
Graphic Language for Programming
Experiments in Virtual Laboratories

Máster Universitario en Investigación en Ingeniería
del Software y Sistemas Informáticos

Universidad Nacional de Educación a Distancia

Autor: Miguel Fadrique de Pablo

Directors: Rubén Heradio Gil and Daniel Galán Vicente

Academic Year 2016-2017

February 2017

!
Máster Universitario en Investigación en Ingeniería

del Software y Sistemas Informáticos

Universidad Nacional de Educación a Distancia

Graphic Language for Programming
Experiments in Virtual Laboratories

Autor: Miguel Fadrique de Pablo

Directors: Rubén Heradio Gil and Daniel Galán Vicente

Academic Year 2016-2017

February 2017

Grade Sheet:

Autorización

Autorizo a la Universidad Nacional de Educación a Distancia a difundir y utilizar,

con fines académicos, no comerciales y mencionando expresamente a sus

autores, tanto la memoria de este Trabajo Fin de Máster, como el código, la

documentación y/o el prototipo desarrollado.

Firma del Autor

Abstract

One of the main objectives of the software development is to get systems usable

for everyone, no matter his/her previous knowledge. Getting more accesible

systems allow to take advantage of the software products by everyone. The

system described in this document follows this principle. In a simple way, it is a

graphical implementation to convert blocks into code. This code will be used to

execute experiments using the Experiment Editor tool created by the Department

of Computer Science and Automatic Control, Universidad Nacional de Educación

a Distancia and the Department of Software Engineering and Computer systems,

Universidad Nacional de Educación a Distancia. The proposed solution is formed

by a graphic interface to drag-and-drop the blocks and a generator to convert

those blocks into code.

Resumen

Uno de los principales objetivos que se buscan a la hora de desarrollar código es

conseguir que se pueda usar por cualquier persona sin importar los

conocimientos que tenga. Obtener sistemas más accesibles permite el mejor

aprovechamiento de los productos de software. El sistema descrito en este

documento sigue este principio. De manera simple, es una interfaz gráfica que

permite la conversión de bloques a código. Este código se puede emplear para

desarrollar experimentos usando la herramienta “Experiment Editor” creada por

el departamento de Informática y Automática de la Universidad Nacional de

Educación a Distancia y el departamento de Ingeniería de Software y Sistemas

Informáticos de la Universidad Nacional de Educación a Distancia. La solución

propuesta se compone una interfaz gráfica para arrastrar los bloques y un

generador que convierte estos bloques en código.

Keywords:

Block Programming, Visual Programming, Blockly, Java Virtual Machine, Easy

javascript Simulations, Experiment Editor, Virtual Laboratories, Ruby. 

Index:

1. Introduction 1 ..
1.1.Scope 1 ...

1.2.Our Approach in a Nutshell 2 ..

1.3.Organization of this Work 3 ..

2. State of the Art 5 ...

2.1.Visual Block programming 5 ...

2.1.1.Blockly 6 ...

2.1.2.Scratch 8 ...

2.1.3.Waterbear 9 ...

2.2.Related Work 10 ...

2.3.Limitations 12 ...

2.4.Domain Specific Language 12 ..

2.5.Easy Java(Script) Simulations 13 ...

2.6.Experiment Editor 14 ..

2.7.Blockly system 15 ...

2.8.Block Factory 16 ...

3. Graphic language 23 ...

3.1.Development 23 ..

3.2.Interface creation 28 ...

3.3.Blocks Palettes Categories Tabs 30 ...

3.4.Java Development 33 ...

3.5.Code Button 35 ...

3.6.Ruby interpreter 36 ...

3.7.Export Code Function 38 ..

3.8.Export Blocks 40 ..

3.9.Import Blocks 41 ..

3.10. Input Variables 43 ..

4. Conclusions 49 ..

4.1. Results 50 ..

5. Future Directions 51 ..
5.1.Import Code 51 ...

5.2.Adapt the system 51 ...

5.3.JVM Complete Implementation 51 ...

5.4.DataTool implementation 52 ...

6. References 53..

Master’s Thesis
Graphic language for programming
experiments in virtual laboratories

!

Figures Index:
Figure 1. New execution flow 4 ..

Figure 2. Block Factory Interface 16 ...

Figure 3. Block to create blocks 16 ..

Figure 4. Input value blocks 17 ..

Figure 5. Types of blocks 18 ..

Figure 6. Field Values 19 ...

Figure 7. Automatic and External Input 19 ..

Figure 8. Inline input 19 ...

Figure 9. Connection Options 20 ..

Figure 10. Color Grades 20 ..

Figure 11. Preview Screen 21 ..

Figure 12. Block Definition 21 ..

Figure 13. Generator Stub 22 ...

Figure 14. Experiments with Events Structure 27 ..

Figure 15. Example of Experiment with Events 28 ..

Figure 16. Complete Experiment with Events Function 28

Figure 17. Graphic Interface 29 ..

Figure 18. Blocks Classification 30 ...

Figure 19. Simple Experiment Block 31 ..

Figure 20. Experiment with Events Block 31 ...

Figure 21. Simple Event Block 32 ...

Figure 22. Complex Event Block 32 ..

Figure 23. Java Interface Buttons 34 ..

Figure 24. Demonstration of code obtained in Java. 36 ...

Figure 25. Ruby Code Execution 37 ...

Figure 26. Select Output File Directory Screen 39 ..

Figure 27. Create variable block 45 ..

Figure 28. Variable block 46..

Master’s Thesis
Graphic language for programming
experiments in virtual laboratories

!

Code Index:
Code 1. Complex Event Block 24 ..

Code 2. Block Ruby Code 26 ..

Code 3. Experiment Text Examples 27 ...

Code 4. Simple Experiment Code 31 ..

Code 5. Load method call 34 ...

Code 6. showCode function 35 ..

Code 7. JRuby Code to Execute Ruby Code 37 ...

Code 8. Result of an Execution 38 ..

Code 9. Export Code Button 39 ...

Code 10. exportBlocks Function 40 ...

Code 11. XML File Creation 41 ...

Code 12. importBlocks Function 41 ...

Code 13. XML File Creation 42 ...

Code 14. addElement method 43 ..

Code 15. variables_set method 45 ..

Code 16. variables_get block 45 ..

Code 17. addElement() listener 47..

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

1. INTRODUCTION
1.1.Scope

Laboratory experimentation plays an essential role in control education but the

cost of getting and maintaining the instruments needed is very high. In the

Universidad Nacional de Educación a Distancia EjsS virtual and remote

laboratories are used to reduce the costs associated to traditional hands-on

laboratories and to support online experimentation. These laboratories allow the

students to create and use different experiments using only one tool, a computer.

In order to define experiments in virtual laboratories an experiment editor has

been created by the Department of Computer Science and Automatic Control,

Universidad Nacional de Educación a Distancia and the Department of Software

Engineering and Computer systems, Universidad Nacional de Educación a

Distancia. The Experiment Editor tool has been created to define experiments

over laboratories developed using Easy JavaScript Simulations, EjsS. There is a

huge number of repositories of projects developed using this tool so this

experiment system is prepared to be applicable for all the laboratories created

using EjsS.

The biggest problem when using this system is that it requires a minimum

knowledge of programming in order to change the parameters or to create an

experiment as it is a Ruby based system. To solve these difficulties, a graphic

block programming system has been described in this document. This system

allows the user to develop experiments that will be used in the Experiment Editor

tool without knowledge of the application code and to do it avoiding syntax or

format issues.

Many programming languages exist currently but they cannot be applicable in this

specific case for several reasons:

Página !1

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

Common programming languages are difficult to learn without a minimum

knowledge and without attending tutorials or courses.

Programming has been always connected to several tasks as mathematical

calculations which causes that some people do not learn it because its use is

associated to some specific jobs.

When programming, it is common to need support and it is not always present

in these experiments as most of them are very specific.

Using the knowledge acquired in the Master studies, a new system has been

created that will avoid these problems. Furthermore, it will provide an attractive

and dynamic interface that will allow the users to use the system already

developed taking advantage of all the functionalities easily without any previous

knowledge necessary.

1.2.Our Approach in a Nutshell

To use the system currently presented it is necessary to follow some steps:

Open the Experiment Editor.

Open a specific experiment inside it.

Write the code of the experiment.

Run the experiment.

After the appliance of the changes specified in this document the functionality is

going to be the same but the execution is going to be easier as the third step will

have a substitute. From now there is no need to write the code because it will be

done using the graphic language explained in this document.

An example is going to be explained, Figure 1, to understand the flow using the

new functionality. It starts with the Experiment Editor. The following step is the

opening of a new experiment. Once opened, the graphic language can be

opened to drag-and-drop blocks to create the experiment code. Finally, the code

generated using blocks is passed to the Experiment Editor and executed there.

Página !2

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

So at the end the same steps are done but the code has been generated using a

system easier to use, the visual language.

1.3.Organization of this Work

In this document the development of a new visual programming environment is

explained. Chapter 2 describes the state of the art in this moment. It is explained

with a brief introduction describing the visual blocks programming, the different

block programming languages available and their advantages and drawbacks. At

the end of chapter 2, an explanation of the restrictions that are currently present

in the already developed systems is done as well as a summary of some systems

already developed that are related to this one highlighting why they are not valid

for this specific development. Chapter 3 focuses on the explanation of the system

completely seeing all the functionalities implemented as well as some examples

of how the system works and results obtained using it. Chapter 4 describes the

conclusions obtained after seeing the document completely and chapter 5

explains the future work and future developments that would improve the system.

Página !3

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

�

Figure 1. New execution flow 

1.Experiment Editor

3. Graphic Language

4. Code Obtained

2. Experiment Interface

Página !4

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

2. STATE OF THE ART
2.1.Visual Block programming

Visual block programming allows users to construct scripts by dragging and

dropping language blocks and provides a visual feedback showing the execution

of scripts to comprehend how they work [1].

Block programming is a kind of visual programming with the main intention of

getting an easy access to the resources obtained when programming. It allows

the users to create programs handling elements in a graphic way instead of

specifying them by text. The block programming is the one that is developed

dragging and dropping blocks connected between them as a puzzle where every

type of data, event, command, fix value, boolean, etc, has their own form and

one or more blanks and tabs with special shapes in which another pieces can be

inserted. Because of the use of blocks, some common issues are avoided as the

knowledge of the programming syntax and different structures of a programming

language, conditionals or loops for example. As a result, these languages have

grown in recent years allowing the inclusion of some functions and the creation of

more complex programs.

As it has been seen the code is created dragging and dropping blocks and the

scripts in this kind of programming languages are done joining a set of blocks in

the scripting area.

The original design of these programming languages was motivated by the needs

of young programming learners as it is an easy way to learn the basic concepts.

Some programming languages as Scratch or Waterbear allow to create

animations in the background and animations using characters getting visual

results. All those functionalities were created with the intention of encourage

young people to learn about programming concepts using less instructions that

the ones used with other programming languages. At the beginning these

Página !5

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

languages were used in informal learning settings such as community centers,

after-school clubs, libraries, and homes, but increasingly they are used in schools

as well [2].

But all these programming languages are not only created to encourage young

people to learn about programming concepts but also to introduce programming

to those without previous experience. This goal affects in many of the aspects of

the design of those languages. Some of the decisions taken while designing them

are very obvious, as the choice of a visual block language, the single-window

user interface layout, and the minimal command set. Others are more difficult to

imagine, as how the target audience influences the type system and the

approach to error handling.

2.1.1.Blockly

Blockly is a JavaScript library with the intention of creating a visual block

programming editor. Blockly is an open source project and it allows to compile in

different programming languages as JavaScript, Dart and Python. Blockly is built

using similar principles of Scratch programming language explained in Chapter

2.1.2.

Blockly includes a code editor for web and mobile applications. This editor uses

graphic blocks to represent code concepts as variables, logic expressions, loops,

etc. It allows the users to apply the programming principles without the need to

know the syntax.

From user side, Blockly provides an intuitive and visual way to coding. From

application side, Blockly is a set of text blocks that contain written code. There

are several advantages when using Blockly [3]:

Exportable code. Users can extract the block based programs into common

programming languages. It allows a smooth transition to text based

programming.

Página !6

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

Open source. Blockly is completely open source.

Extensible. It is possible to modify Blockly to add customized blocks to use in

the API or to remove not necessary blocks.

Highly capable. It can be used to realize complex programming tasks.

Calculate the standard deviation of a block for example.

International. As Blockly has been translated in more than 40 languages,

including right to left versions as Arabic or Hebrew.

Blockly is written using JavaScript so it is developed to work in webpages. It also

generates code that can be executed independently for several text based

programming languages and it is possible to create libraries to convert the code

to additional programming languages.

Blockly is the language selected to develop the system explained in this

document for several reasons:

More professional interface which allows to create a more attractive and a

more general programming environment.

Exportable Code. The system explained in this document needs to get the

code generated from the blocks to pass it to the Java Virtual Machine. This

code will be used to execute the experiments written in Ruby programming

language. Because of this, it is necessary that the block programming system

used allows the code to be exported.

Language conversion. It allows to convert the scripts into several programming

languages by default and it is also possible to adapt this system to get the

code in any other programming language. Ruby, which is the language

necessary is not implemented in Blockly but an external implementation with

some modifications has been used.

Página !7

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

It can be easily customizable. As it is developed using JavaScript it can be

used to have the system in different languages just changing the browser

configuration.

2.1.2.Scratch

Scratch is a visual programming language developed in the multimedia laboratory

of the Massachusetts Institute of Technology (MIT), with the aim of making easier

and funnier the programming learning. It allows the creation of multimedia

projects, articles, animated stories, etc. It includes a set of tools for the creation of

applications to execute all those functionalities [4].

Scratch was built following some principles [5]:

More Tinkerable. In the same way a kid starts to play as soon as possible with

Lego bricks once received, the process of programming in Scratch tends to be

similar to it. That is why the graphical programming blocks have been created

to be snapped together to create programs.

More Meaningful. The value of personalization is very important in Scratch

based on two main design criteria:

• Diversity. Providing support to different kind of projects.

• Personalization. It is possible to personalize every program as it allows to

upload pictures, music clips and record voices among other functionalities.

More social. The development of the Scratch programming language is based

on the concept of sharing. It depends on the support of a community where

people participate, collaborate and critique one another and build on one

another’s work. Such collaborations open opportunities not only to learn but

also to create an improved environment.

In this language, as in all the block programming languages, it is not necessary to

write commands and the instructions are written connecting blocks. It is based on

Página !8

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

some active objects called sprites. Using Scratch it is possible to include more

than one sprite at the same time, or make the sprite to follow some instructions.

Scratch also allows the use of event driven programming using sprites. Blocks

are concatenated between them as puzzle pieces in such a way that, when they

are joined, the instructions specified can be executed in order, generating events.

One of the biggest drawbacks of this programming language is that it does not

allow to export the code. It is only possible to export the scripts created into a

Scratch file with the format “.sb” but it can only be opened using the web

interface.

Another disadvantage is that the execution needs to be done using the interface

already created in the webpage and it is not possible to execute it in local so the

system cannot be implemented using Java. This situation causes that this

language is not feasible for the needed purposes.

2.1.3.Waterbear

Waterbear is a tool to make the programming task easier and more accesible. It

is not a programming language but it is a block syntax inspired by Scratch that

can be used to represent programming languages.

Waterbear is a drag-and-drop block system developed using HTML5, CSS3 and

JavaScript. The main purpose of Waterbear is not duplicate Scratch or create a

programming language but to create a visual tool that can be used in a variety of

languages and projects [6].

Another aims of Waterbear are to reduce the syntax errors and also to provide a

way to reduce some restrictions present in Scratch.

One of the main differences between Waterbear and another block programming

languages is that it does not include expressions to get an easier understanding

Página !9

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

of the commands as it has been created thinking in a natural use of web

technologies, without an intention of changing the paradigm.

As it is a language based on Scratch, the disadvantages when using it are the

same as the ones that appeared with Scratch. Therefore it is not possible to

export the code but it is possible to export some program created in a specific

format only valid for Waterbear which is “.wb”. The execution only takes part in

the web interface already created so it is not possible to execute the code

generated in any other system. This feature causes that the code cannot be

passed to a Java environment.

2.2.Related Work

“Programming is one of the most important competencies that require students to

use computational tools to address real world problems in the 21st century” [7].

Because of this, several tools have been developed to provide novice

programmers with visual environments that allow them to learn how to construct

programs and understand the programming constructions.

The study realized in [1] focuses on the exploration of how novice programmers

use the provided visual programming elements to learn by solving a

computational problem. In order to do that a visual problem-solving environment

is provided to the students to solve computational problems in a visual way.

In [8] a programming environment for visual domain specific languages is

developed. It converts the information in multiple general purpose programming

languages. Using this environment, the programs are developed combining visual

blocks expressed in natural language. These items represent program elements

as operations and variables. The main objective of this study is the application of

a DSL along with Blockly visual model in order to use the system without

requiring a knowledge of programming.

Página !10

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

Another similar work is the one explained in [9]. In this document the final aim is

to get a domain oriented visual programming environment as a specific instance

of a generic environment so the techniques used in it can be applied also in a

specific environment and the common functionalities in these environments do

not need to be developed from scratch. To carry out this task, a visual

programming environment is specified to split the complete development process

into multiple standalone functional modules. This is done using a model view

controller modified in which the view controller and the image controller are

independent of one another so the final model results more flexible.

In terms of visual blocks another similar study was done in [2]. In this case a

visual general purpose programming block system is explained. This new

language has several features:

Block based.

Self-sufficient.

Simple. As it is created in order to be used for everyone, one of the main

purposes of this system is that it should be simple, removing languages

features that can be obstacles for the use.

The system more similar to the one explained in this document is the one present

in [10]. In this document, Agrawal et al. introduce FabCode, a visual programming

environment. Using it, one can create designs that can be manufactured using

digital fabrication techniques like 3D printing and laser cutting. In this paper a

Blockly based environment is created to apply it in a very specific system.

The environment is formed by the block palettes categories tab, the script area

and the 3D canvas. This system is very similar to the one developed in this

document as both of them have the block palettes categories tab and the script

area. Also both systems create an output that it is used by a different system. The

main difference is that this system has been developed to create a 3D modeling

Página !11

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

system to create pieces that can be obtained using digital systems as 3D printers

and the one described in this document is to be used along with the Experiment

Editor tool.

2.3.Limitations

Several environments have been created similar to this one. One of the

limitations of those systems is that they have been developed with the intention of

teaching children to program instead of trying to teach everyone how to program.

Another limitation present is the difficult to learn the different kind of blocks

present in these systems. Once one has learnt all the different blocks and where

they are located it is not a big problem but until then, it can cause a delay in the

software development. Also it is important to note that, even taking into account

that all the block programming systems are similar, they are not compatible

between them. This situation causes issues as the content developed using one

programming language cannot be used in another one. That situation and the

one that Blockly is the only block programming language that can be easily

converted and exported to another different text based programming languages

are the main reasons to select it to develop the solution explained in this

document.

2.4.Domain Specific Language

System described in this document is a graphic Domain Specific Language, DSL,

applied over another DSL, Experiment Editor. DSL is the opposite to general

purpose language or GPL. GPLs as Java or C are used by multiple domains and

provide a big number of functionalities. In contrast, domain specific languages

provide functionalities for specific fields and they could not pass the Touring test.

Therefore coding in a domain specific language is usually shorter, more

productive, readable and reusable than coding in a general purpose language.

DSLs can be classified as internal or external. An internal DSL is represented

with the syntax of the origin language and it is provided as an API or a library. On

Página !12

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

the other hand, an external DSL can use a customized syntax and its

implementation is usually a translator that generates code using the language of

the origin. An external DSL converts coding in an easier and more abstract way

to program compared to general purpose languages.

In this document, the language developed is an external DSL, this DSL will allow

to use the Experiment Editor tool in an easier way and it will get a more accesible

system.

2.5.Easy Java(Script) Simulations

EjsS is a freeware, open source tool developed in Java, its design is focused on

the creation of simulations. It requires programming knowledge but not in an

advanced level. The architecture of EjsS derives from the Movel-View-Controller

paradigm, which philosophy states that the interactive simulations have to be

composed of three main parts:

1. The model. It describes the process in terms of variables, which hold the

different states of the process and relationships between these variables.

2. The view, It provides a graphical representation, it can be realistic or

schematic, of the process states.

3. The control. It defines certain actions that a user can perform on the

simulation. In EjsS this step is not performed and it is distributed between the

model and the view.

But the applications in this Experiment Editor case are created following only two

of those steps:

1. Building the model to simulate using the built-in simulation mechanism of

EjsS.

2. Creating the view in order to show the model state and its reaction to

changes made by users interactively [11].

Página !13

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

EjsS allows the users to define their own simulations introducing a software tool

for defining and running them.

EjsS can be used to create simulations from scratch as well as to use simulations

already created. It also allows to modify content, as variables, initial values or

customized methods inside a high level design. Apart from all those things, it is

possible not only to create simulations with experiments that could be done in a

laboratory but also to create simulations with experiments that simulate a physic

phenomenon, the gravity force for example, which may simplify the task to

explain how they are produced or the situations that cause them.

It includes connections with digital libraries. These libraries are repositories of

simulations created with EjsS that can be accessed directly from the application.

2.6.Experiment Editor

Due to the high cost of maintaining laboratories and the difficulties to get access

to them, to realize tests when the schools are closed for example, a laboratory

system, Experiment Editor, was developed to create experiments over

laboratories created using Easy Java(script) Simulations, EjsS [12]. “The

Experiment Editor for EjsS enables scripting and running experiments on VLs

created using EjsS and collecting and analyzing data from them” [13].

It includes several features as the possibility to modify the functionality of the

laboratories, to analyze the results obtained during the experiment performing

complex or repetitive tasks easily and to improve the learning process using the

open inquiry-based experimentation paradigm.

Experiment Editor is composed of three main elements:

The Laboratory. Used to open and interact with the experiments created using

EjsS.

Página !14

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

The Data Tool. It is a toolset formed by graphics and another tools to plot and

fit data obtained from the laboratory.

The Experiments Editor. Software to manage the different experiments. It

provides an interface to create and develop experiments.

Experiment Editor uses its own language to define experiments over Virtual

Laboratories. Using this tool one can interact with the system as well as define

variables, create functions, define types, loops, etc. It is Touring complete as it

provides loops, if-then-else commands, supports defining functions, etc.

2.7.Blockly system

One of the problems existing when using the experiments created with the

Experiment Editor tool is that it is necessary a minimum knowledge of

programming to even create a simple experiment. The solution applied with

Blockly not only allows to create programs in an easier way but it also serves as a

way to learn how to construct them. In addition, one of the biggest problems

when using this tool is the time that takes to create an experiment coding and

testing it interacting with the elements. In contrast, one preferable way to code

the experiment would be using an intuitive, user friendly experiment language

that also allows to run it automatically and avoids the possible syntax issues.

The main goal of this system is to provide a tool to enrich the Experiment Editor

tool with a visual system that can also execute the experiments. In order to get

this, a new Application Programming Interface (API) has been created as well as

several blocks that can be converted into different programming languages so the

use is not limited to this environment.

The solution created is an open source system and it is introduced as a new

method to apply in every system needed.

Página !15

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

2.8.Block Factory

The blocks have been created as substitutes to the code so the design has been

done trying to get the same values in the blocks and just avoid the step to write

them to construct the experiments. In order to create the system, the Block

Factory provided with Blockly, Figure 2, was used to create the blocks at the

beginning of the development.

!

Figure 2. Block Factory Interface

This factory allows to create blocks using one block in which the different

parameters of the block that it is going to be created can be specified. Different

parameters can be selected as it can be seen in the Figure 3.

�

Figure 3. Block to create blocks

The first parameter that can be specified is the name of the block, this name is

going to be used to differentiate the block from the others therefore, it is important

to have an unique identification per block so they can be called separately. The

Página !16

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

next parameter is the inputs. In this field one of the pieces that appear in the

Figure 4 can be introduced. Depending on the piece selected the input parameter

will be a value, a statement or a dummy. It also allows to select the name of the

input and the type of the input value. This name will be the reference to get the

value of the variable in the code. Once selected the type, it won’t allow blocks

from other type than the one specified to be used as an input in the block blank.

�

Figure 4. Input value blocks

Referring to the types of values allowed, several are included, Figure 5. It is

possible to allow one specific, more than one type between some specified,

select one type created for the user or allow any.

Página !17

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

�

Figure 5. Types of blocks

Inside input value there is a hollow in which a piece can be introduced to select

the name that will appear associated with the input blank. This name should be

clear if an intuitive system is necessary. The different values that can be used in

the name of the field can be seen in the Figure 6. Inside the possible options

available one can find:

Text

Text with a default value

Angle

Numeric input

Tab with several options

A color

A variable

Página !18

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

�

Figure 6. Field Values

The next parameter that can be defined is the situation of the inputs. There is a

scroll bar in which three options are available:

Automatic. Value by default, the input value is introduced from the right side.

External. Similar as automatic, the input values are introduced from the right

side.

�

Figure 7. Automatic and External Input

Inline. The input value has to be introduced inside the block as it can be seen

in Figure 8.

�

Figure 8. Inline input

Página !19

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

The next option is the block connections. There are several options as shown at

Figure 9.

�

Figure 9. Connection Options

Depending on the option selected the block will have connections at the left,

above, below or above and below. The connections above and below allow the

user to concatenate several blocks in order to get more complex programs

getting event driven programs.

The following field is to select the type of the connections. These types are the

same as the ones explained for the inputs and can be selected for all existing

connections.

�

Figure 10. Color Grades

Página !20

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

Finally the last eligible component is the color of the block. This one can be

selected from a group of colors specified by their grade, Figure 10.

After creating the block using this method some items will appear on the left

divisions:

Preview. It shows a visual preview of the final block. There is also a tab to

select the preferred side to receive the inputs. It is very useful when creating

blocks for right to left languages.

�

Figure 11. Preview Screen

 Block Definition. In this tab the block is defined with all the visual elements that

determine it. It also includes a tab to get the code in JavaScript, JSON or just

to edit it manually.

�

Figure 12. Block Definition

Generator Stub. In this screen is where the code obtained from the block

should be specified. As it can be implemented with several programming

languages it allows to generate this part of the code in different languages.

Página !21

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

�

Figure 13. Generator Stub 

Página !22

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

3. GRAPHIC LANGUAGE
3.1.Development

During the development phase several steps were done. At the beginning all the

code was created using the Block Factory but once all the rules were known

some blocks were created coding them directly.

To do that it is only necessary to use the Blockly library with the values needed

populated. Once done a code like the one showed in Code 1 is obtained.

In order to get the code in Ruby, Blockly2Ruby project was used. It is an open

source project that implements Blockly generators for the Ruby programming

language. This project contains the next folders that are specified in its

description [14]:

generators: the JavaScript scripts that generate Ruby code, these generators

are based on the Python generators.

test: tests to validate the generators and Javascript scripts that generate

Blockly unit tests.

Ruby_tester: Ruby code to run the generated tests.

compiler: Javascript scripts that allow to compile from XML to Ruby using

command line (using http://phantomjs.org/).

compiler.sh; shell script to execute the JavaScript compiler from the command

line.

server.rb: a Ruby script that runs a server to run Blocky on a local box.

Página !23

http://phantomjs.org/

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

�

Code 1. Complex Event Block

Blockly.Blocks['complex_event'] = {
 init: function() {
 this.appendValueInput("event")
 .setCheck("String")
 .appendField("Event");
 this.appendStatementInput("action")
 .setCheck("String")
 .appendField("action");
 this.appendStatementInput("check")
 .setCheck("Boolean")
 .appendField("check");
 this.appendValueInput("type")
 .setCheck(["Zero crossing", "State

Event", "Positive Crossing"])

 .appendField("type");
 this.appendValueInput("iteractions")
 .setCheck("REAL")
 .appendField("Iteractions");
 this.appendValueInput("method")
 .setCheck(["BISECTION", "SECANT"])
 .appendField("method");
 this.appendValueInput("tolerance")
 .setCheck("REAL")
 .appendField("tolerance");

this.appendValueInput("end_step_at_event")
 .setCheck("Boolean")
 .appendField("end step at event");
this.setPreviousStatement(true, "String");
 this.setNextStatement(true, null);
 this.setColour(160);
 this.setTooltip('');

 }
};

Página !24

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

But not all those components are important for the original purposes of this study.

The only component needed and used was the “generators”. It includes several

files to convert the different common Blockly blocks into Ruby code. These files

are similar, as they have the same file names and blocks definition, to the ones

existing for another programming languages. The files necessary to get the same

general purpose language code as any other programming language with Blockly

are the following:

“logic.js” it includes all the logic functions defined in any general purpose

language, if, else or logic operators i.e.

“loops.js” in this file all the different loops are defined as for or while loops.

“math.js” it includes mathematical operators as addition, subtraction,

multiplication or division.

“text.js” in this file different operations with strings are defined as a string

printer or an empty string check.

“lists.js” these are different operations that can be done with a list as list

creation or calculation of the length of the list.

“colour.js” functions to determine colors using RGB scale or selecting the color

from a palette.

“variables.js” includes functions to create a variable and to assign a value to it.

“procedures.js” it contains empty functions to add operations inside them. It

also includes a return to get the return value.

Página !25

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

!

Code 2. Block Ruby Code

All those JavaScript files have to be included in the head of the index file. Apart

from those files another one should be added, “Ruby.js” file. This file includes

several functions and it is the file in which the blocks created should be added.

Following the previous example, the code implemented for the experiment with

events can be seen in Code 2. In this specific case it can be seen that the

different inputs are defined as variables that can be used in the code. The code

structure of this block can be seen in the Figure 14. This table has the different

input elements highlighted specified by the expected type of data of each input

value.

Blockly.Ruby['experiment_with_events']
= function(block) {
var value_experiment =
Blockly.Ruby.valueToCode(block,
'experiment',
Blockly.Ruby.ORDER_ATOMIC);
var value_reacts_to =
Blockly.Ruby.valueToCode(block,
'reacts_to',
Blockly.Ruby.ORDER_ATOMIC);
var statements_name =
Blockly.Ruby.statementToCode(block,
'statements') || '\n';
var code = 'experiment ' +
value_experiment + '{ \n' +
 'reacts_to ' + value_reacts_to +
 '\n' +
 'action{\n' +
 statements_name
 + ';}\n}\n';
 return code;
};

Página !26

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

Figure 14. Experiments with Events Structure

The code generated with the block is the same as the one specified in the

previous figure. The block creates the common part of the code to the function,

the other values are taken from the different input variables and, with them, it

returns the complete function in text.

Once the block is situated in the Script Area the code present in Code 3 will

appear in the Code Generation Area.

�

Code 3. Experiment Text Examples

This code is incomplete as it does not have any input parameter so if the code is

executed this way it is not going to work properly. But it generates this code

because it is the base code to create the function. Therefore once the inputs are

added, a correct function will appear.

An example of the experiment with events with some input values added can be

seen in Figure 15.

Name Experiment with Events

Structure experiment STRING {
 reacts_to [STRING LIST]
 action {
 FUNCTIONS
 }
}

Página !27

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

�

Figure 15. Example of Experiment with Events

In this example input values have been introduced in all the fields and the code

obtained with Blockly can be seen in Figure 16. In this case we can see the code

complete as it would appear in an usual use of the function.

�

Figure 16. Complete Experiment with Events Function

In this example all the values introduced as input appear in the code generated.

3.2.Interface creation

The interface has been developed using HTML as well as JavaScript with two

main objectives. The first one is to try to get one interface as much easier to use

as possible because one of the main objetives desired is to get a system that can

be used for every person even without knowledge of programming. The second

one is to offer an interface either functional or attractive.

To get this objectives, a simple interface has been designed trying to get a clear,

easy to understand environment.

At first sight, Figure 17, it can be seen that the design is based on Blockly original

design. It is because it offers a very clear and simple design. In this interface it is

Página !28

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

easy to understand where all the elements are located. It is also very clear to see

the blocks once situated in the workspace.

�

Figure 17. Graphic Interface

There are three different areas situated in the visual interface. This interface is

divided by:

Blocks Palettes Categories Tabs. It is situated at the left side of the interface. It

includes a tab that can be opened to see the different elegible blocks

separated in different categories. In this tab the blocks can be selected in order

to drag-and-drop them into the Script Area.

Script area. In this place is where the blocks should be situated to create the

scripts. It also includes a trash to remove the blocks that are not necessary.

Code Generation Area. In this area the code generated from the blocks

situated in the Script Area appears. The programming language in which the

code appears is selected using the tab situated above. The code appears here

for two main purposes:

Check that the blocks created generate the correct code once located in the

workspace.

Página !29

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

Allow the users to check what they are doing so it can serve as a way to

learn how the code should be written for the experiments.

It is important to note that the code workflow is implemented not only for Ruby but

also for JavaScript. This is done because this system developed has not been

created to be used only with the Experiment Editor tool but also in any other

similar system.

3.3.Blocks Palettes Categories Tabs

In the left part of the blocks workspace it is possible to see the different

classifications used to differentiate the blocks in the interface, Figure 18.

�

Figure 18. Blocks Classification

Experiment Structure. Inside this menu it is possible to find different blocks that

represent different types of experiments. The experiment blocks are prepared

to include one set of input parameters depending on the configuration required.

Simple Experiment. It represents a simple experiment. In this kind of

experiment some parameters are specified as the experiment name or the

different functions that are going to be executed in it. The kind of block

associated to this experiment can be found in the Figure 19. This kind of

Página !30

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

block allows two inputs. The upper one is to introduce the name of the

experiment and it allows only strings and the second one allows to introduce

functions as inputs.

�

Figure 19. Simple Experiment Block

	 !

Code 4. Simple Experiment Code

Expertiment with Events. This kind of experiment is more complex than the

previous one as it includes a list of parameters to which it reacts. In this case

the block created is the one that appears in Figure 20. In this picture it is

possible to see the new input. This input has to be a list of strings.

�

Figure 20. Experiment with Events Block

Event. This is the part of the menu in which the blocks related to events are

selected. Inside this category two events have been defined:

Blockly.Ruby['simple_experiment'] = function(block) {
 var value_name = Blockly.Ruby.valueToCode(block, ‘name'

 , Blockly.Ruby.ORDER_ATOMIC);
 var statements_name = Blockly.Ruby.statementToCode(block,

 'statement') || '\n';
 var code = 'experiment ' + value_name + '{' +
 '\naction{\n' +
 statements_name + ';}\n}\n';
 return code;
};

Página !31

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

Simple Event. This event is the simplest that can be defined in which only

the name of the event, the functions that are going to be executed until the

condition specified in “check” is reached, the condition, the iterations and

tolerance parameters are specified.

�

Figure 21. Simple Event Block

Complex Event. This kind of event is similar to the previous one. The main

difference between them is that this one allows to specify additionally the

type of event, the method employed and the final condition of the event,

Figure 22.

�

Figure 22. Complex Event Block

Condition. Blocks used to execute one action once the condition is achieved.

Simple Condition. This kind of block just specify the condition that needs to

be achieved to execute the functions that are defined inside it.

Página !32

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

Simulation. In this tab, the simulation variables and the simulation functions are

defined:

Variables. It is where the simulation variables are defined. These variables

are created from the input parameters received in the Java program. The

functionality to create these variables is explained in detail in the 3.10

section.

Functions. Functions used to determine the status of the experiment

execution. Between these variables it is possible to find [13]:

Play. Run the VL.

Pause. Pauses the VL.

Restore. Resets completely the VL.

Play and Wait. Delays the execution until the condition is reached.

Stop. Finishes the experiment.

3.4.Java Development

The experiments have been developed to be executed in an implementation of

Ruby of the Java Virtual Machine so the code returned by the interface needs to

be returned in a Java program. In order to reach this objective a main class has

been created using the JavaFX library to open the JavaScript system using Java

as a browser and getting the code to be executed in the JVM.

“JavaFX is a Java library that consists of classes and interfaces that are written in

Java code” [15]. In particular, the JavaFX WebView has been used in this

example as the purpose was to get the webpage executed from Java. The

WebView is a web component to embed web pages within a JavaFX application.

JavaScript running in WebView can call Java APIs, and Java APIs can call

JavaScript running in WebView. The final result is an interface developed using

Página !33

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

Java that can open the “index.html” file as if it was a web browser and get the

results of the execution in the Java code.

!

Code 5. Load method call

As it is possible to see in Code 5 the browser opens the index file loading it using

the method “load()”. This method executes the content of any HTML file as if it

was a browser. As the index file is included as a Java resource, the call to get the

path to open it is done using the “getResource()” method.

This browser has three main purposes:

1. Open the JavaScript system using Java.

2. Create the simulation variable blocks using the input parameters received in

Java.

3. Get the code obtained in Java using the Blockly system.

4. Be an easy to use system.

To reach those objectives the design of Java part was done to accomplish all of

them. In order to get that, four buttons have been defined, Figure 23, one to get

the code in Java, ”Code”, the next one, “Export Code”, to export the code

generated into a Ruby file, the “Export Blocks” button allows to export an XML file

saving the blocks situated in the Script Area, the following one, “Import Blocks” is

to get the blocks saved previously in an XML file and the last one, “Exit”, serves

to exit the system.

�

Figure 23. Java Interface Buttons

 String path = "/index.html";
 webEngine.load(this.getClass()

.getResource(path).toExternalForm());

Página !34

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

3.5.Code Button

The button to get the code just calls a JavaScript function called “showCode()”.

This function, Code 6, returns the code that has been generated using the blocks.

In order to do that it calls the method “workspaceToCode()”. This other method

gets the blocks situated in the Script Area in that moment and generates the code

associated to them.

To get the code generated in Java the method “executeScript()” is called passing

the name of the function as input parameter and it returns the code generated in

a String value. This String text returned is saved in a variable in Java and this

variable is passed as an input to the Java Virtual Machine of Ruby.

�

Code 6. showCode function

It is important to note that this function has only been defined for Ruby but

another function can be created to get the code in any other language, JavaScript

for example. Once this button is pressed the code appears in Java automatically.

An example of a code obtained as an input and showed in screen can be seen in

Figure 24.

function showCode() {

 // Generate JavaScript code and display it.

 Blockly.Ruby.INFINITE_LOOP_TRAP = null;

 var code = Blockly.Ruby.workspaceToCode();

 return code;

 }

Página !35

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

�

Figure 24. Demonstration of code obtained in Java.

3.6.Ruby interpreter

In order to get the results, a Ruby interpreter for Java is necessary to execute the

Ruby code generated. To do that the interpreter selected has been JRuby. As it is

defined in [16] by Justing Edelson and Henry Liu “JRuby is an open source

implementation of the Ruby programming language for the Java Virtual Machine

(JVM). JRuby allows Ruby applications to be run within a Java Virtual Machine

and interface with libraries written in either Java or Ruby. Although the JRuby

project was initiated in 2001, interest in JRuby has grown significantly over the

last few years, reflecting an overall growth in interest in Ruby sparked by the

success of the Ruby on Rails framework”.

JRuby provides a complete set of core “builtin” classes and syntax for the Ruby

language, as well as most of the Ruby Standard Libraries. The standard libraries

are mostly Ruby’s own complement of “.rb” files, but a few that depend on C

language-based extensions have been reimplemented. Not all of them have been

implemented as some are still missing [17].

Página !36

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

�

Code 7. JRuby Code to Execute Ruby Code

As it can be seen in Code 7, the method created to execute the code just use

another method defined in JRuby library, “runScriptlet()”. This method evaluates a

script and returns a result only if the script has a value to return. Right after the

parsing, the script is evaluated once.

�

Figure 25. Ruby Code Execution

After using this method the values obtained in the output are the results of the

Ruby code execution so the Java Virtual Machine just executes the code and get

the results. This library only executes the common part of Ruby code so to run all

the code including the functions defined in the Experiments Editor explained in

public void run(String code) {

 Ruby = new ScriptingContainer();
 // Method to execute the Ruby Code
 Ruby.runScriptlet(code);
}

Página !37

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

[11] is necessary to implement the system completely with the Experiment Editor.

One example of Ruby code execution can be seen in Code 8.

�

Code 8. Result of an Execution

3.7.Export Code Function

This system allows not only to generate code during the execution using blocks

but also to export it in a separate Ruby file that contains fully executable Ruby

code.

A button, Export Code button, has been added in the interface to provide the

functionality to get the code in a Ruby file.

The code developed to get the button can be seen in Code 9. This button gets

the code from the JavaScript system and creates a new file inserting the code in

it. As this system has been created to create Ruby code, the output is always

created with the extension of a Ruby file “.rb” so the files can be read easily from

a system as if they had been created writing, as usual. To obtain this button

JavaFX has been used using the class “FileChooser”.

Página !38

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

�

Code 9. Export Code Button

�

Figure 26. Select Output File Directory Screen

Button buttonExport = new Button("Export Code");

buttonExport.getStyleClass().add("play-button");
buttonExport.setOnAction(new EventHandler<ActionEvent>()
{
 @Override
 public void handle(ActionEvent arg0) {
 String code = (String)
 webEngine.executeScript("showCode()");
 FileChooser fileChooser = new FileChooser();
 fileChooser.setTitle("Save Ruby file");
 File file = fileChooser.showSaveDialog(stage);
 FileWriter outputFile;
 try {

outputFile = new FileWriter(file.getAbsolutePath()
+ extension);
outputFile.write(code);
outputFile.close();

 } catch (IOException e) {
e.printStackTrace();

 }
 }
});

Página !39

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

Once the button is pressed, a new pop up window appears asking for the name

of the output file.

This file explorer window allows the user to select the folder in which the file will

be saved. Automatically a Ruby file will appear in the folder with the code

generated.

The files generated can be used to execute the laboratory system or to save an

experiment created to use it later.

3.8.Export Blocks

Using this functionality it is possible to export the blocks situated in the Script

Area into an XML file. This is a very important functionality as it allows to export

the scripts generated using blocks so it can be considered as a way to save the

script generated to be loaded later.

The functionality is similar to the one for exporting the code. Once the button is

pressed a file explorer window appears in order to select the folder in which the

XML file will be saved. This file will always be an XML file containing the

information of the blocks present in the script in the moment they are saved

because it is the format in which Blockly methods store the Script Area.

�

Code 10. exportBlocks Function

As it can be seen in Code 10, a function in JavaScript has been created to export

the code into an XML file. What this function does is to convert the blocks

situated in the workspace in an XML text using the methods “workspaceToDom”

function exportBlocks(){

 var xml = Blockly.Xml.workspaceToDom(workspace);

 var xml_text = Blockly.Xml.domToText(xml);

 return xml_text;

}

Página !40

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

and “domToText”. This text is returned as the output of the function. This function

is called from Java using the method “executeScript()” and the returned text is

passed to a “FileWriter” object in order to write the text in an XML file selecting

the folder using the file explorer. As the blocks only can be stored in XML format,

it is the only one possible.

�

Code 11. XML File Creation

3.9.Import Blocks

Exporting blocks would not have sense it they cannot be imported so a function

for it has also been created. The function can be seen in Code 12. This function

gets the text passed as an input parameter and converts it into blocks using the

methods “textToDom” and “domToWorkspace”.

�

Code 12. importBlocks Function

String code = (String)
webEngine.executeScript("exportBlocks()");
FileChooser fileChooser = new FileChooser();
fileChooser.setTitle("Save Block file");
File file = fileChooser.showSaveDialog(stage);
try {
 FileWriter outputFile = new

FileWriter(file.getAbsolutePath().concat(extensionXML));
 outputFile.write(code);
 outputFile.close();
} catch (IOException e) {
 e.printStackTrace();
}

function importBlocks(xml_text){

 var xml = Blockly.Xml.textToDom(xml_text);

 Blockly.Xml.domToWorkspace(xml, workspace);

}

Página !41

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

To get the blocks into the system an additional button has been added. Once

pressed, similarly to the “Export Code” button and to the “Export Blocks” button, a

file explorer window is opened but in this case it is not opened to create a new file

but to open an existing one. As the blocks are always exported in XML format,

this explorer will only allow to open XML files.

�

Code 13. XML File Creation

The code used to import the file can be seen in Code 13. In this code a

“FileChooser” object is defined, then the extensions allowed are specified, in this

case only XML files as it is the only format in which the blocks can be exported.

The next steps are done to get the content of the file in a String and, at the end,

the function created in JavaScript is called as explained before using the method

FileChooser fileChooser = new FileChooser();
FileChooser.ExtensionFilter extFilter = new
FileChooser.ExtensionFilter("XML Files", "*.xml");

fileChooser.getExtensionFilters().add(extFilter);
fileChooser.setTitle("Load Block file");
File file = fileChooser.showOpenDialog(stage);
FileReader inputFile = null;
try {

inputFile = new FileReader (file.getAbsolutePath());
BufferedReader b = new BufferedReader(inputFile);
StringBuilder xmlCode = new StringBuilder();
String line = null;
while ((line = b.readLine()) != null){

xmlCode.append(line);
}
b.close();

webEngine.executeScript("importBlocks(\'" +
xmlCode.toString() + "\')");

} catch (FileNotFoundException e1) {
e1.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

}

Página !42

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

“executeScript()”. The code read is passed as an input argument of the function

called. Therefore the JavaScript function is called with the code and it converts

the XML file data into blocks.

3.10. Input Variables

�

Code 14. addElement method

The expected functionality of the system is the following:

Experiment Editor is opened. It includes a set of simulation variables initialized.

function addElement(name, value, block_type){
 var xml =
 '<block type="variables_set">'+
 '<field name="VAR">' + name + '</field>'+
 '<value name="VALUE">'+
 '<block type="' + block_type + '">'+
 '<field name="NUM">' + value + '</field>'+
 '</block>'+
 '</value>'+
 '</block>'+
 '<block type="variables_get">'+
 '<field name="VAR">' + name + '</field>'+
 '<value name="VALUE">'+
 '<block type="' + block_type + '">'+
 '<field name="NUM">' + value + '</field>'+
 '</block>'+
 '</value>'+
 '</block>';
 $('.Variables').append(xml);

Blockly.updateToolbox(document.getElementById('toolbox'));
 }

Página !43

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

The visual programming system explained in this document is launched. It

receives the simulation variables as arguments and creates the blocks related

to them.

Experiment development. Using the graphic language explained in this

document.

Result passed to the Experiment Editor to get the execution results.

Therefore the block system has to include a method to use the input values to

automatically generate new variable blocks with them. In order to do that, a

method, “addElement()”, has been created in JavaScript file using jQuery. This

method, Code 14, has three input parameters: name of the variable, value of the

variable and variable type. With those values it creates the text of two variable

blocks, one setter and one getter. Once created, it adds the code into the

“Variables” category in such a way that the blocks will appear in the

corresponding tab of the Block Palettes Categories Tab. In order to situate them

in the correct tab inside the Block Palettes Categories Tab the method “append”

is used specifying the category in which the blocks should be inserted. Finally,

the toolbox is updated using the Blockly method “updateToolbox()” to get the new

values in the tab added automatically.

The code introduced using the function “addElement()” uses two different

methods already created in Blockly. These methods are used to create the

simulation variables in the same way that Blockly uses to create them. Set

method, Code 15, is a variable setter to create variables during runtime. Get

method, Code 16, just creates a block to get the value of the variable defined in

the block to use it as input parameter. The variables defined using these methods

can be created before the execution but they can also be created during runtime

using the block “create variable”, Figure 27.

Página !44

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

�

Figure 27. Create variable block

Create variable block, Figure 27, can be used to create new blocks during

runtime. Once clicked, a prompt appears allowing the user to introduce the name

of the new variable. After introducing the name a new set of blocks is created.

�

Code 15. variables_set method

�

Code 16. variables_get block

Blockly.Ruby['variables_set'] = function(block) {
 // Variable setter.
var argument0 = Blockly.Ruby.valueToCode(block, 'VALUE',
 Blockly.Ruby.ORDER_NONE) || '0';
var varName = Blockly.Ruby.variableDB_

.getRubyName(block.getFieldValue('VAR'),
 Blockly.Variables.NAME_TYPE);
return varName + ' = ' + argument0 + '\n';
};

Blockly.Ruby['variables_get'] = function(block) {
 // Variable getter.
var code = Blockly.Ruby.variableDB_.getRubyName
(block.getFieldValue('VAR'),Blockly.Variables.NAME_TYPE);
 return [code, Blockly.Ruby.ORDER_ATOMIC];
};

Página !45

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

�

Figure 28. Variable block

The set created, Figure 28, includes a block to select the variable with a blank to

assign a value to it, another one to change the value of the variable selected and

the last one to use the variable as an input. Only the first block and the third one

will appear when the simulation variables are defined using the method explained

in the 3.10 section to get a simpler interface as the other block is not

indispensable.

To create the simulation variables, they have to be received as input values in the

Java program. The program has a listener, Code 17, to execute the

“addListener()” method. This listener has been defined to execute the method

when the browser is launched automatically with no need to do anything to run it.

This name can be a simple name or it can be a name with the value together with

the format “name=value”. If the value is received in this last format, the system

takes the name and the value separately and check what type of data is the

value, checking between String, Double and Boolean. Once checked, it calls the

“addElement()” method passing the name, the value and the type of data of the

value as input parameters. This method creates the corresponding blocks with

that information. If the input parameter received is only the name, the system

creates a variable with value equal to zero which is the default value.

Página !46

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

�

Code 17. addElement() listener

As the simulation variables are not Ruby variables several changes have been

applied in the code already existing for the simulation variables:

Blockly2Ruby system contains a check to ensure that the variables created do

not have special characters. To fix this problem once it finds any special

webEngine.getLoadWorker().stateProperty().addListener(
 new ChangeListener<State>() {
 public void
changed(@SuppressWarnings("rawtypes") ObservableValue ov,
State oldState, State newState) {
 if (newState == State.SUCCEEDED) {
 for (String variable : inputValues){
 String type = variable;
 String value = "0";
 String block_type = "math_number";
 if (variable.contains("=")){
 type = variable.split("=")[0];
 value = variable.split("=")[1];
 try {
 Double.parseDouble(value);
 block_type = "math_number";
 } catch(NumberFormatException ex){
 if (value.equals(StringTrue) ||

value.equals(StringFalse)){
 Boolean.parseBoolean(value);

 block_type = "logic_boolean";
 } else{
 block_type = "text";
 }
 }
 }
type = "Simulation.".concat(type);
webEngine.executeScript("addElement('" + type + "','" +
value + "','" + block_type + "')");
}
}}});

Página !47

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

character the system converts it into an underscore. After the change applied

only the variable names that do not start their name with “Simulation.” will

change the special characters, the other ones will remain the dot in their

names. It had to be done because the dot was considered a special character

and the system changed it to underscore.

Variables declaration was done before the change using the dollar symbol

before the variable names every time they are used in the workspace but

simulation variables, as they are not usual variables, they should not work that

way. Therefore they do not have to have dollar symbol when initialized or when

used in the program. To fix it the same check that was applied before has been

used but when writing the variables in the program avoiding the dollar symbol

to appear before the simulation variable names. 

Página !48

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

4. CONCLUSIONS
This work appears in the simulations scope with the intention of creating a

graphic language to be used inside the Experiment Editor tool developed by the

Department of Computer Science and Automatic Control, Universidad Nacional

de Educación a Distancia and the Department of Software Engineering and

Computer systems, Universidad Nacional de Educación a Distancia.

The creation of this system was done to cover some needs inside this scope and

to provide alternatives to get a more accesible system. Different solutions and

options have been investigated from this point as well as the reutilization of some

systems already developed in order to modify and adapt them to this particular

scenario.

All of this has resulted in a theoretical solution in which the graphic system is

explained seeing all the benefits and advantages that it can provide. Furthermore,

the different elements and functionalities that it should contain to be used

together with the Experiment Editor have been also described.

Additionally a Blockly based implementation has been proposed. This proposal

can be used as a substitute of the step to code the experiments and provide an

alternative for all the people that want to use the Experiment Editor but do not

know how to code the experiments. The graphic language developed is included

in a graphic interface which converts it in a very intuitive system.

The graphical language explained in this document uses the principles of

automatic generation of code learned during the Software Engineering Master

studies as it generates the code automatically from the blocks. Another principles

learned during the Master studies have been applied as secure software

principles applied to manage errors or to remove parts of the code and libraries

not used to avoid security issues.

Página !49

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

Thanks to this document not only an easy to use system has been obtained but

also an exportable system that can be used with other different projects or

environments.

It is important to note that the system described in this document is not a

substitutive but it is a system to enrich the Experiment Editor already created to

facilitate its use.

4.1. Results

Some of the achievements reached using this system have been:

1. A complete functional interface has been created with several options to

interact with. The complete interface can be seen in Figure 24, it contains the

JavaScript interface with the Block Palettes Categories Tab, the Script Area

and the Code Generation Area getting a very intuitive and visual system.

Furthermore, an additional interface has been created allowing the user to

perform different functions as executing the code, exporting the Ruby code,

exporting the blocks in the Script Area into a file and importing them.

2. Block based system to develop Ruby code without the need of writing code.

3. Importation of the variables defined in the experiment creation and creation of

the corresponding blocks.

4. Code generated is returned to Java so it is not necessary to copy it manually

from the graphic language to the Experiment Editor.

5. Ruby code execution in Java using a JVM. 

Página !50

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

5. FUTURE DIRECTIONS
The work explained in this document is not complete and it can be improved

adding several functionalities. This chapter summarizes some ideas and

functionalities that can be added to expand the work carried out in this Master’s

Thesis.

5.1.Import Code

A function that allows import code in the system would be an interesting

improvement in order to get the code in the Script Area that was previously

exported. Several methods and functions have to be defined in JavaScript to get

this functionality. These functions have to convert the code into different blocks

analyzing the syntax and the constructors and choosing the blocks that

correspond to the input code.

This functionality would get also a system to develop scripts and to modify them

when necessary as it is done usually modifying the code but with blocks.

5.2.Adapt the system

As it has been seen previously this system has been created not to use it only

with Ruby and the Experiments Editor but also with any environment necessary.

This is an open source project so it can be used for any environment or situation

needed.

5.3.JVM Complete Implementation

In order to get one of the main functionalities developed it is necessary to

implement a Java Virtual Machine of Ruby along with the code generated for the

Experiments Editor. Another option to do this is to implement the system in the

experiments one and create the experiments using this tool.

Página !51

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

5.4.DataTool implementation

This tool is an open source project to plot data, to compute basic statistical

information, to compute linear, quadratic or cubic fits, showing the slope and the

area under a curve, etc. It is available at OSP (http://www.compadre.org/osp/

items/detail.cfm?id=7331) and it is already implemented in the Experiment Editor

tool and the corresponding block categories have been added in the Blocks

Palettes Categories Tab. Future improvements should include the implementation

of this functionality to have a fully executable system. 

Página !52

http://www.compadre.org/osp/items/detail.cfm?id=7331

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

6. REFERENCES

[1] Po-Yao Chao, Exploring students' computational practice, design and
performance of problem-solving through a visual programming
environment, Computers & Education, Volume 95, April 2016, Pages
202-215, ISSN 0360-1315

[2] Y. Ohshima, J. Mönig and J. Maloney, "A module system for a general-
purpose blocks language," Blocks and Beyond Workshop (Blocks and
Beyond), 2015 	 IEEE, Atlanta, GA, 2015, pp. 39-44.

[3] Blockly Wiki, Accedido 3 de Junio de 2016. URL: https://github.com/
google/blockly/wiki

[4] Blocks, Scratch Wiki, Accedido el 31 de Mayo de 2016. URL: https://
wiki.scratch.mit.edu/wiki/Blocks

[5] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K.
Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, et al.Scratch:
programming for all Commun. ACM, 52 (11) (2009), pp. 60–67

[6] Waterbear Wiki, Accessed January 2017. URL: https://github.com/
waterbearlang/waterbear/wiki

[7] Einhorn, S. (2011). Microworlds, computational thinking, and 21st century
learning. Logo Computer System Inc, White Paper. Retrieved from 	http://
www.microworlds.com/

[8] Azusa Kurihara, Akira Sasaki, Ken Wakita, Hiroshi Hosobe, A Programming
Environment for Visual Block-Based Domain-Specific Languages, Procedia
Computer Science, Volume 62, 2015, Pages 287-296

[9] Da-Qian Zhang and Kang Zhang, "On the design of a generic visual
programming environment," Visual Languages, 1998. Proceedings. 1998
IEEE 	 Symposium on, Halifax, NS, 1998, pp. 88-89.

[10] Harshit Agrawal, Rishika Jain, Prabhat Kumar, and Pradeep Yammiyavar.
2014. FabCode: visual programming environment for digital fabrication. In
Proceedings of the 2014 conference on Interaction design and children
(IDC '14). ACM, New York, NY, USA, 353-356.

[11] Ruben Heradio, Luis de la Torre, Daniel Galan, Francisco Javier Cabrerizo,
Enrique Herrera-Viedma, and Sebastian Dormido. 2016. Virtual and remote
labs in education. Comput. Educ. 98, C (July 2016), 14-38.

[12] Daniel Galan, Ruben Heradio, Luis de la Torre, Sebastian Dormido,
Francisco Esquembre, Performing Automated Experiments with EJsS
Laboratories, IFAC-PapersOnLine, Volume 48, Issue 29, 2015, Pages
134-139, ISSN 2405-8963

[13] Daniel Galan, Ruben Heradio, Luis de la Torre, Sebastian Dormido,
Francisco Esquembre, The Experiment Editor: Supporting Inquiry-Based
Learning with Virtual Labs.

Página !53

https://github.com/google/
https://wiki.scratch.mit.edu/wiki/Blocks
https://github.com/waterbearlang/waterbear/wiki
http://www.microworlds.com/

Master’s Thesis
Graphic Language for Programming
Experiments in Virtual Laboratories

!

[14] Jean Lazarou, Blockly2Ruby project, GitHub repository, https://
github.com/jeanlazarou/blockly2ruby

[15] JavaFX Overview (Release 8) Docs.oracle.com. Retrieved 2017-08-01.

[16] Justin Edelson and Henry Liu. JRuby Cookbook. "O'Reilly Media, Inc.",
2008

[17] «Rails Support». JRuby Team. Accessed January 2017

Página !54

https://github.com/jeanlazarou/blockly2ruby
http://wiki.jruby.org/wiki/Rails_Support

