < X < X3 < X4). Table4.5 helps noticing the savings our
algorithm provides compared to the straightforward apghmodescribed in Sectiod.1.2 which requires traversing
all nodes for all variables (which in computational cosirielis equivalent to traversing all variables for every node
Therefore, AlgorithnB does not traversm - n elements, butn- ', wheren’ is strictly less tham?.

It follows that Algorithm 1 has computational complexit®(m - n’). As it will be shown in Sectiorb, in the
practicen’ is usually much smaller thamand thus variable probabilities can be efficiently computed

node arcs omitted vars
that are traversed

Vg --> V3 X2

Vg
V5 — Vg4 none
Vg > V3 none

Va
vg—1 X3, X4
vz > 0 X4

V3
V3 — Vo none
Vs --> 0 none

Vg
Vs —> 1 none

Table 4.5: Variables iteratively traversed for BBD in Figudel

Uf " = n, all nodes in the BDD should go directly to 0 or 1, jumping oatirthe variables. Nevertheless, as BDDs are organized
hierarchical levels according to the variable orderings th impossible (i.e., the nodes that encode a variable paslitionk in the ordering
only can jump over the variables with positidas 1...n)

22

4.2 Efficient computation of the probabilities of the variables of a Boolean formula from a BDD

4.2.4 Entropy driven configuration

Let us return to the original problem this paper tackles.eGia set of questiors, our goal is to sort it in such a way
that the user has to answer as few questions as possible feterthe configuration. To find the optimal orderf
we propose to rank each questigpaccording to its expected information gain, i. e., measguhioww much uncertainty
can be reduced on average when the engineer answers it.rBoichation gain is modeled as the mutual information
1(C; g), whereC is the set of all valid configurations (i. e., the ones thasBatll asset interdependencies).

When a configuration is completed, the entropy of every dquestis zero. Sincel has been answereH(q|C) =
0. Thus, it follows that (C; g) = H(q), as Equatiort.10demonstrates (see Prope&in Subsectior.1.7).

1(C; q) = H(Q) - H(aI€) = H(a) (4.10)

When we ask “is componeiatin the configuration?”, the entropy of the questidfqg) is computed by Equation
4.11, where Pr¢€) is the probability that is included in the configuration.

H(g) = —Pr(c)log,Pr(c) — Pr(=c)log,Pr(-c)
= —Pr(c)log,Pr(c) — (1 - Pr(c))log,(1 — Pr(c)) (4.112)

Our approach to guide the configuration of a derivative maghbaght of as a binary search for the user desired
configuration (remember Heuristic 6 in Chapd&r To successively divide the search space into subspacgspobx-
imately the same size (i. e., where the pursued configurai@pproximately with the same probability), the user
answers the question that provides more information alheutonfiguration (i. e., the question with highest entropy).
Thus, the configuration process advances iteratively, Ibfppaing the following activities, until the entropy of all

components becomes zero:

1. Computing the component probabilities from the inputfigamation model. As the process advances, the
configuration space gets narrower and, consequently, theaaent probabilities change.

2. Computing the entropy value for each question.
3. Sorting the questions in descending order of entropy.

4. Asking the user for answering a question with entropy tgirethan zero. Note than when a question has zero
entropy, it is because it has been answered in a previouslstply or indirectly (i. e., because of the question
interdependencies).

5. Updating the set of answers and the configuration model

le.g., if the customer answers negatively a questidhe Boolean formula that encodes the configuration model is updated to-f

23

4. ENTROPY-BASED APPROACH TO SORT CONFIGURATION QUESTIONS

Entropy may also be used to measure how hard is to configureea giodel. From the “point of view” of an
automated configurator, when the configuration procests ster derivative desired by the customer is aity € with
the same probability. So the configuration model uncegaimtalculated by Equatiofh.12(see Propert® in Section
4.1.0.

H(C) = log,#C (4.12)

4.2.4.1 Example

Coming back to the running example introduced in Chaptéat us see how our approach works. Figdrg@sums up
the steps required to configure the derivati®®®, LRF-FRF, SA,—EA} using the entropy heuristic. In the first step
EA is the component with highest entropy. So the system dmksger if SA is included in the derivative. Once th
user answers affirmatively, the probabilities of the congmis are recomputed and so the entropies (e.g., the inalus
of SA implies the exclusion of EA, so Pr(EA)=0 and tHdéEA)=0).

PP [0.78 PP [0.92 PP [0.92
LRE__[0.96 LRF__[0.92 IRF__[0.92
FRE__[0.96| — |__FRF 1| —> [_RE_[0
SA__ 0.9 SA 0 SA 0
EA (0.8 EA 0 EA 0
SA? Yes FRF ? No PP ? Yes

Figure 4.3: Configuring derivativg PP, LRF,—-FRF, SA,—EA} using component entropy

We remark here that our approach does not force the userlmvfal fixed sequence of questions. In eac
configuration step, the user may decide not to answer theshésipy-ranked question, but the one she thinks is mc
convenient. After the question is answered, the entropiesexomputed and thus our approach adjust to the u
preferences in an interactive way.

24

3_overall_methodology/figures/EPS/car_example_entropy.eps

CHAPTER

Experimental evaluation

To test the validity of our approach, we have used two casbestu

1. The configuration model provided by the car manufactudagipany Renault D\Y, which deals with the
configuration of a family of cars named Renault Megan&Ve have selected this model because it illus-
trates the practical applicability of our approach (i.estéad of using an example made up for academic
purposes, our work is tested on a real configuration modeldbmes from the industry). In addition, the
Renault Megane problem is a benchmark of widespread usesliotifiguration community’{-M02] [Jen04
[OOF09 [HHOWO05 [NWO07] [HT07] [CO09 [Quel] [Krol2] [Gan1] [BFL13].

2. The Electronic Shopping model provided by Laa0q, which deals with an electronic commerce platform
that allows consumers to directly buy goods or services faoseller over the Internet using a web browser
This benchmark is widely used by the software product limamanity [Men09 [BG11] [POS 12].

5.1 Experimental design

The goal of this section is to check if:

e Our approach produces better results than related work.

http://ww. renaul t.fr/
2The Renault Megane configuration model is freely availablet @ p: / / www. i t u. dk/ r esear ch/ cl a/ ext ernal s/ cli b/
3The Electronic Shopping model is freely availabléat p: / / gsd. uwat er | 0o. ca: 8088/ SPLOT/ f eat ure_nodel _repository_de

25

http://www.renault.fr/
http://www.itu.dk/research/cla/externals/clib/
http://gsd.uwaterloo.ca:8088/SPLOT/feature_model_repository_depot.html

5. EXPERIMENTAL EVALUATION

e The algorithm presented in Sectidi2 provides reasonable response times and thus support @rstot@r-
activity during the configuration process.

To do so, we have created a test bed composed of 1000 randaatistes for every configuration model. As we
will see, a sample of 1000 derivatives is big enough to getltesvith high statistical power and significance.

To generate valid derivatives that satisfy all constraints have encoded the models as propositional logic f
mulaes (see Subsectidnl.? and then as BDDs. To get efficient BDD sizes, the directiamergby Narodytska et
al. [NWO07] have been followed. The BuDDy packddeas been used to guarantee the generation of valid degsati
(i.e., derivatives that conform to the BDD).

The test bed is used to compare the following methods:

1. Mazo et al.’s Heuristics 1, 2 and.5
2. Probability driven approach, i.e., the method proposed by Chen et alMazd et al. (Heuristic 3).
3. Entropydriven approach, i.e., the method we propose in this paper.

To compute the option probabilities, which are requiredi®entropyandprobability approaches, an implement-
ation of the algorithm presented in Secté2 has been included into the BuDDy package.

5.1.1 Case study 1: Renault Megane
5.1.1.1 Results

Table 5.1 summarizes the results of the experiments for the Renaulfalke configuration model. Histograms ir
Figure5.1a represent the number of steps needed to configure the Ed0atives using Mazo et al.’s Heuristics 1
2 and 5, and thentropyand probability approaches. Figurg.lb complements the histogram representation of t
results with a box plét

Using the Central Limit Theorem, the 95% Confidence Intery@ll) of the population mean can be estimate
(i.e., the range where, with a 95% guarantee, the mean ofuimder of steps required to configure every derivati
of the Megane model lies). Tab%2 summarizes the Cls for each apprdach

1BuDDy is freely available altit t p: / / sour cef or ge. net / pr oj ect s/ buddy/
2remember that, strictly speaking, Mazo et al.’s Heuristis Aot aheuristig but a propagation mechanism that all configuration syster

should support. So we have included such mechanism in ath&ibods tested in this paper.
S“whiskers” in Figure5.L1b start from the edge of the box and extend to the furthest jolaint that is within 1.5 times the inter-quartile

range (i.e., the range that goes from the 25th percentiteet@%th percentile). Points that are past the ends of th&kersibave been considered
outliers and displayed with dots.

4Cls are estimated as population mean Ck sample meas t(std. error95% 999 degrees of freedom), wheret stands for the Stu-

dent’st-distribution.

26

http://sourceforge.net/projects/buddy/

5.1 Experimental design

approach || mean | std. deviation | median | min | max | range |
entropy 73.49 9.5 73 50 97 a7
probability 105.79 11.54 106 56 137 81
Heuristic 1 86.04 11.26 86 53 118 65
Heuristic 2 82.74 11.12 83 51 114 63
Heuristic 5 99.39 15.95 100 52 143 91

Table 5.1: Result of the experiments for Renault Megane

0.04 - —
0.03 - T~
0.02 -
0.01-

Adosyua "xew

0.00 -
0.04 - M

0.03- 7 \
0.02-
0.01-

N
/
/
‘
Z ansunay

0.00- 110
0.04- m— - 105
20.03- TN 2 0 100-
@ A N =, o
c 0.02- Iy) 8 95-
(7} = 0
e il M -
= 5 -
0.00 - 85
80~
0.04-
% 75-
0.03- Y
—= =, 70-
0.02- @
= 65 - 3
o o
0.01 o 604
0.00- 55 .
55 1 .
0.04- o = 504 .
0.03 - T L i i i | i
8 v ~ © .
0.02- o o\$ o o o S
o S > N NI <
i o S 2) 2 IS
0.01 =3 S N N < :
: ¢ & & & &
0.00 == 7 i 7 i & T T T N
50 75 100 125 150 IS
steps approach

(a) Histograms (b) Box plots

Figure 5.1: Number of configuration steps according to the used approadtenault Megane

entropy probability Heuristic 1 Heuristic 2 Heuristic 5
std. error | 95% CI std. error | 95% CI std. error | 95% CI std. error | 95% CI std. error | 95% CI
03 [7290-7408]] 036 [105.07-106.50]] 0.36 | 85.35-86.74]] 0.35 | 82.05-83.43]] 0.5 | 98.40-100.38

Table 5.2: 95% CI of the population mean for Renault Megane

27

4_experiments_and_results/figures/EPS/histogram.eps
4_experiments_and_results/figures/EPS/boxplot.eps

5. EXPERIMENTAL EVALUATION

According to the summarized data, there is experimentaleexie supporting that our approach produces bet

results than related work.

5.1.1.2 Statistical significance

To check the statistical significance of the results, an ygislof Variance (ANOVA) test has been run on the expel
mental data. TablB.3summarizes the ANOVA outcomes. Since healue is less than 0.001 (in particularyvalue

< 2-1071%), the experimental results are statistically highly digant.

degrees of | sumof | meanof | F-value Pr(> F)
freedom squares | squares

approaches 4 676884 | 169221 1162 <2-10°16
residuals 4995 727312 146

Table 5.3: ANOVA test for Renault Megane

Table5.4 summarizes the power analysis of the ANOVA test. Given tinepda size and the high effect size (i.e.
the high values 0f? and Cohen’sf?), the ANOVA test has high statistical power.

effect size power
eta squared;? | Cohen’s f2
0.48 0.93 ~1

Table 5.4: Power analysis for Renault Megane

Finally, to check the statistical significance of the pagsvcomparison between the approaches, a Tukey Hor
Significant Differences (HSD) has been run. According taéselts, summarized in Take5, the difference between

the number of steps required by any pair of approaches toguoefa derivative is statistically highly significant

5.1.2 Case study 2: Electronic Shopping

Table5.6 and Figures.2 summarize the results of the experiments for the ElectrShigpping configuration model.
Table5.7 summarizes the Cls for each approach. According to the méspthere is experimental evidence suppol

ing that our approach produces better results than relabekl w

lwhereas the ANOVA test rejects the null hypothesis: “ther@é difference between the five approaches (i.e., all of thesduce
approximately the same results)”, Tukey HSD test rejecttdl hypotheses separately: “there is no difference betvtbe Heuristic 2 and
the entropy approach”, “there is no difference between HH#garl and the entropy approach ”, etc.

28

5.1 Experimental design

difference 95% CI adjusted p-value
Heuristic 2 vs entropy 9.25 7.78-10.72 ~0
Heuristic 1 vs entropy 12.56 11.08-14.02 ~
Heuristic 5 vs entropy 25.89 24.42-27.37 ~
probability vs entropy 32.29 30.82-33.77 ~
Heuristic 1 vs Heuristic 2 3.30 1.83-4.77 ~
Heuristic 5 vs Heuristic 2 16.65 15.17-18.12 ~
probability vs Heuristic 2 23.04 21.57-24.52 ~
Heuristic 5 vs Heuristic 1 13.34 11.87-14.82 ~
probability vsHeuristic 1 19.74 18.27-21.22 ~
probability vs Heuristic 5 6.40 4.93-7.87 ~

Table 5.5: Tukey HSD test for Renault Megane

approach || mean | std. deviation | median | min | max | range |
entropy 165.57 2.23 166 158 | 171 13
probability 193.67 6.06 194 164 | 207 43
Heuristic 1 187.38 5.69 188 168 | 201 33
Heuristic 2 189.36 5.7 190 170 | 203 33
Heuristic 5 169.33 3.1 169 153 | 178 25

Table 5.6: Result of the experiments for Electronic Shopping

entropy probability Heuristic 1 Heuristic 2 Heuristic 5
std. error | 95% ClI std. error | 95% CI std. error | 95% ClI std. error | 95% ClI std. error | 95% CI
007 | 16543-165.71]] 019 [193.29-194.04]] 0.8 | 187.03-187.73|| 0.8 | 189.01-189.72]] 0.1 [169.14-169.52

Table 5.7:95% CI of the population mean for Electronic Shopping

29

5. EXPERIMENTAL EVALUATION

0.15- g
0.10 - o
=}
=
0.05 - o
kel
0.00 - = 205+
0.15- T 4
> 200
c
0.10- S
%) 195~
=
0.05- o
o 190-
0.00 -
0.15- I 185
2 c 1)
g 0.10 - =, S180-
1% =
() = 7]
B 0.05- 3] o
= 175- e .
0.00 - - g .
H H
170~ . .
0.151 I E :
@
0.10- = 165- :
n
=
0.05-) 160
9 H H
0.00 -
155 -
0.15- 3 -
0.10 - 8 © ~ v .
5 & o & & S
S < <> <> N
0.05 - =] X .9 .9 "2 Q
o S N N S .
) ¢ & & & &
0.00 -] T i i i i & T < < &
150 160 170 180 190 200 210 IS
steps approach
(a) Histograms (b) Box plots

Figure 5.2: Number of configuration steps according to the used approadtiectronic Shopping

30

4_experiments_and_results/figures/EPS/histogram_eshop.eps
4_experiments_and_results/figures/EPS/boxplot_eshop.eps

5.1 Experimental design

5.1.2.1 Statistical significance

Table5.8 summarizes the ANOVA outcomes. Since fhealue is less than 0.001 (in particulgryvalue< 2 - 10716),

the experimental results are statistically highly sigaific Table5.9 summarizes the power analysis of the ANOVA
test. Given the sample size and the high effect size, the AN@St has high statistical power. Finally, Tallel0
summarizes the outcomes of HSD, which show that the difterdretween the number of steps required by any pair
of approaches to configure a derivative is statisticallynlyigignificant.

degrees of | sumof | meanof | F-value Pr(> F)
freedom squares | squares

approaches 4 645314 | 161328 6950 <2-10°16
residuals 4995 115944 23

Table 5.8: ANOVA test for Electronic Shopping

effect size power
eta squared;? | Cohen'’s f2
0.85 5.57 ~1

Table 5.9: Power analysis for Electronic Shopping

difference 95% ClI adjusted p-value
Heuristic 5 vs entropy 3.76 3.17-4.35 ~0
Heuristic 1 vs entropy 21.81 21.22-22.40 ~0
Heuristic 2 vs entropy 23.79 23.21-24.38 ~0
probability vs entropy 28.09 27.51-28.68 ~0
Heuristic 1 vs Heuristic 5 18.05 17.46-18.64 ~0
Heuristic 2 vs Heuristic 5 20.03 19.45-20.62 ~0
probability vs Heuristic 5 24.33 23.75-24.92 ~0
Heuristic 2 vs Heuristic 1 1.98 1.39-2.57 ~0
probability vs Heuristic 1 6.28 5.69-6.87 ~0
probability vs Heuristic 2 4.30 3.71-4.89 ~0

Table 5.10: Tukey HSD test for Electronic Shopping

31

5. EXPERIMENTAL EVALUATION

5.1.3 Threats to Validity

A threat to the validity of our approach is the time requireccompute the component probabiliiesor the sake
of interactivity, configurators must provide customer guide in a short-time and the usual way to compute t
probabilities is highly time-consuming (see Sectibh.?). To assess the response time of our algorithm (see Sec
4.2), we determined the time needed to configure 1000 randonmgrgeed derivatives for the case studies 1 al
2 using our entropy-driven approach. FigWr& compares the average times needed to completely configere
derivatives by computing the component probabilities gisiar algorithm, and calling repeatedly the BuDDy functio
satcount The performance tests were conducted on an®t@bre™ 2 i3-4010U with 1.7 GHz and 4GB RAM
(although only one core was used).

As Figure5.3 shows, our algorithm greatly improves the probability comation time. For instance, it requires
4.54 seconds on average to compute all component probeil#tnd thus their entropy values) for the first configu
ation step in the Renault Megane example. In contrastpgahitcountrepeatedly consumes 625.18 seconds.

Note that the first configurations steps are the most expeisitime. As the configuration process advances, t
configuration space gets reduced and so the time needed fut®the probabilities. There is a point where bot

approaches converge and get response times close to 0.

: 1.00- «,
600- : N

o

~

ol
\

o) 0)
& 400~ c
3 approach 8 approach
3 ----- calling satcount repeteadly 9) 0.50- 1 1 W calling satcount repeteadly
é — our algorithm é ~"' — our algorithm
() o i
E200- £
0.25-
0- : 0.00-
6 2‘0 4‘0 6‘0 6 5‘0 160 150
step step
(a) Renault Megane (b) Electronic Shopping

Figure 5.3: Time required to compute component probabilities

lwhich is also the Achilles’ heel for Chen et al.’s approact Mazo et al.’s Heuristic 3.

32

4_experiments_and_results/figures/EPS/time_renault.eps
4_experiments_and_results/figures/EPS/time_eshop.eps

CHAPTER

Conclusions

To satisfy a wide range of customers, product platforms mprastide a high variety of optional components. For
this reason, the configuration of all but trivial derivasvimvolves considerable effort in selecting which compon-
ents they should include, while avoiding violations of theer-component dependencies and incompatibilities. Our
approach enriches existing automated configurators bycieglihe number of steps required to configure a valid
derivative.

Applying the Information Theory concept of entropy, our eggeh takes advantage of the fact that, due to the
inter-component constraints, some decisions may be atitatya derived from other decisions previously made.
So the order in which decisions are made has a strong inflummtiee number of decisions required to complete a
configuration. Moreover, our approach does not provide ticstedering that the customer is forced to follow. On
the contrary, it suggests orderings dynamically, readiingpe customer decisions. In addition, we have proposed an
algorithm that efficiently computes the variable probdieii of a Boolean formula, supporting this way not only our
approach but also other methods proposed in related work.

The Renault Megane and Electronic Shopping configuratiorwhimarks have been used to test the applicability
of our approach and its effectiveness. In particular, itleen shown that our approach needs less configuration step
than related work.

33

Bibliography

[ACF10] J-M. Astesana, L. Cosserat, and H. Fargier. Coimitl@sed vehicle configuration: A case study. In
22nd IEEE International Conference on Tools with Artifidiatelligence volume 1, pages 68-75, Oct
2010.14

[AFMO02] Jéeréme Amilhastre, Hélene Fargier, and Pieviarquis. Consistency restoration and explanations in
dynamic csps-application to configuratiofutificial Intelligence 135(1-2):199-234, 20025

[BFL13] Christian Bessiere, HH+FFFD] ne Fargier, and Christophe Lecoutre. Global inverse ctarsig for
interactive constraint satisfaction. In Christian Schuéditor,Principles and Practice of Constraint
Programming volume 8124 of_ecture Notes in Computer Scienpgages 159-174. Springer, 2025

[BG11] Ebrahim Bagheri and Dragan Gasevic. Assessing thietaiaability of software product line feature
models using structural metricSoftware Quality Journall9(3):579-612, 201125

[BHVYM*09] Armin Biere, Marijn J.H. Heule, Hans van Maaren, Tobyd aifalsh. Handbook of Satisfiability
volume 185 ofFrontiers in Artificial Intelligence and ApplicationdOS Press, February 20092, 13

[Bry86] Randal E. Bryant. Graph-based algorithms for banléunction manipulationlEEE Transactions on
Computers35(8):677-691, August 19862, 14

[CE11] Sheng Chen and M. Erwig. Optimizing the product deion process. 115th International Software
Product Line Conferencgages 35-44, Munich, Germany, 2011. IEEE Computer So@e8y

[CGR*12] Krzysztof Czarnecki, Paul Grinbacher, Rick Rabisdguk Schmid, and Andrzej Wasowski. Cool
features and tough decisions: a comparison of variabilibgdeting approaches. I6th International
Workshop on Variability Modeling of Software-Intensivet8ynspages 173182, New York, NY, USA,
2012. ACM.5

35

BIBLIOGRAPHY

[COO08] Hadrien Cambazard and Barry O’Sullivan. Refornminaipositive table constraints using functiona
dependencies. lt4th International Conference on Principles and PractideConstraint Program-
ming pages 418-432, Sydney, Australia, 2008. Springgr.

[Coo71] Stephen A. Cook. The complexity of theorem-provimgcedures. IfProceedings of the third annual
ACM symposium on Theory of computipgges 151-158, New York, NY, USA, 1971. ACM3

[dec93] Reuse-driven software processes guidebook,ovefi2.00.03. Technical Report SPC-92019-CMC
Software Productivity Consortium Services Corporatid®®3. 5

[DGR11] Deepak Dhungana, Paul Grinbacher, and Rick RabiBee dopler meta-tool for decision-orientec
variability modeling: a multiple case studfwutomated Software Engineerint8(1):77-114, 20119

[Ganl12] Graeme Keith Gange&Combinatorial Reasoning for Sets, Graphs and Document @sitipn PhD
thesis, Department of Computing and Information Systerhs. Oniversity of Melbourne, 20125

[HHOWO05] Emmanuel Hebrard, Brahim Hnich, Barry O’'Sullivaand Toby Walsh. Finding diverse and sim
ilar solutions in constraint programming. B0th National Conference on Atrtificial Intelligence anc
the 17th Innovative Applications of Atrtificial Intelligem€onferencePittsburgh, Pennsylvania, USA,
2005. AAAI Press / The MIT Pres25

[HHRV11] Abel Hegedus, Akos Horvath, Istvan Rath, and Dhxero. A model-driven framework for guided
design space exploration. 26th International Conference on Automated Software E®ging pages
173-182, Washington, DC, USA, 2011. IEEE Computer Sockety.

[HRO4] Michael Huth and Mark RyanLogic in Computer Science: Modelling and Reasoning abostefys
Cambridge University Press, 2002.14

[HTO7] Esben Rune Hansen and Peter Tiedemann. Compressifiguration data for memory limited devices
In 22nd National Conference on Atrtificial Intelligencéancouver, British Columbia, Canada, 2007
AAAI Press. 25

[Jac12] Daniel JacksorSoftware Abstractions: Logic, Language, and Analysis. @titlon The MIT Press,
2012.2

[Jan10] Mikolas JanotaSAT Solving in Interactive ConfiguratiofPhD thesis, Department of Computer Sci
ence. University College Dublin, 2010.

36

BIBLIOGRAPHY

[Jen04] R. M. Jensen. ClLab: a C++ library for fast backtrxek- interactive product configuration. 1®th
International Conference on Principles and Practice of €maint Programming Toronto, Canada,
2004. Springer25

[Jun06] Ulrich Junker. Handbook of Constraint Programmingchapter Configuration, pages 837-868.
Francesca Rossi and Peter van Beek and Toby Walsh, 2006.

yo Kang, Sholom Cohen, James Hess, William Novak, a eterson. Feature-oriented do-

[KCH*90] Kyo K Sholom Cohen, J H William Novak, areh&gr P F [dd
main analysis (foda) feasibility study. Technical RepoM@SEI-90-TR-21, Software Engineering
Institute, 19905

[Krol2] Christian Kroer. Sat and smt-based interactivefigumation for container vessel stowage planning.

Master’s thesis, IT University of Copenhagen, 2023.

[KZK10] Andreas Kubler, Christoph Zengler, and Wolfgangdtlin. Model counting in product configuration.
In 1st International Workshop on Logics for Component Conéijan, pages 44-53, Edinburgh, UK.,
July 2010.2, 13

[Lau06] Sean Quan Lau. Domain analysis of e-commerce sygstising feature-based model templates. Mas-
ter's thesis, Dept. Electrical and Computer Engineeringiversity of Waterloo, Canada, 200&,
25

[MDSD14] R. Mazo, C. Dumitrescu, C. Salinesi, and D. DiRecommendation Systems in Software Enginegering
chapter Recommendation Heuristics for Improving ProdugelConfiguration Processes. Springer-
Verlag Berlin Heidelberg, 2014, 9

[Men09] Marcilio Mendonga. Efficient Reasoning Techniques for Large Scale Feature ModehD thesis,
University of Waterloo, 20099, 25

[NWO7] Nina Narodytska and Toby Walsh. Constraint and \@eardering heuristics for compiling config-
uration problems. IiProceedings of the 20th International Joint Conference difiéal Intelligence
pages 149-154, San Francisco, CA, USA, 2007. Morgan KaufrRablishers Inc25, 26

[OOFO05] Barry O'Sullivan, Barry O’Callaghan, and EugeneFeeuder. Corrective explanation for interactive
constraint satisfaction. 109th International Joint Conference on Artificial Intekigce pages 1531—
1532, San Francisco, CA, USA, 2005. Morgan Kaufmann Publgsinc. 25

37

BIBLIOGRAPHY

[PBLO5] Klaus Pohl, Gunter Bockle, and Frank Linde&oftware Product Line Engineering: Foundations
Principles and TechniquesSpringer, 200510

[PHO4] F. K. Piland M Holweg. Mitigating product variety’mipact on the value chaitnterfaces 34(5):394—
403, 2004.1

[POS'12] Gilles Perrouin, Sebastian Oster, Sagar Sen, Jacqeés Benoit Baudry, and Yves le Traon. Pairwis
testing for software product lines: comparison of two apphes. Software Quality Journal20(3-

4):605-643, 201225

[Quell] Matthieu QuevaA Framework for Constraint-Programming based Configunati®hD thesis, Tech-

nical University of Denmark, 201125

[SAH*11] Samaneh Soltani, Mohsen Asadi, Marek Hatala, Dragarvsasand Ebrahim Bagheri. Automatec
planning for feature model configuration based on stakehmsldusiness concerns. B6th Interna-
tional Conference on Automated Software Engineenages 536-539, Washington, DC, USA, 201

IEEE Computer Societyd

[Sha48] C. E. Shannon. A mathematical theory of commurtnaBell System Technical Journ&7(3):379—
423,1948.2,11

[SHN*07] Carsten Sinz, Albert Haag, Nina Narodytska, Toby Watsther Gelle, Mihaela Sabin, Ulrich Junker
Barry O’'Sullivan, Rick Rabiser, Deepak Dhungana, PaulrBecher, Klaus Lehner, Christian Feder
spiel, and Daniel Naus. ConfiguratiofzEE Intelligent System#&2:78-90, 20079, 12

[SHTBO7] Pierre-Yves Schobbens, Patrick Heymans, JeaistGphe Trigaux, and Yves Bontemps. Generi
semantics of feature diagramSomputer Network<$1(2):456-479, 2007. Feature Interactién.

[SRK*11] Norbert Siegmund, Marko Rosenmdilller, Martin Kuhlema@hristian Kastner, Sven Apel, and Gunte
Saake. Spl conqueror: Toward optimization of non-funaloproperties in software product lines

Software Quality Journalpages 1-31, June 2019.

[SSJO5] Timothy W. Simpson, Zahed Siddique, and JianxineRd@o. Product Platform and Product Family
Design: Methods and Application$pringer, 20051

[Ste80] Louis Steinberg. Question ordering in a mixed tiveaprogram specification dialogue. 1t Annual
National Conference on Atrtificial Intelligenc8&tanford University, August 1980. AAAI Pres3.

38

BIBLIOGRAPHY

[SW98] Daniel Sabin and Rainer Weigel. Product configurefiameworks-a surveyEEE Intelligent Systems
13(4):42—-49, July 19941, 9, 12

[TBKO9] Thomas Thum, Don Batory, and Christian Kastner. $degng about edits to feature models 3ltst In-
ternational Conference on Software Engineeripgges 254-264, Washington, DC, USA, 2009. IEEE
Computer Societyl2

[VNBvOSO06] Christof van Nimwegen, Daniel Burgos, Herre ldnvOostendorp, and Hermina Schijf. The paradox
of the assisted user: guidance can be counterproductivel@@HI Conference on Human Factors in

Computing Systempages 917-926, New York, USA, 2006. ACHI.

[WBS*10] J. White, D. Benavides, D.C. Schmidt, P. Trinidad, B. Dloerty, and A. Ruiz-Cortes. Automated
diagnosis of feature model configurationkurnal of Systems and SoftwaB3(7):1094-1107, 2010.

9

[WDSBO09] Jules White, Brian Dougherty, Doulas C. Schmidltgl &avid Benavides. Automated reasoning for
multi-step feature model configuration problems18th International Software Product Line Confer-

ence pages 11-20, Pittsburgh, USA, 2009. Carnegie Mellon Usitye 5

39

ACRONYMS

ADC Automated Driving Controller
ANOVA ANalysis Of VAriance
BDD Binary Decision Diagrama

C Car

CAB Collision Avoidance Braking
EA Enhanced Avoidance

FD Features Diagram

FRF Forward Range Finder

LRF Lateral Range Finder

HSD Honest Significant Differences
PP Parallel Parking

S Sensor

SA Standard Avoidance

40

	List of Figures
	List of Tables
	1 Introduction
	2 Motivational Example
	3 Related Work
	4 Entropy-based approach to sort configuration questions
	4.1 Preliminaries
	4.1.1 Information Theory
	4.1.2 Straightforward approach to compute component probabilities

	4.2 Efficient computation of the probabilities of the variables of a Boolean formula from a BDD
	4.2.1 Definitions
	4.2.2 Data Structures
	4.2.3 Algorithm
	4.2.3.1 Computational cost

	4.2.4 Entropy driven configuration
	4.2.4.1 Example

	5 Experimental evaluation
	5.1 Experimental design
	5.1.1 Case study 1: Renault Megane
	5.1.1.1 Results
	5.1.1.2 Statistical significance

	5.1.2 Case study 2: Electronic Shopping
	5.1.2.1 Statistical significance

	5.1.3 Threats to Validity

	6 Conclusions
	Bibliography

