
Máster Universitario de Investigación en

Ingenieŕıa de Software y Sistemas Informáticos

SOPORTE PARA LA CONFIGURACI ÓN AUTOM ÁTICA DE

L ÍNEAS DE PRODUCTOS

D. Héctor Pérez Morago

Dirigida por Dr. D. Ruben Heradio Gil

Dr. D. David Fernández Amorós

Departamento de Ingenieŕıa del Software y Sistemas Inforḿaticos

Escuela T́ecnica Superior de Informática

UNED

Ingenierı́a de Software cod.-31105128 Curso: 2013-2014

Convocatoria: Junio

logoETSI.eps

Máster Universitario de Investigación en

Ingenieŕıa de Software y Sistemas Informáticos

SOPORTE PARA LA CONFIGURACÍON AUTOMÁTICA DE

LÍNEAS DE PRODUCTOS

D. Héctor Pérez Morago

Dirigida por Dr. D. Ruben Heradio Gil

Dr. D. David Fernández Amorós

Trabajo tipo A

Departamento de Ingenieŕıa del Software y Sistemas Inforḿaticos

Escuela T́ecnica Superior de Informática

UNED

Ingenierı́a de Software cod.-31105128 Madrid, Junio de 2014

logoISSI.eps
logoETSI.eps

Autorizaci ón

Autorizaci ón

Autorizo/amos a la Universidad Nacional de Educación a Distancia a difundir y utilizar, con fines académicos,

no comerciales y mencionando expresamente a sus autores, tanto la memoria de este Trabajo Fin de Máster, como el

código, la documentación y/o el prototipo desarrollado.

Firma del/los Autor/es

Juan del Rosal, 16

28040, Madrid

Tel: 91 398 89 10

Fax: 91 398 89 09

www.issi.uned.es

logoISSI.eps
logoETSI.eps
www.issi.uned.es

Abstract

To compete in the global marketplace, manufacturers try to differentiate their products by focusing on

individual customer needs. Fulfilling this goal requires companies to shift from mass production to mass

customization. Under this approach, customized products are not designed individually but as a family

of related derivatives. That is, a generic architecture, named product platform, is designed to support the

derivation of customized products through a configuration process that determines which components the

product comprises. When a customer configures a derivative,typically not every combination of available

components is valid. To guarantee that all dependencies andincompatibilities among the derivative con-

stituent components are satisfied, automated configuratorsare used. Flexible product platforms provide

a big number of interrelated components, and so the configuration of all but trivial derivatives involves

considerable effort to select which components the derivative should include. Our approach alleviates

that effort by speeding up the derivative configuration using a heuristic based on the Information Theory

concept of entropy. The effectiveness of the approach is empirically validated using a real case study

taken from the automotive industry.

Keywords: Entropy Based Heuristic; Mass Customization; Product Configuration

Resumen

Para competir en un mercado globalizado, las empresas han dehacer un esfuerzo para diferenciar sus pro-

ductos centrandose en las necesidades especı́ficas de los clientes. Para alcanzar este objetivo, las empresas

deben cambiar sus modelos de producción pasando de laproduccíon en masa(mass production) a lapro-

duccíon personalizada(mass customization). Bajo esta nueva perspectiva, los productos personalizados

no son creados individualmente sino como familias de productos relacionados. Aquı́, una arquitectura

genérica, llamada plataforma de productos (product platform), es diseñada con el fin de dar soporte a la

derivación de productos personalizados mediante el proceso de configuración que indica que componen-

tes tiene un producto. Cuando un cliente configura un producto (derivative) no todos las combinaciones

de los componentes estan permitidas. Los configuradores sonherramientas automáticas desarrolladas con

el fin de garantizar que todas las dependencias e incompatibilidades entre componentes son satisfechas.

Las plataformas de productos proporcionan un gran número de componentes interrelacionados, por lo

que la configuración, de incluso los productos más triviales, conlleva un considerable esfuerzo. Nuestra

propuesta alivia tal esfuerzo acelerando el proceso de configuración de un producto, utilizando para ello

una heurı́stica basada en el concepto de entropı́a de la teorı́a de información. La efectividad de nuestra

propuesta ha sido empı́ricamente validada utilizando un caso de estudio real tomado de la industria auto-

moviĺıstica.

Keywords: Mass Customization; Product Configuration; Entropy Based Heuristic

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

2 Motivational Example 5

3 Related Work 9

4 Entropy-based approach to sort configuration questions 11

4.1 Preliminaries 11

4.1.1 Information Theory 11

4.1.2 Straightforward approach to compute component probabilities 12

4.2 Efficient computation of the probabilities of the variables of a Boolean formula from a BDD14

4.2.1 Definitions 15

4.2.2 Data Structures 16

4.2.3 Algorithm 18

4.2.3.1 Computational cost 19

4.2.4 Entropy driven configuration 23

4.2.4.1 Example 24

5 Experimental evaluation 25

5.1 Experimental design 25

5.1.1 Case study 1: Renault Megane 26

5.1.1.1 Results 26

5.1.1.2 Statistical significance 28

v

CONTENTS

5.1.2 Case study 2: Electronic Shopping 28

5.1.2.1 Statistical significance 31

5.1.3 Threats to Validity 32

6 Conclusions 33

Bibliography 35

vi

List of Figures

2.1 FD for car automated driving capabilities 6

4.1 BDD forψ according to the variable orderingx1 ≺ x2 ≺ x3 ≺ x4 . 16

4.2 Probability computation for BDD4.1 .20

4.3 Configuring derivative{PP, LRF,¬FRF, SA,¬EA} using component entropy24

5.1 Number of configuration steps according to the used approach for Renault Megane27

5.2 Number of configuration steps according to the used approach for Electronic Shopping30

5.3 Time required to compute component probabilities 32

vii

List of Tables

2.1 Valid derivatives for Figure2.1 . 7

2.2 Brute Force Approach to Compute the Optimal Ordering on Average 8

4.1 Equivalence between configuration models and propositional logic formulaes13

4.2 Truth table forψ ≡ (x1 ∧ x2) ∨ (x3 ∧ x4) .15

4.3 Content of thebddarray for Figure4.1 .17

4.4 Content of thevar orderingarray for the Figure4.1 . 17

4.5 Variables iteratively traversed for BBD in Figure4.1 . 22

5.1 Result of the experiments for Renault Megane 27

5.2 95% CI of the population mean for Renault Megane 27

5.3 ANOVA test for Renault Megane 28

5.4 Power analysis for Renault Megane 28

5.5 Tukey HSD test for Renault Megane 29

5.6 Result of the experiments for Electronic Shopping 29

5.7 95% CI of the population mean for Electronic Shopping 29

5.8 ANOVA test for Electronic Shopping 31

5.9 Power analysis for Electronic Shopping 31

5.10 Tukey HSD test for Electronic Shopping 31

ix

CHAPTER

1
Introduction

To increase variety, improve customer satisfaction, reduce lead-times, and shorten costs, many companies have

shifted frommass productionto mass customization[SSJ05]. This shift of paradigm enriches the mass production

economies of scale with custom manufacturing flexibility bydeveloping families of related products instead of single

products. From this perspective, designing a product family is the process of capturing and modeling multiple product

variants to satisfy different market niches. A generic architecture, namedproduct platform, is designed to support the

creation of customized products calledderivatives.

Product platforms usually support a high quantity of derivatives. For instance, the number of derivatives for

product platforms in the automotive industry may range from103 for the smallest Peugeot and Nissan car models, to

1016 or 1021 for the BMW 3-Series and Mercedes C-Class, respectively [PH04]. To achieve that flexibility, a number

of configuration options are available. For example, the Peugeot 206 and Mercedes C-Class car models have 86 and

389 customer selectable options, respectively. Typicallynot all option combinations are valid. There may be option

incompatibilities (e.g.,“manual transmissions are not compatible with V8 engines”), option dependencies (e.g., “sport

cars require manual gearbox”), etc. Configuring a valid derivative implies ensuring that all constraints between its

constituent components are satisfied. Checking by hand those constraints is unfeasible for all but the most trivial

product platforms, so derivative configuration is usually assisted by automatedconfigurators1 [SW98].

1Some examples of commercial configurators areConfigit (http://www.configit-software.com/),

SAP Product Configurator (https://scn.sap.com/docs/DOC-25224), Oracle Configurator

(http://docs.oracle.com/cd/B12190_11/current/acrobat/115czinstg.pdf), etc. In addition, many automotive

companies have their own configurators. For instance,VolvousesKOLA, ScaniausesSPECTRA, MercedesusesSMARAGD, etc.

1

http://www.configit-software.com/
https://scn.sap.com/docs/DOC-25224
http://docs.oracle.com/cd/B12190_11/current/acrobat/115czinstg.pdf

1. INTRODUCTION

Our work enriches existing configurators by reducing the number of steps required to configure a valid derivative.

It takes advantage of the fact that, due to the component composition constraints, some decisions may be automatically

derived from other decisions previously made. So the order in which decisions are made has a strong influence on the

number of decisions required to complete a derivative. For instance, given the constraint “sport cars require manual

gearbox” a customer might configure a sport car using two decision orderings: one requiring two steps (i.e., step 1:

select “manual gearbox”, and step 2: select “sport car”), oranother one using just a single step (i.e., select “sport car”,

so decision select “manual gearbox” is implicitly made).

As van Nimwegen et al. [vNBvOS06] note, customers sometimes prefer to first answer questionsthat are im-

portant to them, or easy to answer, before being led through the remaining questions [vNBvOS06]. In this sense,

our approach respects customer preferences. Instead of imposing a fixed ordering, it suggests orderings dynamically,

reacting to the customer decisions. In particular, the process to get a derivative is performed in successive steps. In

each step, the customer gets a question ranking, selects oneof the questions and answers it. In the next step, the

question ranking is readjusted to account for the customer’s answer. The computation of the ranking is grounded

on the Information Theory concept ofentropy, which was introduced by Shannon [Sha48] and measures the average

uncertainty of a random variable.

At the first configuration step, the uncertainty is total. With no information at all, the configurator cannot figure out

which derivative the customer desires. As the process advances, configuration options are eliminated according to the

customer decisions and so the information about the final configuration increases (i.e., the set of included/excluded

components grows). Consequently, the entropy decreases. When the derivative is totally configured there is no

uncertainty and the entropy is zero.

As we will see, our approach and the heuristics proposed in [CE11] [MDSD14] require computing the probabil-

ities of all variables in a Boolean formula. The usual way to perform such task is calling repeatedly a logic engine,

e.g., a SAT solver or a Binary Decision Diagram (BDD) library, one time for each variable [KZK10]. Unfortunately,

this approach has an high computational cost and thus imposes long response times, hindering customer-configurator

interactivity. To overcome such problem, this paper proposes an algorithm that computes efficiently variable probab-

ilities using BDDs. Since more complex logics than the Propositional one, which include integer arithmetic, transitive

closure, etc., can be reduced to Boolean functions [HR04] [Jac12], and thus encoded as BDDs, our algorithm is

general enough to support most configuration model notations.

The validity of our approach has been tested on two benchmarks widely used by the configuration and software

product line communities: the Renault Megane platform provided by the car manufacturing company Renault DVI1

and the Electronic Shopping case study [Lau06]. Results show that our approach requires less configuration steps

1http://www.renault.fr/

2

http://www.renault.fr/

than related work, and that our BDD algorithm gets short response times, supporting this way not only our approach

but also other methods proposed in related work.

The remainder of this paper is structured as follows. Chapter 2 presents the running example we will use to

motivate and illustrate our work. Chapter3 summarizes related work to our approach. Chapter4 introduces the

concept of entropy and describes how to compute it from a configuration model. Later, our entropy-driven approach

is described in detail. Chapter5 reports the experimental validation of our approach. Finally, Chapter6 outlines the

conclusions of our work.

3

CHAPTER

2
Motivational Example

This section illustrates the problem our approach tackles using an example provided by [WDSB09], where deriv-

atives are cars with different automated driving capabilities.

To model the configurable options of a product family, a number of different notations are available. For instance,

Feature Diagrams (FD) [KCH+90], Decision Diagrams [dec93], the Configit language, the SAP Product Configurator

language, the Oracle Configurator language, etc. Interestingly, most of those notations are semantically equivalent

[CGR+12, SHTB07]. In fact, automated configurators instead of processing configuration models directly, usually

translate them into a propositional logic representation,such as a logic formula in conjunctive normal form, a BDD,

etc. That logic representation is then processed using off-the-self tools, such as SAT solvers, BDD engines, etc. (see

Section4.1.2 for an explanation on the configuration model to logic translation). The input to our approach is the

logic representation of the configuration model, so it is independent of the original notation used to specify the model.

To show what a configuration model looks like, please refer toFigure2.1which models our running example as

a FD1 (a hierarchically arranged set of features with different relations among them). Figure2.1 includes three kinds

of hierarchical relations:

• optional, denoted by simple edges ending with an empty circle; e. g., cars may (or may not) include an Auto-

mated Driving Controller (ADC).

• mandatory, denoted by simple edges ending with a filled circle; e. g., ifa car has an ADC, it must include some

kind of Collision Avoidance Braking (CAB).

1this paper follows the generic semantics for FDs given by Schobbens et al. [SHTB07].

5

2. MOTIVATIONAL EXAMPLE

• alternative, denoted by edges connected by an arc; e. g., Standard Avoidance (SA) and Enhanced Avoidance

(EA) are the mutually exclusive options for Collision Avoidance Braking (CAB).

Figure 2.1: FD for car automated driving capabilities

To manage the complexity of modeling the similarities and differences among the derivatives of a product family,

the FD notation follows adivide and conquerstrategy. Derivative variabilities are modeled by progressively decom-

posing complicated and abstract features into simpler ones, until elemental features, which are directly implemented

by physical components, are reached. The hierarchical structure of a FD graphically depicts such conceptual de-

composition. From here on, derivatives will be expressed enumerating the final components they include, i.e., using

references to the terminal nodes of the FD. For example,{PP, LRF, FRF,¬SA, EA} expresses the configuration of a

car with components PP, LRF, FRF, EA and without SA.

The FD notation supports narrowing the configuration space by adding additional crosstree constraints. For in-

stance, Figure2.1 represents as “PP
requires
−−−−−−→ LRF” the fact that cars with Parallel Parking need to includethe Lateral

Range Finder component. Thus, a car derivative with components {PP,¬LRF, ¬FRF, SA,¬EA} complies with the

FD relations, but is not valid because violates the constraint “PP
requires
−−−−−−→ LRF”.

For a configuration model withn options and no component interdependencies, the number of possible configur-

ations is 2n. Due to the feature relations and additional crosstree constraints, the number of valid configurations in the

example is reduced from 25
= 32 to the 13 ones summarized in Table2.1.

To configure a car, the decision maker needs to answer a sequence of questions. For example, the sequence:

(1) is EA in the configuration? no, (2) FRF? no, (3) LRF? yes, (4) PP? yes

6

10_motivational_example/figures/EPS/car_example.eps

Valid Derivatives

1 ¬PP,¬LRF,¬FRF,¬SA,¬EA

2 ¬PP,¬LRF, FRF,¬SA,¬EA

3 ¬PP, LRF,¬FRF,¬SA,¬EA

4 ¬PP, LRF, FRF,¬SA,¬EA

5 ¬PP,¬LRF,¬FRF, SA,¬EA

6 ¬PP, LRF,¬FRF, SA,¬EA

7 ¬PP,¬LRF, FRF,¬SA, EA

8 ¬PP, LRF, FRF,¬SA, EA

9 ¬PP,¬LRF, FRF, SA,¬EA

10 ¬PP, LRF, FRF, SA,¬EA

11 PP, LRF,¬FRF, SA,¬EA

12 PP, LRF, FRF,¬SA, EA

13 PP, LRF, FRF, SA,¬EA

Table 2.1: Valid derivatives for Figure2.1

configures car 11 in Table2.1. Current automated configurators guarantee the derivationof valid products ensuring

the satisfaction of all model constraints. When the first question is answered, the configurator deduces that the car

being configured necessarily includes SA (otherwise the alternative relation between EA and SA would not be hold).

This way, the configurator is indirectly saving the decisionmaker from answering the irrelevant questionis SA in the

configuration?

The goal of our work is to make the most of the configuration model constraints going beyond current configurators

to minimize the number of questions required to specify a derivative. To do so, our approach tries to find an optimal

question ordering that maximizes the number of decisions automatically derived from other questions previously

answered.

A straightforward approach to get such optimal question ordering is computing for each valid product all possible

orderings, and thus finding the ordering with less questionson average for every product. Table2.2sums up the needed

computations. For instance, the next-to-last column summarizes the number of questions needed for derivative{PP,

LRF, FRF, SA,¬EA}. OrderingPP≺ LRF≺ FRF≺ SA≺ EAneeds 3 questions,LRF≺ PP≺ FRF≺ SA≺ EAneeds

4, and so on. Afterwards, the average number of questions foreach ordering is computed. Using this approach in

the previous example, orderingPP≺ LRF≺ FRF≺ SA≺ EA would be selected as an optimal one. As a result, the

question sequence for derivative 11 in Table2.1would be shortened to:

(1) is PP in the configuration? yes, (2) FRF? no, (3) SA? yes

removing the need for answeringif LRF is in the configuration.

Unfortunately, this approach requiresm · n! computations, wheren is the number of components of the configur-

ation model andm is a number≤ 2n. So it is extremely expensive in computational terms and does not scale except

7

2. MOTIVATIONAL EXAMPLE

orderings (n!) derivatives (≤ 2n) average number
{¬PP,¬LRF,¬FRF,¬SA,¬EA} {¬PP,¬LRF, FRF,¬SA,¬EA} . . . {PP, LRF, FRF, SA,¬EA} of questions

PP≺ LRF≺ FRF≺ SA ≺ EA 4 4 . . . 3 (4+4+. . .+3)/13

LRF ≺ PP≺ FRF≺ SA ≺ EA 4 4 . . . 4 (4+4+. . .+4)/13
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

LRF ≺ FRF≺ SA ≺ EA ≺ PP 4 4 . . . 4 (4+4+. . .+4)/13

Table 2.2: Brute Force Approach to Compute the Optimal Ordering on Average

for the most trivial configuration models. To overcome the scalability limitations of the former approach, this paper

proposes an heuristic solution grounded on the InformationTheory concept ofentropy.

8

CHAPTER

3
Related Work

Research on automated configurators is mainly focused onconsistency checkingandoptimization[SW98, Jun06].

For example, reasoning engines such as BDD libraries, SAT solvers and Logic-Truth Maintenance systems have been

used to detect invalid derivatives (i.e., those which violate some option dependency or incompatibility) [DGR11,

SHN+07, Men09]; to provide explanations for configuration flaws [WBS+10, Jan10], to optimize configurations (i.e.,

to find configurations whose cost is less or equal than a given one) [HHRV11, SAH+11, SRK+11], etc.

Despite the importance of the interactive question ordering problem that our work tackles, which was pointed out

by Steinberg more than thirty years ago [Ste80], there is little research on it. A recent approach that specifically deals

with this problem is provided by Chen et al. [CE11], who propose to minimize the number of configuration steps by

sorting the components according to theirprobability1 of being included in a derivative. Such probability is computed

by Equation3.1.

Pr(c) =
Number of valid derivatives that includec

Total number of valid derivatives
(3.1)

In addition to Chen et al.’s approach, Mazo et al. [MDSD14] proposes the following heuristics for ordering

configuration questions:

Heuristic 1 Components with the smallest domain first: choose first the component with the smallest domain. The

domain of a component is the set of possible values that the component can take according to its domain

definition and the constraints in which the component is involved.

1in their original paper and with a fully equivalent meaning,Chen et al. use the termselectivityinstead ofprobability. As our approach

follows an entropy driven heuristic and, the Information Theory concept of entropy is defined in terms of probability (see Section4.1.1), we

have preferred to useprobability throughout this paper.

9

3. RELATED WORK

Heuristic 2 The most constrained components first: choose the componentthat participates in the largest number of

constraints.

Heuristic 3 Components appearing in most products first. This heuristicis exactly the same as Chen et al’s approach.

Heuristic 4 Automatic completion when there is no choice. This heuristic “provides a mechanism to automatically

complete the configuration of variables where only one valueof their domain is possible [...] it also works when

a variable has several values on its domain but only one is valid”. Strictly speaking, this is not a heuristic, but

a propagation mechanism that all configuration systems should support. In remainder of this paper, we will

assume that all heuristics include this mechanism.

Heuristic 5 Components required by the latest configured component first: choose the component that has the largest

number of constraints with the past-configured components.

Heuristic 6 Components that split the problem space in two first: set firstthe components that divide the problem

space in two parts of approximately the same size. Unfortunately, Mazo et al. do not provide a way to implement

this heuristic which takes into account all model constraints. In particular, Mazo et al. propose a simplification

by just using the tree structure of a FD, or the variation points of an orthogonal variability model [PBL05], but

not processing the cross-tree constraints.

As it will be discussed in Section4.2.4, our approach may be though as an implementation of Heuristic 6 that,

in addition, takes into account all configuration model constraints. In Chapter5 it will be shown that our approach

provides better outcomes than Heuristics 1, 2, 3 (i.e., Chen’s approach), and 5.

10

CHAPTER

4
Entropy-based approach to sort

configuration questions

This chapter presents our heuristic to minimize the number of steps required to configure a derivative from a

configuration model. Subsection4.1.1introduces the theoretical background of our approach. As we will see, our

heuristic, as other ones summarized in Chapter3, requires computing the component probabilities. Subsection 4.1.2

discusses the scalability limitations of the approach commonly used to compute those probabilities. To overcome such

limitations, in Subsection4.2 we propose an algorithm that provides an efficient probability computation. Finally,

Subsection4.2.4describes our heuristic.

4.1 Preliminaries

4.1.1 Information Theory

The following definitions were originally introduced by Shannon [Sha48]. Let us start with the concept ofentropy.

Let X be a discrete random variable with alphabetX and probability mass function Pr(x) = Pr{X = x}, x ∈ X; the

entropyH of X is defined by Equation4.1:

H(X) = −
∑

x∈X

Pr(x)
(

log2Pr(x)
)

(4.1)

11

4. ENTROPY-BASED APPROACH TO SORT CONFIGURATION QUESTIONS

Let us present the concept ofconditional entropy, which is the entropy of a random variable conditional on the

knowledge of another random variable.

Let X andY be two discrete random variables. The conditional entropyH(X|Y) of X givenY is defined by Equation

4.2:

H(X|Y) =
∑

y∈Y

Pr(y)H(X|Y = y) (4.2)

Finally, let us introduce the concept ofmutual information, also calledinformation gain, which represents the

reduction in a variable uncertainty due to another random variable.

Consider two random variables X and Y with a joint probability mass function Pr(x, y) and marginal probability

mass functions Pr(x) and Pr(y). The mutual informationI (X; Y) is defined by Equation4.3 as the relative entropy

between the joint distribution and the product distribution Pr(x)Pr(y):

I (X; Y) =
∑

x,y

Pr(x, y)log2
Pr(x, y)

Pr(x)Pr(y)
(4.3)

Entropy and mutual information satisfy the following properties that will be used throughout this paper:

1. H(X) ≥ 0

2. H(X) ≤ log2#X, with equality if and only ifX is distributed uniformly overX (in this paper, the number of

elements of a setS is denoted as #S)

3. I (X; Y) = H(X) − H(X|Y) = H(Y) − H(Y|X) = I (Y; X)

4.1.2 Straightforward approach to compute component probabilities

A widespread approach to support the automated management of configuration models is translating them to pro-

positional logic formulas [SW98] [SHN+07], which are processed using off-the-self tools, such as SATsolvers

[BHvM+09] or BDD engines [Bry86]. Table4.1summarizes the translations needed to encode our running example

into propositional logic1. Equation4.4 is the equivalent logic formula to Figure2.1.

1a more detailed explanation on how to translate feature models into logic may be found in [TBK09].

12

4.1 Preliminaries

Type of Feature model Translation to
relationship representation propositional logic

mandatory A� B (¬A∨ B) ∧ (¬B∨ A)

optional A⊸ B ¬B∨ A

alternative A

B1 B2 . . . Bn

∧n
i=1(¬Bi ∨ A) ∧ (¬A

∨n
i=1 Bi)

∧

i< j (¬Bi ∨ ¬B j)

requires A
requires
−−−−−−→ B ¬A∨ B

Table 4.1: Equivalence between configuration models and propositional logic formulaes

C⊸ ADCis translated to (¬ADC ∨C)∧

ADC� CABis translated to (¬ADC ∨ CAB) ∧ (¬CAB ∨ ADC)∧

CAB

SA EA

is translated to (¬SA∨ CAB) ∧ (¬EA ∨ CAB) ∧ (¬CAB ∨ SA∨ EA) ∧ (¬SA∨ ¬EA)∧

ADC⊸ PPis translated to (¬PP∨ ADC)∧

C� Sis translated to (¬S∨ C)∧ (¬C∨ S)∧

S⊸ LRFis translated to (¬LRF∨ S)∧

S⊸ FRFis translated to (¬FRF∨ S)∧

PP
requires
−−−−−−→ LRFis translated to (¬PP∨ FRF)

(4.4)

Once a configuration model is encoded into a logic formulaψ:

• the total numbern1 of valid derivatives is equivalent to the number of satisfying assignments ofψ (i.e., those

that evaluatesψ to true).

• the numbern2 of valid derivatives that include componentc is equivalent to the number of satisfying assign-

ments ofψ ∧ c.

Since the probability of a component isn2
n1

, and the computation of the number of satisfying assignments of a

Boolean formula is supported by most BDD engines and SAT solvers (in particular, #SAT counters are a type of

SAT solvers specifically oriented to compute such number), astraightforward approach to compute the component

probabilities is calling repeatedly a logic engine usingψ ∧ ci as input [KZK10]. Unfortunately, this approach has

an high computational cost and does not scale for all but trivial configuration models. While the SAT problem is

known to be NP-complete [Coo71], it is widely believed that the #SAT problem is even harder [BHvM+09]. If n is

13

4. ENTROPY-BASED APPROACH TO SORT CONFIGURATION QUESTIONS

the number of components, computing the component probabilities requires calling a #SAT solvern times, which is

extremely time-consuming. Similarly, computing the number of satisfying assignments with a BDD has computa-

tional complexityO(m) [Bry86], wherem is the number of nodes of the BDD. Hence, the complexity of computing

the component probabilities by calling repeatedly the BDD engine isO(n ·m), which is excessively time-consuming

for most configuration models.

For instance, it is well known by the car manufacturing community that the first issue of car configurators is

performance [ACF10]. Thus, as soon as customers make a configuration choice theywant to find out what the con-

sequences of the choice are. From a marketing perspective, it is unpleasant for customers to wait for several seconds

to know whether their requirements are correct or not in terms of configuration. As it will be shown experimentally

in Chapter5, computing the component probabilities by calling repeatedly a BDD may force the costumer to wait for

more than 600 seconds for just a single configuration step!

To overcome the aforementioned scalability limitations, in the following section we propose a BDD algorithm

that computes component probabilities in almost linear time tom.

4.2 Efficient computation of the probabilities of the variablesof a Boolean formula

from a BDD

BDDs are a way of representing Boolean functions. They are rooted, directed, acyclic graphs, which consist of several

decision nodes and terminal nodes [Bry86]. There are two types of terminal nodes called 0-terminal and 1-terminal.

Each decision nodevi is labeled by a Boolean variablexk and has two child nodes calledlow andhigh (which are

usually depicted by dashed and solid lines, respectively).The edge from nodevi to a low (or high) child represents

an assignment ofvi to 0 (resp. 1). Such a BDD is calledorderedif different variables appear in the same order on

all paths from the root. A BDD is said to bereducedif the following two rules have been applied to its graph: (i)

isomorphic subgraphs are merged, and (ii) nodes whose two children are isomorphic are eliminated.

Let us use formulaψ ≡ (x1 ∧ x2) ∨ (x3 ∧ x4) as running example for this subsection. Table4.2 is the truth table

for ψ. Figure4.1 is its BDD1 representation using the variable orderingx1 ≺ x2 ≺ x3 ≺ x4
2.

The remainder of this subsection is structured as follows. Firstly, some definitions required to understand our

algorithm are given. Next, the data structures the algorithm uses are described from a theoretical perspective. Then,

the algorithm is presented. Finally, the algorithm computational cost is discussed.

1in popular usage, the term BDD almost always refers to Reduced Ordered Binary Decision Diagram [HR04]. In this paper, we will follow

that convention as well
2note that a logic formula may be encoded with different BDDs according to the variable ordering used to synthesize the BDD. Obviously,

our algorithm produces the same results for equivalent BDDs(i.e., BDDs that encode the same formula)

14

4.2 Efficient computation of the probabilities of the variables of a Boolean formula from a BDD

x1 x2 x3 x4 ψ

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

Table 4.2: Truth table forψ ≡ (x1 ∧ x2) ∨ (x3 ∧ x4)

4.2.1 Definitions

The satisfying set of a Boolean formulaψ(x1, ..., xn), denotedSψ, is defined by Equation4.5.

Sψ =
{

(x1, ..., xn)|ψ(x1, ..., xn) = true
}

(4.5)

The satisfying set of the variablexi of a Boolean formulaψ(x1, ..., xi−1, xi , xi+1, ..., xn), denotedSψ|xi=true, is defined

by Equation4.6.

Sψ|xi=true =
{

(x1, ..., xi−1, true, xi+1, ..., xn)|ψ(x1, ..., xi−1, true, xi+1, ..., xn) = true
}

(4.6)

For instance, according to Table4.2, #Sψ = 7 since there are 7 rows whereψ evaluates to true1, and #Sψ|x4 = 5

becausex4 = 1 in 5 of the 7 rows whereψ = 1.

The satisfying probability of a Boolean formulaψ(x1, ..., xn), denoted Pr(ψ), is defined by Equation4.7.

Pr(ψ) =
#Sψ

2n (4.7)

The satisfying marginal probability of a variablexi in a Boolean formula

ψ(x1, ..., xi−1, xi , xi+1, ..., xn), denoted MPr(ψ|xi=true), is defined by Equation4.8.

MPr(ψ|xi=true) =
#Sψ|xi=true

2n (4.8)

1throughout this paper 0/1 and false/true are used interchangeably

15

4. ENTROPY-BASED APPROACH TO SORT CONFIGURATION QUESTIONS

The satisfying probability of a variablexi in a Boolean formula

ψ(x1, ..., xi−1, xi , xi+1, ..., xn), denoted Pr(ψ|xi=true), is defined by Equation4.9.

Pr(ψ|xi=true) =
#Sψ|xi=true

#Sψ

(4.9)

For instance, looking at Table4.2, it is easy to see that Pr(ψ) = 7
24 , MPr(ψ|x4=true) = 5

24 , and Pr(ψ|x4=true) =
5
7. For convenience, in the remainder of the paper we denote Pr(ψ|xi=true) and MPr(ψ|xi=true) as Pr(xi) and MPr(xi),

respectively.

Figure 4.1: BDD for ψ according to the variable orderingx1 ≺ x2 ≺ x3 ≺ x4

4.2.2 Data Structures

Let us represent a BDD with hasmnodes and encodes a Boolean formula withn variables by using the following data

structures:

• The variable ordering used to synthesize the BDD is represented by an array declared as follows:

var_ordering: array[0..n-1] of string

• Each node is represented by a record declared as follows:

type node = record

index: 0..n

low, high: node

mark: Boolean

end

16

3_overall_methodology/figures/EPS/good.eps

4.2 Efficient computation of the probabilities of the variables of a Boolean formula from a BDD

Where:

1. index is the index of the variables in the ordering. The terminal nodes of the BDD (i.e., 0 and 1) have

indexn.

2. low andhigh are the low and high node successors

3. mark is used to mark which nodes have been visited during a traversal of the graph. As we will see, our

algorithm is called at the top level with the root node as argument and with the mark fields of the nodes

being either all true or all false. It then systematically visits every node in the graph by recursively visiting

the subgraphs rooted by the two childrenlow andhigh. As it visits a node, it complements the value of the

mark field, so that it can later determine whether a child has already been visited by comparing the two

marks.

• The BDD is represented by an array declared as follows:

bdd: array[0..m] of node

The terminal nodes of the BDD, 0 and 1, are stored at positions0 and 1 of thebddarray, respectively.

For instance, Tables4.3and4.4represent the content ofbddandvar ordering for the BDD in Figure4.1, respect-

ively.

position index low high mark

0 4 nil nil false

1 4 nil nil false

2 3 0 1 false

3 2 0 2 false

4 1 3 1 false

5 0 3 4 false

Table 4.3: Content of thebddarray for Figure4.1

position content

0 “ x1”

1 “ x2”

2 “ x3”

3 “ x4”

Table 4.4: Content of thevar orderingarray for the Figure4.1

17

4. ENTROPY-BASED APPROACH TO SORT CONFIGURATION QUESTIONS

4.2.3 Algorithm

Pr(xi) is computed jointly by Algorithms1, 2 and3. Figure4.2summarizes the computations for the BDD in Figure

4.1. Let us examine how our approach proceeds:

Algorithm 1 computes Pr(xi) as Pr(xi) =
MPr(xi)
Pr(ψ) by calling the auxiliary Algorithms2 and3.

Algorithm 2 computes Pr(ψ). A nice mental picture to understand Algorithm2 is thinking in pouring 1 liter of water

from the BDD root to the terminal nodes. 1 liter goes through the root, then half a liter goes through the low

branch and half a liter through the high branch. This procedure advances until the water reaches the leaves.

Hence, MPr(xi) is the amount of water that node 1 has.

In Figure4.1, through nodev5 goes 1 liter (i.e., formulasat prob[5]1 = 1). Half of it goes tov3 and the other

half to v4. Whereas throughv4 passes1
2 liter, throughv3 goes the1

2 liter that comes fromv5 and half of the

water that comes fromv4 (i.e., formulasat prob[3] = 1
2 +

1
2
2 =

3
4).

Algorithm 3 computes MPr(xi). In particular, let us examine how it computes MPr(x2). In the truth Table4.2, ψ

evaluates to true whenx2 is true five times:

1. In four of themx1 is true. When the callget marginal prob(4, ...) is made, lines 10-23 compute the

marginal probability ofx2 for the explicit pathv5→ v4. The probabilities due to the low and high branches

of vi are stored into the problow and probhigh variables, respectively. As bdd[4].low, 0, a recursive

call is made to compute the total probability due to the low descendants ofv4 (i.e.,get marginal prob(3,

...)). As a result:

total prob[3]= prob lowv3
+ prob highv3

= 0+
3
16
=

3
16

Notice that problowx2 is not simply equal to totalprob[3], because totalprob[3] depends also on the

probability that comes from the linkv5d v3. To get just the probability due to the linkv4d v3, prob low

has to be adjusted using theformula sat prob array as:

prob low =
total prob[3] · formula sat prob[4]

2

formula sat prob[3]
=

3
16 ·

1
2
2

3
4

=

1
16

Since bdd[4].high = 1, probhigh is directly computed as:

prob high=
formula sat prob[4]

2
=

1
2

2
=

1
4

1according to Tables4.3and4.4, the root node has labelv5 and it is in the position 5 of thebddarray

18

4.2 Efficient computation of the probabilities of the variables of a Boolean formula from a BDD

Finally:

prob[bdd[4].index]= prob high=
1
4

2. In one of themx1 is false. The two following implicit paths that have been removed from the reduced

BDD: (i) v5d v4d v3, and (ii)v5d v4→ v3. Nevertheless, pathv5d v4→ v3 should be considered to

compute the marginal probability ofx2. Lines 24-31 account for that kind of implicit paths, adjusting the

marginal probability with the variables omitted in the paths. For instance, when the algorithm is called for

v5, the marginal probability ofx2 is updated with half the problow of v5.

To sum up:

MPr(x2) = MPr(v5d v4→ v3) +MPr(v5→ v4) =
prob lowv5

2
+ prob[bdd[4].index]=

1
8

2
+

1
4
=

5
16

Algorithm 1 : get prob

Input bddandvar orderingarrays;1

Output an array which storesPr(xi) in position i ;2

var formula sat prob, total prob: array[0..length(bdd)-1] of float;;3

prob: array[0..length(varordering)-1] of float; i: int;;4

begin5

for
(

i=0; i < length(bdd); i++
)

do6

total prob[i] = 0.0;7

for
(

i=0; i < length(varordering); i++
)

do8

prob[i] = 0.0;9

formula sat prob = getformula sat prob(bdd);10

get marginalprob(length(bdd)-1, totalprob, formulasat prob, prob, bdd, varordering);11

for
(

i=0; i < length(varordering); i++
)

do12

prob[i] = prob[i]
formula sat prob[1];13

return prob14

end15

4.2.3.1 Computational cost

Let m be the number of nodes of the BDD, andn the number of variables of the Boolean formula. Algorithm2

requires traverse all the nodes, so its computational complexity is O(m). Algorithm 3 also traverses all the BDD

nodes. In addition, to account for the implicit paths removed from the reduced BDD, the variables omitted on the

edges that come from each node need to be traversed (which is done by lines 24-31). Table4.5 summarizes those

traversals for Figure4.1. For instance, whenv4 is recursively traversed, the variablesx3 andx4 need to be iteratively

19

4. ENTROPY-BASED APPROACH TO SORT CONFIGURATION QUESTIONS

Algorithm 2 : get formula satprob

Input bddarray;1

Output an array which in position 1 storesPr(ψ);2

var formula sat prob: array[0..length(bdd)-1] of float; i: int;3

begin4

for
(

i=0; i < length(bdd)-1; i++
)

do5

formula sat prob[i] = 0.0// non-root nodes prob is initialized to 06

formula sat prob[i] = 1.0// root node prob is 17

i=length(bdd)-1;8

while i > 1 do// for all non-terminal nodes9

formula sat prob[bdd[i].low] += formula sat prob[i]
2.0 ;10

formula sat prob[bdd[i].high] += formula sat prob[i]
2.0 ;11

i -= 112

return formula sat prob13

end14

Figure 4.2: Probability computation for BDD4.1

20

3_overall_methodology/figures/EPS/good_computations.eps

4.2 Efficient computation of the probabilities of the variables of a Boolean formula from a BDD

Algorithm 3 : get marginalprob

Input v: 0..length(bdd)-1; totalprob, formulasat prob: array[0..length(bdd)-1] of float;;1

prob: array[0..length(varordering)-1] of float;bddandvar ordering arrays;2

Output prob is passed by reference and, at the end of the algorithm execution,;3

it storesMPr(xi) in position i ;4

var prob low, prob high: float; i: int;5

begin6

prob low = 0.0;7

prob high = 0.0;8

bdd[v].mark = not bdd[v].mark;9

// explicit path recusive traversal

if bdd[v].low == 1 then10

prob low = formula sat prob[v]
2.0 ;11

else ifbdd[v].low, 0 then12

if bdd[v].mark, bdd[bdd[v].low].markthen13

get marginalprob(bdd[v].low, totalprob, formulasat prob, prob, bdd, varordering);14

prob low =
total prob[bdd[v].low]· formula sat prob[v]

2.0
formula sat prob[bdd[v].low]15

if bdd[v].high == 1 then16

prob high = formula sat prob[v]
2.0 ;17

else ifbdd[v].high, 0 then18

if bdd[v].mark, bdd[bdd[v].high].markthen19

get marginalprob(bdd[v].high, totalprob, formulasat prob, prob, bdd, varordering);20

prob high =
total prob[bdd[v].high]· formula sat prob[v]

2.0
formula sat prob[bdd[v].high]21

total prob[v] = prob low + prob high;22

prob[bdd[v].index] += probhigh;23

// implicit path iterative traversal

i = bdd[v].index + 1;24

while i<bdd[bdd[v].low].indexdo25

prob[i] += prob low
2.0 ;26

i +=127

i = bdd[v].index + 1;28

while i<bdd[bdd[v].high].indexdo29

prob[i] += prob high
2.0 ;30

i +=131

end32

21

4. ENTROPY-BASED APPROACH TO SORT CONFIGURATION QUESTIONS

traversed because the edgev4→ 1 omits them (i.e., the variable encoded by nodev4, x2, jumps directly to 1 omitting

the intermediate variablesx3 and x4 in the orderingx1 ≺ x2 ≺ x3 ≺ x4). Table4.5 helps noticing the savings our

algorithm provides compared to the straightforward approach described in Section4.1.2, which requires traversing

all nodes for all variables (which in computational cost terms is equivalent to traversing all variables for every node).

Therefore, Algorithm3 does not traversem · n elements, butm · n′, wheren′ is strictly less thann1.

It follows that Algorithm 1 has computational complexityO(m · n′). As it will be shown in Section5, in the

practicen′ is usually much smaller thann and thus variable probabilities can be efficiently computed.

node arcs omitted vars
that are traversed

v5
v5 d v3 x2

v5 → v4 none

v4
v4 d v3 none

v4 → 1 x3, x4

v3
v3 d 0 x4

v3 → v2 none

v5
v5 d 0 none

v5 → 1 none

Table 4.5: Variables iteratively traversed for BBD in Figure4.1

1If n′ = n, all nodes in the BDD should go directly to 0 or 1, jumping overall the variables. Nevertheless, as BDDs are organized in

hierarchical levels according to the variable ordering, this is impossible (i.e., the nodes that encode a variable withpositionk in the ordering

only can jump over the variables with positionsk+ 1 . . .n)

22

4.2 Efficient computation of the probabilities of the variables of a Boolean formula from a BDD

4.2.4 Entropy driven configuration

Let us return to the original problem this paper tackles. Given a set of questionsQ, our goal is to sort it in such a way

that the user has to answer as few questions as possible to complete the configuration. To find the optimal order ofQ,

we propose to rank each questionq according to its expected information gain, i. e., measuring how much uncertainty

can be reduced on average when the engineer answers it. Such information gain is modeled as the mutual information

I (C; q), whereC is the set of all valid configurations (i. e., the ones that satisfy all asset interdependencies).

When a configuration is completed, the entropy of every question q is zero. Sinceq has been answered,H(q|C) =

0. Thus, it follows thatI (C; q) = H(q), as Equation4.10demonstrates (see Property3 in Subsection4.1.1).

I (C; q) = H(q) − H(q|C) = H(q) (4.10)

When we ask “is componentc in the configuration?”, the entropy of the questionH(q) is computed by Equation

4.11, where Pr(c) is the probability thatc is included in the configuration.

H(q) = −Pr(c)log2Pr(c) − Pr(¬c)log2Pr(¬c)

= −Pr(c)log2Pr(c) −
(

1− Pr(c)
)

log2
(

1− Pr(c)
)

(4.11)

Our approach to guide the configuration of a derivative may bethought of as a binary search for the user desired

configuration (remember Heuristic 6 in Chapter3). To successively divide the search space into subspaces ofapprox-

imately the same size (i. e., where the pursued configurationis approximately with the same probability), the user

answers the question that provides more information about the configuration (i. e., the question with highest entropy).

Thus, the configuration process advances iteratively, by performing the following activities, until the entropy of all

components becomes zero:

1. Computing the component probabilities from the input configuration model. As the process advances, the

configuration space gets narrower and, consequently, the component probabilities change.

2. Computing the entropy value for each question.

3. Sorting the questions in descending order of entropy.

4. Asking the user for answering a question with entropy greater than zero. Note than when a question has zero

entropy, it is because it has been answered in a previous stepdirectly or indirectly (i. e., because of the question

interdependencies).

5. Updating the set of answers and the configuration model1.

1e.g., if the customer answers negatively a questionq, the Boolean formulaψ that encodes the configuration model is updated toψ ∧ ¬ f

23

4. ENTROPY-BASED APPROACH TO SORT CONFIGURATION QUESTIONS

Entropy may also be used to measure how hard is to configure a given model. From the “point of view” of an

automated configurator, when the configuration process starts the derivative desired by the customer is anyc in C with

the same probability. So the configuration model uncertainty is calculated by Equation4.12(see Property2 in Section

4.1.1).

H(C) = log2#C (4.12)

4.2.4.1 Example

Coming back to the running example introduced in Chapter2, let us see how our approach works. Figure4.3sums up

the steps required to configure the derivative{PP, LRF,¬FRF, SA,¬EA} using the entropy heuristic. In the first step,

EA is the component with highest entropy. So the system asks the user if SA is included in the derivative. Once the

user answers affirmatively, the probabilities of the components are recomputed and so the entropies (e.g., the inclusion

of SA implies the exclusion of EA, so Pr(EA)=0 and thusH(EA)=0).

Figure 4.3: Configuring derivative{PP, LRF,¬FRF, SA,¬EA} using component entropy

We remark here that our approach does not force the user to follow a fixed sequence of questions. In each

configuration step, the user may decide not to answer the bestentropy-ranked question, but the one she thinks is more

convenient. After the question is answered, the entropies are recomputed and thus our approach adjust to the user

preferences in an interactive way.

24

3_overall_methodology/figures/EPS/car_example_entropy.eps

CHAPTER

5
Experimental evaluation

To test the validity of our approach, we have used two case studies:

1. The configuration model provided by the car manufacturingcompany Renault DVI1, which deals with the

configuration of a family of cars named Renault Megane2. We have selected this model because it illus-

trates the practical applicability of our approach (i.e., instead of using an example made up for academic

purposes, our work is tested on a real configuration model that comes from the industry). In addition, the

Renault Megane problem is a benchmark of widespread use by the configuration community [AFM02] [Jen04]

[OOF05] [HHOW05] [NW07] [HT07] [CO08] [Que11] [Kro12] [Gan12] [BFL13].

2. The Electronic Shopping model provided by Lau [Lau06], which deals with an electronic commerce platform

that allows consumers to directly buy goods or services froma seller over the Internet using a web browser3.

This benchmark is widely used by the software product line community [Men09] [BG11] [POS+12].

5.1 Experimental design

The goal of this section is to check if:

• Our approach produces better results than related work.

1http://www.renault.fr/
2The Renault Megane configuration model is freely available at http://www.itu.dk/research/cla/externals/clib/
3The Electronic Shopping model is freely available athttp://gsd.uwaterloo.ca:8088/SPLOT/feature_model_repository_dep

25

http://www.renault.fr/
http://www.itu.dk/research/cla/externals/clib/
http://gsd.uwaterloo.ca:8088/SPLOT/feature_model_repository_depot.html

5. EXPERIMENTAL EVALUATION

• The algorithm presented in Section4.2 provides reasonable response times and thus support customer inter-

activity during the configuration process.

To do so, we have created a test bed composed of 1000 random derivatives for every configuration model. As we

will see, a sample of 1000 derivatives is big enough to get results with high statistical power and significance.

To generate valid derivatives that satisfy all constraints, we have encoded the models as propositional logic for-

mulaes (see Subsection4.1.2) and then as BDDs. To get efficient BDD sizes, the directions given by Narodytska et

al. [NW07] have been followed. The BuDDy package1 has been used to guarantee the generation of valid derivatives

(i.e., derivatives that conform to the BDD).

The test bed is used to compare the following methods:

1. Mazo et al.’s Heuristics 1, 2 and 52.

2. Probability driven approach, i.e., the method proposed by Chen et al. andMazo et al. (Heuristic 3).

3. Entropydriven approach, i.e., the method we propose in this paper.

To compute the option probabilities, which are required by theentropyandprobability approaches, an implement-

ation of the algorithm presented in Section4.2has been included into the BuDDy package.

5.1.1 Case study 1: Renault Megane

5.1.1.1 Results

Table5.1 summarizes the results of the experiments for the Renault Megane configuration model. Histograms in

Figure5.1.a represent the number of steps needed to configure the 1000 derivatives using Mazo et al.’s Heuristics 1,

2 and 5, and theentropyandprobability approaches. Figure5.1.b complements the histogram representation of the

results with a box plot3.

Using the Central Limit Theorem, the 95% Confidence Intervals (CI) of the population mean can be estimated

(i.e., the range where, with a 95% guarantee, the mean of the number of steps required to configure every derivative

of the Megane model lies). Table5.2summarizes the CIs for each approach4.

1BuDDy is freely available athttp://sourceforge.net/projects/buddy/
2remember that, strictly speaking, Mazo et al.’s Heuristic 4is not aheuristic, but a propagation mechanism that all configuration systems

should support. So we have included such mechanism in all themethods tested in this paper.
3“whiskers” in Figure5.1.b start from the edge of the box and extend to the furthest data point that is within 1.5 times the inter-quartile

range (i.e., the range that goes from the 25th percentile to the 75th percentile). Points that are past the ends of the whiskers have been considered

outliers and displayed with dots.

4CIs are estimated as population mean CI= sample mean± t(std. error,95%, 999 degrees of freedom), wheret stands for the Stu-

dent’st-distribution.

26

http://sourceforge.net/projects/buddy/

5.1 Experimental design

approach mean std. deviation median min max range

entropy 73.49 9.5 73 50 97 47

probability 105.79 11.54 106 56 137 81

Heuristic 1 86.04 11.26 86 53 118 65

Heuristic 2 82.74 11.12 83 51 114 63

Heuristic 5 99.39 15.95 100 52 143 91

Table 5.1: Result of the experiments for Renault Megane

0.00

0.01

0.02

0.03

0.04

0.00

0.01

0.02

0.03

0.04

0.00

0.01

0.02

0.03

0.04

0.00

0.01

0.02

0.03

0.04

0.00

0.01

0.02

0.03

0.04

m
ax. en

tro
p

y
H

eu
ristic 2

H
eu

ristic 1
H

eu
ristic 5

m
ax. p

ro
b

.

50 75 100 125 150
steps

de
ns

ity

(a) Histograms

50

55

60

65

70

75

80

85

90

95

100

105

110

115

120

125

130

135

140
m

ax
. e

nt
ro

py

H
eu

ris
tic

 2

H
eu

ris
tic

 1

H
eu

ris
tic

 5

m
ax

. p
ro

b.

approach

st
ep

s

(b) Box plots

Figure 5.1: Number of configuration steps according to the used approachfor Renault Megane

entropy probability Heuristic 1 Heuristic 2 Heuristic 5

std. error 95% CI std. error 95% CI std. error 95% CI std. error 95% CI std. error 95% CI

0.3 72.90-74.08 0.36 105.07-106.50 0.36 85.35-86.74 0.35 82.05-83.43 0.5 98.40-100.38

Table 5.2: 95% CI of the population mean for Renault Megane

27

4_experiments_and_results/figures/EPS/histogram.eps
4_experiments_and_results/figures/EPS/boxplot.eps

5. EXPERIMENTAL EVALUATION

According to the summarized data, there is experimental evidence supporting that our approach produces better

results than related work.

5.1.1.2 Statistical significance

To check the statistical significance of the results, an Analysis of Variance (ANOVA) test has been run on the experi-

mental data. Table5.3summarizes the ANOVA outcomes. Since thep-value is less than 0.001 (in particular,p-value

< 2 · 10−16), the experimental results are statistically highly significant.

degrees of sum of mean of F-value Pr(> F)
freedom squares squares

approaches 4 676884 169221 1162 < 2 · 10−16

residuals 4995 727312 146

Table 5.3: ANOVA test for Renault Megane

Table5.4summarizes the power analysis of the ANOVA test. Given the sample size and the high effect size (i.e.,

the high values ofη2 and Cohen’sf 2), the ANOVA test has high statistical power.

effect size power
eta squaredη2 Cohen’s f 2

0.48 0.93 ≈ 1

Table 5.4: Power analysis for Renault Megane

Finally, to check the statistical significance of the pairwise comparison between the approaches, a Tukey Honest

Significant Differences (HSD) has been run. According to theresults, summarized in Table5.5, the difference between

the number of steps required by any pair of approaches to configure a derivative is statistically highly significant1.

5.1.2 Case study 2: Electronic Shopping

Table5.6 and Figure5.2 summarize the results of the experiments for the ElectronicShopping configuration model.

Table5.7summarizes the CIs for each approach. According to the outcomes, there is experimental evidence support-

ing that our approach produces better results than related work.

1whereas the ANOVA test rejects the null hypothesis: “there is no difference between the five approaches (i.e., all of themproduce

approximately the same results)”, Tukey HSD test rejects ten null hypotheses separately: “there is no difference between the Heuristic 2 and

the entropy approach”, “there is no difference between Heuristic 1 and the entropy approach ”, etc.

28

5.1 Experimental design

difference 95% CI adjusted p-value

Heuristic 2 vs entropy 9.25 7.78-10.72 ≈ 0

Heuristic 1 vs entropy 12.56 11.08-14.02 ≈ 0

Heuristic 5 vs entropy 25.89 24.42-27.37 ≈ 0

probability vs entropy 32.29 30.82-33.77 ≈ 0

Heuristic 1 vs Heuristic 2 3.30 1.83-4.77 ≈ 0

Heuristic 5 vs Heuristic 2 16.65 15.17-18.12 ≈ 0

probability vs Heuristic 2 23.04 21.57-24.52 ≈ 0

Heuristic 5 vs Heuristic 1 13.34 11.87-14.82 ≈ 0

probability vs Heuristic 1 19.74 18.27-21.22 ≈ 0

probability vs Heuristic 5 6.40 4.93-7.87 ≈ 0

Table 5.5: Tukey HSD test for Renault Megane

approach mean std. deviation median min max range

entropy 165.57 2.23 166 158 171 13

probability 193.67 6.06 194 164 207 43

Heuristic 1 187.38 5.69 188 168 201 33

Heuristic 2 189.36 5.7 190 170 203 33

Heuristic 5 169.33 3.1 169 153 178 25

Table 5.6: Result of the experiments for Electronic Shopping

entropy probability Heuristic 1 Heuristic 2 Heuristic 5

std. error 95% CI std. error 95% CI std. error 95% CI std. error 95% CI std. error 95% CI

0.07 165.43-165.71 0.19 193.29-194.04 0.18 187.03-187.73 0.18 189.01-189.72 0.1 169.14-169.52

Table 5.7: 95% CI of the population mean for Electronic Shopping

29

5. EXPERIMENTAL EVALUATION

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

m
ax. en

tro
p

y
H

eu
ristic 5

H
eu

ristic 1
H

eu
ristic 2

m
ax. p

ro
b

.

150 160 170 180 190 200 210
steps

de
ns

ity

(a) Histograms

155

160

165

170

175

180

185

190

195

200

205

m
ax

. e
nt

ro
py

H
eu

ris
tic

 5

H
eu

ris
tic

 1

H
eu

ris
tic

 2

m
ax

. p
ro

b.

approach

st
ep

s

(b) Box plots

Figure 5.2: Number of configuration steps according to the used approachfor Electronic Shopping

30

4_experiments_and_results/figures/EPS/histogram_eshop.eps
4_experiments_and_results/figures/EPS/boxplot_eshop.eps

5.1 Experimental design

5.1.2.1 Statistical significance

Table5.8summarizes the ANOVA outcomes. Since thep-value is less than 0.001 (in particular,p-value< 2 · 10−16),

the experimental results are statistically highly significant. Table5.9 summarizes the power analysis of the ANOVA

test. Given the sample size and the high effect size, the ANOVA test has high statistical power. Finally, Table5.10

summarizes the outcomes of HSD, which show that the difference between the number of steps required by any pair

of approaches to configure a derivative is statistically highly significant.

degrees of sum of mean of F-value Pr(> F)
freedom squares squares

approaches 4 645314 161328 6950 < 2 · 10−16

residuals 4995 115944 23

Table 5.8: ANOVA test for Electronic Shopping

effect size power
eta squaredη2 Cohen’s f 2

0.85 5.57 ≈ 1

Table 5.9: Power analysis for Electronic Shopping

difference 95% CI adjusted p-value

Heuristic 5 vs entropy 3.76 3.17-4.35 ≈ 0

Heuristic 1 vs entropy 21.81 21.22-22.40 ≈ 0

Heuristic 2 vs entropy 23.79 23.21-24.38 ≈ 0

probability vs entropy 28.09 27.51-28.68 ≈ 0

Heuristic 1 vs Heuristic 5 18.05 17.46-18.64 ≈ 0

Heuristic 2 vs Heuristic 5 20.03 19.45-20.62 ≈ 0

probability vs Heuristic 5 24.33 23.75-24.92 ≈ 0

Heuristic 2 vs Heuristic 1 1.98 1.39-2.57 ≈ 0

probability vs Heuristic 1 6.28 5.69-6.87 ≈ 0

probability vs Heuristic 2 4.30 3.71-4.89 ≈ 0

Table 5.10:Tukey HSD test for Electronic Shopping

31

5. EXPERIMENTAL EVALUATION

5.1.3 Threats to Validity

A threat to the validity of our approach is the time required to compute the component probabilities1. For the sake

of interactivity, configurators must provide customer guidance in a short-time and the usual way to compute the

probabilities is highly time-consuming (see Section4.1.2). To assess the response time of our algorithm (see Section

4.2), we determined the time needed to configure 1000 randomly generated derivatives for the case studies 1 and

2 using our entropy-driven approach. Figure5.3 compares the average times needed to completely configure the

derivatives by computing the component probabilities using our algorithm, and calling repeatedly the BuDDy function

satcount. The performance tests were conducted on an Intelc© CoreTM 2 i3-4010U with 1.7 GHz and 4GB RAM

(although only one core was used).

As Figure5.3 shows, our algorithm greatly improves the probability computation time. For instance, it requires

4.54 seconds on average to compute all component probabilities (and thus their entropy values) for the first configur-

ation step in the Renault Megane example. In contrast, calling satcountrepeatedly consumes 625.18 seconds.

Note that the first configurations steps are the most expensive in time. As the configuration process advances, the

configuration space gets reduced and so the time needed to compute the probabilities. There is a point where both

approaches converge and get response times close to 0.

0

200

400

600

0 20 40 60
step

tim
e

(in
 s

ec
on

ds
)

approach
calling satcount repeteadly

our algorithm

(a) Renault Megane

0.00

0.25

0.50

0.75

1.00

0 50 100 150
step

tim
e

(in
 s

ec
on

ds
)

approach
calling satcount repeteadly

our algorithm

(b) Electronic Shopping

Figure 5.3: Time required to compute component probabilities

1which is also the Achilles’ heel for Chen et al.’s approach and Mazo et al.’s Heuristic 3.

32

4_experiments_and_results/figures/EPS/time_renault.eps
4_experiments_and_results/figures/EPS/time_eshop.eps

CHAPTER

6
Conclusions

To satisfy a wide range of customers, product platforms mustprovide a high variety of optional components. For

this reason, the configuration of all but trivial derivatives involves considerable effort in selecting which compon-

ents they should include, while avoiding violations of the inter-component dependencies and incompatibilities. Our

approach enriches existing automated configurators by reducing the number of steps required to configure a valid

derivative.

Applying the Information Theory concept of entropy, our approach takes advantage of the fact that, due to the

inter-component constraints, some decisions may be automatically derived from other decisions previously made.

So the order in which decisions are made has a strong influenceon the number of decisions required to complete a

configuration. Moreover, our approach does not provide a static ordering that the customer is forced to follow. On

the contrary, it suggests orderings dynamically, reactingto the customer decisions. In addition, we have proposed an

algorithm that efficiently computes the variable probabilities of a Boolean formula, supporting this way not only our

approach but also other methods proposed in related work.

The Renault Megane and Electronic Shopping configuration benchmarks have been used to test the applicability

of our approach and its effectiveness. In particular, it hasbeen shown that our approach needs less configuration steps

than related work.

33

Bibliography

[ACF10] J-M. Astesana, L. Cosserat, and H. Fargier. Constraint-based vehicle configuration: A case study. In

22nd IEEE International Conference on Tools with ArtificialIntelligence, volume 1, pages 68–75, Oct

2010.14

[AFM02] Jérôme Amilhastre, Hélène Fargier, and PierreMarquis. Consistency restoration and explanations in

dynamic csps-application to configuration.Artificial Intelligence, 135(1-2):199–234, 2002.25

[BFL13] Christian Bessiere, H[U+FFFD]ne Fargier, and Christophe Lecoutre. Global inverse consistency for

interactive constraint satisfaction. In Christian Schulte, editor,Principles and Practice of Constraint

Programming, volume 8124 ofLecture Notes in Computer Science, pages 159–174. Springer, 2013.25

[BG11] Ebrahim Bagheri and Dragan Gasevic. Assessing the maintainability of software product line feature

models using structural metrics.Software Quality Journal, 19(3):579–612, 2011.25

[BHvM+09] Armin Biere, Marijn J.H. Heule, Hans van Maaren, Toby, and Walsh. Handbook of Satisfiability,

volume 185 ofFrontiers in Artificial Intelligence and Applications. IOS Press, February 2009.12, 13

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.IEEE Transactions on

Computers, 35(8):677–691, August 1986.12, 14

[CE11] Sheng Chen and M. Erwig. Optimizing the product derivation process. In15th International Software

Product Line Conference, pages 35–44, Munich, Germany, 2011. IEEE Computer Society. 2, 9

[CGR+12] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid, and Andrzej Wasowski. Cool

features and tough decisions: a comparison of variability modeling approaches. In6th International

Workshop on Variability Modeling of Software-Intensive Systems, pages 173–182, New York, NY, USA,

2012. ACM.5

35

BIBLIOGRAPHY

[CO08] Hadrien Cambazard and Barry O’Sullivan. Reformulating positive table constraints using functional

dependencies. In14th International Conference on Principles and Practice of Constraint Program-

ming, pages 418–432, Sydney, Australia, 2008. Springer.25

[Coo71] Stephen A. Cook. The complexity of theorem-provingprocedures. InProceedings of the third annual

ACM symposium on Theory of computing, pages 151–158, New York, NY, USA, 1971. ACM.13

[dec93] Reuse-driven software processes guidebook, version 02.00.03. Technical Report SPC-92019-CMC,

Software Productivity Consortium Services Corporation, 1993. 5

[DGR11] Deepak Dhungana, Paul Grünbacher, and Rick Rabiser. The dopler meta-tool for decision-oriented

variability modeling: a multiple case study.Automated Software Engineering, 18(1):77–114, 2011.9

[Gan12] Graeme Keith Gange.Combinatorial Reasoning for Sets, Graphs and Document Composition. PhD

thesis, Department of Computing and Information Systems. The University of Melbourne, 2012.25

[HHOW05] Emmanuel Hebrard, Brahim Hnich, Barry O’Sullivan, and Toby Walsh. Finding diverse and sim-

ilar solutions in constraint programming. In20th National Conference on Artificial Intelligence and

the 17th Innovative Applications of Artificial Intelligence Conference, Pittsburgh, Pennsylvania, USA,

2005. AAAI Press / The MIT Press.25

[HHRV11] Abel Hegedus, Akos Horvath, Istvan Rath, and Daniel Varro. A model-driven framework for guided

design space exploration. In26th International Conference on Automated Software Engineering, pages

173–182, Washington, DC, USA, 2011. IEEE Computer Society.9

[HR04] Michael Huth and Mark Ryan.Logic in Computer Science: Modelling and Reasoning about Systems.

Cambridge University Press, 2004.2, 14

[HT07] Esben Rune Hansen and Peter Tiedemann. Compressing configuration data for memory limited devices.

In 22nd National Conference on Artificial Intelligence, Vancouver, British Columbia, Canada, 2007.

AAAI Press.25

[Jac12] Daniel Jackson.Software Abstractions: Logic, Language, and Analysis. 2ndedition. The MIT Press,

2012.2

[Jan10] Mikolas Janota.SAT Solving in Interactive Configuration. PhD thesis, Department of Computer Sci-

ence. University College Dublin, 2010.9

36

BIBLIOGRAPHY

[Jen04] R. M. Jensen. CLab: a C++ library for fast backtrack-free interactive product configuration. In10th

International Conference on Principles and Practice of Constraint Programming, Toronto, Canada,

2004. Springer.25

[Jun06] Ulrich Junker. Handbook of Constraint Programming, chapter Configuration, pages 837–868.

Francesca Rossi and Peter van Beek and Toby Walsh, 2006.9

[KCH+90] Kyo Kang, Sholom Cohen, James Hess, William Novak, and Spencer Peterson. Feature-oriented do-

main analysis (foda) feasibility study. Technical Report CMU/SEI-90-TR-21, Software Engineering

Institute, 1990.5

[Kro12] Christian Kroer. Sat and smt-based interactive configuration for container vessel stowage planning.

Master’s thesis, IT University of Copenhagen, 2012.25

[KZK10] Andreas Kübler, Christoph Zengler, and Wolfgang Küchlin. Model counting in product configuration.

In 1st International Workshop on Logics for Component Configuration, pages 44–53, Edinburgh, UK.,

July 2010.2, 13

[Lau06] Sean Quan Lau. Domain analysis of e-commerce systems using feature-based model templates. Mas-

ter’s thesis, Dept. Electrical and Computer Engineering, University of Waterloo, Canada, 2006.2,

25

[MDSD14] R. Mazo, C. Dumitrescu, C. Salinesi, and D. Diaz.Recommendation Systems in Software Engineering,

chapter Recommendation Heuristics for Improving Product Line Configuration Processes. Springer-

Verlag Berlin Heidelberg, 2014.2, 9

[Men09] Marcilio Mendonça. Efficient Reasoning Techniques for Large Scale Feature Models. PhD thesis,

University of Waterloo, 2009.9, 25

[NW07] Nina Narodytska and Toby Walsh. Constraint and variable ordering heuristics for compiling config-

uration problems. InProceedings of the 20th International Joint Conference on Artifical Intelligence,

pages 149–154, San Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.25, 26

[OOF05] Barry O’Sullivan, Barry O’Callaghan, and Eugene C.Freuder. Corrective explanation for interactive

constraint satisfaction. In19th International Joint Conference on Artificial Intelligence, pages 1531–

1532, San Francisco, CA, USA, 2005. Morgan Kaufmann Publishers Inc.25

37

BIBLIOGRAPHY

[PBL05] Klaus Pohl, Gunter Bockle, and Frank Linden.Software Product Line Engineering: Foundations,

Principles and Techniques. Springer, 2005.10

[PH04] F. K. Pil and M Holweg. Mitigating product variety’s impact on the value chain.Interfaces, 34(5):394–

403, 2004.1

[POS+12] Gilles Perrouin, Sebastian Oster, Sagar Sen, Jacques Klein, Benoit Baudry, and Yves le Traon. Pairwise

testing for software product lines: comparison of two approaches. Software Quality Journal, 20(3-

4):605–643, 2012.25

[Que11] Matthieu Queva.A Framework for Constraint-Programming based Configuration. PhD thesis, Tech-

nical University of Denmark, 2011.25

[SAH+11] Samaneh Soltani, Mohsen Asadi, Marek Hatala, Dragan Gasevic, and Ebrahim Bagheri. Automated

planning for feature model configuration based on stakeholders’ business concerns. In26th Interna-

tional Conference on Automated Software Engineering, pages 536–539, Washington, DC, USA, 2011.

IEEE Computer Society.9

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27(3):379–

423, 1948.2, 11

[SHN+07] Carsten Sinz, Albert Haag, Nina Narodytska, Toby Walsh,Esther Gelle, Mihaela Sabin, Ulrich Junker,

Barry O’Sullivan, Rick Rabiser, Deepak Dhungana, Paul Grünbacher, Klaus Lehner, Christian Feder-

spiel, and Daniel Naus. Configuration.IEEE Intelligent Systems, 22:78–90, 2007.9, 12

[SHTB07] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and Yves Bontemps. Generic

semantics of feature diagrams.Computer Networks, 51(2):456–479, 2007. Feature Interaction.5

[SRK+11] Norbert Siegmund, Marko Rosenmüller, Martin Kuhlemann, Christian Kästner, Sven Apel, and Gunter

Saake. Spl conqueror: Toward optimization of non-functional properties in software product lines.

Software Quality Journal, pages 1–31, June 2011.9

[SSJ05] Timothy W. Simpson, Zahed Siddique, and Jianxin Roger Jiao.Product Platform and Product Family

Design: Methods and Applications. Springer, 2005.1

[Ste80] Louis Steinberg. Question ordering in a mixed intiative program specification dialogue. In1st Annual

National Conference on Artificial Intelligence, Stanford University, August 1980. AAAI Press.9

38

BIBLIOGRAPHY

[SW98] Daniel Sabin and Rainer Weigel. Product configuration frameworks-a survey.IEEE Intelligent Systems,

13(4):42–49, July 1998.1, 9, 12

[TBK09] Thomas Thum, Don Batory, and Christian Kastner. Reasoning about edits to feature models. In31st In-

ternational Conference on Software Engineering, pages 254–264, Washington, DC, USA, 2009. IEEE

Computer Society.12

[vNBvOS06] Christof van Nimwegen, Daniel Burgos, Herre H. van Oostendorp, and Hermina Schijf. The paradox

of the assisted user: guidance can be counterproductive. InSIGCHI Conference on Human Factors in

Computing Systems, pages 917–926, New York, USA, 2006. ACM.2

[WBS+10] J. White, D. Benavides, D.C. Schmidt, P. Trinidad, B. Dougherty, and A. Ruiz-Cortes. Automated

diagnosis of feature model configurations.Journal of Systems and Software, 83(7):1094–1107, 2010.

9

[WDSB09] Jules White, Brian Dougherty, Doulas C. Schmidt, and David Benavides. Automated reasoning for

multi-step feature model configuration problems. In13th International Software Product Line Confer-

ence, pages 11–20, Pittsburgh, USA, 2009. Carnegie Mellon University. 5

39

ACRONYMS

ADC Automated Driving Controller

ANOVA ANalysis Of VAriance

BDD Binary Decision Diagrama

C Car

CAB Collision Avoidance Braking

EA Enhanced Avoidance

FD Features Diagram

FRF Forward Range Finder

LRF Lateral Range Finder

HSD Honest Significant Differences

PP Parallel Parking

S Sensor

SA Standard Avoidance

40

	List of Figures
	List of Tables
	1 Introduction
	2 Motivational Example
	3 Related Work
	4 Entropy-based approach to sort configuration questions
	4.1 Preliminaries
	4.1.1 Information Theory
	4.1.2 Straightforward approach to compute component probabilities

	4.2 Efficient computation of the probabilities of the variables of a Boolean formula from a BDD
	4.2.1 Definitions
	4.2.2 Data Structures
	4.2.3 Algorithm
	4.2.3.1 Computational cost

	4.2.4 Entropy driven configuration
	4.2.4.1 Example

	5 Experimental evaluation
	5.1 Experimental design
	5.1.1 Case study 1: Renault Megane
	5.1.1.1 Results
	5.1.1.2 Statistical significance

	5.1.2 Case study 2: Electronic Shopping
	5.1.2.1 Statistical significance

	5.1.3 Threats to Validity

	6 Conclusions
	Bibliography

