
Universidad Nacional de Educación a Distancia

Máster Universitario de Investigación en Ingenieŕıa de
Software y Sistemas Informáticos

Itinerario: Ingenieŕıa de Software - 31105151

Extending the R programming language
to create and manage Boolean models

encoded as BDDs

Autor:
Sergio Bra Gutiérrez

Directores:
Rubén Heradio Gil

David Fernández Amorós

Curso académico 2016/2017 - Convocatoria de junio

Universidad Nacional de Educación a Distancia

Máster Universitario de Investigación en Ingenieŕıa de
Software y Sistemas Informáticos

Itinerario: Ingenieŕıa de Software - 31105151

Extending the R programming language
to create and manage Boolean models

encoded as BDDs

Trabajo de tipo A: Trabajo espećıfico propuesto por un profesor

Autor:
Sergio Bra Gutiérrez

Directores:
Rubén Heradio Gil

David Fernández Amorós

Espacio reservado para la hoja de calificaciones

DECLARACIÓN JURADA DE AUTORÍA DEL TRABAJO

CIENTÍFICO, PARA LA DEFENSA DEL TRABAJO FIN DE

MASTER

Fecha: 05/02/2017.

Quién suscribe:

Autor(a): Sergio Bra Gutiérrez

D.N.I/N.I.E/Pasaporte.: 72087621D

Hace constar que es la autor(a) del trabajo:

Extending the R programming language to create and manage Boolean models encoded as

BDDs

En tal sentido, manifiesto la originalidad de la

conceptualización del trabajo, interpretación de datos y la

elaboración de las conclusiones, dejando establecido que

aquellos aportes intelectuales de otros autores, se han

referenciado debidamente en el texto de dicho trabajo.

DECLARACIÓN:

 Garantizo que el trabajo que remito es un documento
original y no ha sido publicado, total ni parcialmente

por otros autores, en soporte papel ni en formato

digital.

 Certifico que he contribuido directamente al contenido
intelectual de este manuscrito, a la génesis y análisis

de sus datos, por lo cual estoy en condiciones de

hacerme públicamente responsable de él.

 No he incurrido en fraude científico, plagio o vicios
de autoría; en caso contrario, aceptaré las medidas

disciplinarias sancionadoras que correspondan.

Fdo.

IMPRESO TFDM05_AUTOR

AUTORIZACIÓN DE PUBLICACIÓN

CON FINES ACADÉMICOS

Juan del Rosal, 16
28040, Madrid

Tel: 91 398 89 10
Fax: 91 398 89 09

www.issi.uned.es

Impreso TFdM05_Autor. Autorización de publicación

y difusión del TFdM para fines académicos

Autorización

Autorizo/amos a la Universidad Nacional de Educación a Distancia a difundir

y utilizar, con fines académicos, no comerciales y mencionando

expresamente a sus autores, tanto la memoria de este Trabajo Fin de

Máster, como el código, la documentación y/o el prototipo desarrollado.

 Firma del/los Autor/es

 Sergio

Acknowledgements

Firstly, I want to give thanks to my parents for their moral support and the economical
effort made during all these years.

To Anabel, for supporting me on the hard moments and be there when I need her.

To my sister Patricia and the friends who have made these years more pleasant.

And finally to Rubén and David, for giving me the chance of learning so much with the
realisation of this project and an incredible help when problems appeared.

iii

Abstract

R has turned into a reference in the statistical computing field as time goes by. Also,
its popularity is growing in other scopes, such as data mining, financial mathematics,
biomedicine, etc. This is because of its nature of free software, among other factors, which
has allowed the creation of a huge amount of libraries provided by the community to add
usefulness to the basic implementation.

The S programming language, which R is based on, allows the development of functions
outside the data analysis, but they are highly inefficient compared with the analogous
in other languages like Java, C o C++. To solve this problem, some libraries offer the
possibility of executing from R code written in other languages.

The aim of this project is the design and development of a wrapper made for R which
implements the functions of a library built in C++, supplying some utilities to work with
complex structures in a simple and efficient way.

Keywords: R, wrapper, BDD, software library, free software.

iv

Contents

Authorship sworn declaration of the scientific work, to the defence of the
Master’s Thesis i

Publication and difussion authorisation of the Master’s Thesis for aca-
demic purposes ii

Acknowledgements iii

Abstract iv

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Development framework . 4
1.2 Goals and motivation . 5
1.3 Content of the document . 5

2 Background and related work 6
2.1 Feature models . 7
2.2 Binary decision diagrams . 7

3 Analysis and design of the solution 10
3.1 API of the developed package . 10

3.1.1 Creating and setting up BDDs . 11
3.1.2 Creating and managing variables . 14
3.1.3 Consulting operations . 16
3.1.4 Operations over BDDs . 19
3.1.5 I/O operations . 21

3.2 Usage of the rbdd library . 22

4 Development of the proposed solution 25
4.1 Adding own functions . 27
4.2 Dealing with external dependencies . 27

5 Experimental validation 29
5.1 Propagation of a signal . 29
5.2 Modified Condition / Decision Coverage . 32
5.3 Implementing a SPL . 38
5.4 Increasing the number of nodes of a BDD 41

6 Conclusions and future work 44

v

Contents

6.1 Conclusions . 44
6.2 Future work . 45

Bibliography 46

List of Acronyms 49

vi

List of Figures

1.1 Interaction between the components of the suggested solution 4

2.1 Economic comparison of the usage of traditional development practices versus
SPLs . 6

2.2 Example of a BDD . 8

3.1 Execution of a command without running the init bdd instruction 23
3.2 Execution of a method with an invalid input 23
3.3 Full example of usage of the rbdd library . 23
3.4 Result of saving the BDD created . 24

4.1 Structure of the library created with the instruction Rcpp.package.skeleton() 26
4.2 Compilation process of an external library . 28
4.3 Location of the depencies depending of the architecture of the machine 28

5.1 Implementation of the signal propagator with rbdd 31
5.2 Output of the execution of the signal propagator example 31
5.3 Getting test cases for MC/DC with rbdd . 36
5.4 Output of the execution of the MC/DC test cases 36
5.5 Feature model which describes features of a mobile phone 38
5.6 Code which implements the feature model . 40
5.7 Conditions which satisfied the proposed feature model 40
5.8 Code which obtains the number of nodes i every iteration applying different

reorder algorithms . 42
5.9 Analysis of the raise of the number of nodes in a BDD when the number of

logic expressions increases . 43

vii

List of Tables

2.1 Description and implementation of the main BDD ordering algorithms 9

3.1 init bdd command . 12
3.2 set max node num command . 13
3.3 set cache ratio command . 13
3.4 reset bdd command . 14
3.5 new variable command . 14
3.6 new variable from expression command . 15
3.7 add cnf var command . 16
3.8 restrict bdd command . 16
3.9 print bdd command . 17
3.10 get bdd library command . 17
3.11 get node num command . 17
3.12 is initialized command . 18
3.13 print variables command . 18
3.14 expression to string command . 18
3.15 apply bdd command . 19
3.16 done bdd command . 19
3.17 reorder bdd command . 20
3.18 same bdd command . 21
3.19 read bdd command . 22
3.20 save bdd command . 22

5.1 Truth table of the propagator circuit . 30
5.2 Truth table of the expression to apply the MC/DC technique 33
5.3 Independent effect of the variable a . 33
5.4 Independent effect of the variable b . 33
5.5 Independent effect of the variable c . 34
5.6 Independent effect of the variable d . 34
5.7 Union of the independent effect of each variable 34
5.8 Truth table of the problem with the independence effect of each variable 37
5.9 Mapping between features and propositional formulas 39
5.10 Features of the analysed BDDs . 41

viii

Chapter 1

Introduction

According to the opinion of experts in the subject, like the professor of the Stanford
University Donald E. Knuth [1], Binary Decision Diagrams (BDDs) are considered like
one of the greatest advances in the sphere of the data structures in the last years. Such
is the case that one of the most quoted pulications in the scientific field was the Randal
Bryant’s study, where the potential of these structures is analyzed in order to improve the
efficiency of algorithms [2].

BDDs were introduced by C. Y. Lee [3] in 1959, and since then their contribution within
the context of the engineering and mathematics has been very prolific. Partly, this is due
to their hardware implementation does not present a high complexity, coming out as a key
issue for their adoption.

Some of the domains where BDDs have been used to a greater extent are the scope
of circuits and configurators. Their use combined with Software Product Lines (SPLs) is
thoroughly discussed in the Marcilio Mendonça’s thesis [4]. In that research, the reader
can spot information about the application of BDDs to improve automated support for
reasoning on feature models1 and product configuration.

These structures can be fairly quick to count the number of valid configurations, check-
ing the equivalence of feature models and providing foundation to the interactive procedure
where the customer is able to choose a value for a decision variable at run time, all of that
based on the compiling of combinatorial spaces of the configuration problem.

However, one of the main warhorse issues related to the use of BDDs is the fact that
the size of those elements can grow exponentially, depending strongly on the length of the
input and its ordering (that in the Mendonça’s research matter would be the length of the
feature model). This factor is greatly affected by the BDD variable ordering (finding the
optimal order is an NP-hard problem), which has been typically approached by heuristics.
At this moment, when we are concerned about the order of their elements, we can refer to
these structures as Ordered Binary Decision Diagrams (OBDDs) or even Reduced Ordered
Binary Decision Diagram (ROBDD).

Various authors have discussed over the matter of constraint and variable ordering. To
the Bollig et al.’s work [5] previously quoted, other researchers have contributed to the
cause like Narodytska et al. [6], in whose study up to three heuristic solutions could be
analysed in order to reduce the time and space required to compile solutions to configura-
tion problems into a decision diagram. Exploiting the properties of those problems, they

1In software development, a feature model is a compact representation of all the products of the SPL.

1

proposed algorithms based on ensuring monotonic growth in the size of the BDD, static
variable ordering and dynamic variable grouping.

The best results were obtained by the first algorithm, keeping the size of the resulting
BDD smaller than the other two ordering algorithms on all of their steps. As a result,
this algorithm significantly reduced the time to construct the target BDD, from one to
two orders of magnitude improvement in compilation time. One of the conjectures the
researchers obtained with these results is that the original ordering usually reflects the
natural structure of the problem, taking advantage of the grouping of constraints describ-
ing single components.

Meinel et al.’s book [7] is another work about OBDDs where the usage of heuristics for
building efficient variable orders is investigated. Firstly, they considered some premises
to design good methods to construct good orders, like the considerated functions may be
given in form of net lists or the additional information may be provided and exploitable.
Afterwards, the main idea is to deduce information concerning suitable positions of the
variables in the ordering from the topological structure of the combinational circuit stud-
ied.

They compared these techniques with other dynamic reordering algorithms, and the
conclusion that the researchers came to is that the dynamic ones require extremely much
computation time if the BDD’s nodes are not optimized.

For this reason, it does not turn out to be strange that main programming languages
include libraries implementing that structure, as well as the basic ordering functions to
work with it. Some of the most popular examples are JavaBDD [8] and JDD [9] in Java,
CUDD [10] and BuDDy [11] in C, etc.

However, it has been detected that a very popular tool as R [12] does not include any
kind of support of BDDs, neither integrated in the core version of the tool nor comple-
mented by extensions made by the comunity of programmers who increases its funcionality.

It is interesting to be able to work with these diagrams in that tool, because since Ross
Ihaka and Robert Gentleman, Auckland University, conceived R as an implementation of
the S [13] programming language in 1992, its popularity has not ceased to grow. To reach
the current situation of the tool (far from being definitive), it has experimented many and
constant revisions, supplying a bigger funcionality, versatility and, what is most impor-
tant, stability to the project.

Inside the software depelopment world, where everything changes extremely fast and
new tools, frameworks, etc. are developed almost daily, to have as adaptability as possible
is an essential factor for a product to be successful in a more and more demanding market
and with a growing competition. This necessity of flexibility is covered by R with the use
of libraries made by the large community of R users, that following the philosophy of the
free development, makes possible to adapt the available functionalities of the tool based
on the different needs.

Currently, the number of available libraries through the R repository is nearly 10 000 [14],
that allows to get an idea of the enrichment given to the platform as soon as new needs
appear to the developers.

2

Due to performance problems when general purpose functions are executed with this
tool, as will be explained in further chapters of this document, it will be considered the use
of libraries which allow to run code written in other languages, with a barely penalization
in the performance.

Another R’s strength is the huge efficiency that presents in statistical modelling tasks,
because writing a few lines of code, good results con be obtained, providing sophisticated
solutions. Programming the same behaviour in other languages would mean a bigger com-
puting cost, produced by the considerable increase of the complexity of the algorithm.

For all those reasons, it becomes as a perfect tool to execute a great variety of operations.
Furthermore, R turns out as the ideal environment to work with an optimal structure like
BDDs, providing the chance of making complex logic reasoning. Moreover, it would solve
the the main problem of BDDs, that is to order the structure to be able to work efficiently
with it.

Therefore the idea of generating a wrapper for R arises, whose purpose is to encapsulate
the methods of the libraries previously described for modelling BDDs and making possible
the systematic analysis of the use of algorithms which require these structures. In this
way it would be possible to work with them in R, but without having altered the efficiency
that is given by the codification in languages uncoupled to the statistical calculation.

In the Figure 1.1 it could be seen the suggested architecture, with its main interactions
between the components the system is formed by. It is compound by a wrapper, which
surrounds a C++ facade to make accesible the functions related to the management of
BDDs from R. The main benefit of the defined system is its high extensibility, being very
simple adding new functionality without a real impact on the earlier development.

Because of the nature of open source that surrounds R and its maintenance by the
community of programmers, the construction tasks of the wrapper, tests, documentation,
etc. have been accomplished under free tools and environments. Thus, the development
of the library has been carried out in a machine working with Ubuntu 16.04.1 LTS - 64
bits [15], GNU’s Not Unix (GNU)’s text editors and LATEX [16] for the generation of official
documents.

3

1.1. Development framework

BuDDy

CUDD

Function1 C++

Function2 C++

FunctionN C++

C++ Facade

Wrapper

Figure 1.1: Interaction between the components of the suggested solution

1.1 Development framework

The present development is located on the Software and Systems Engineering Group of
the Superior Technical School of Computer Engineering of the Universidad Nacional de
Educación a Distancia (UNED).

Paying attention to the different lines in which the department is working on, the sug-
gested project belongs to that one called “Software Development with Reuse Techniques”.
In lots of contexs, being the development of SPLs an example, it is wanted the systematic
reuse of software. To reach this goal, it is essential to model the common components
and variables of each product of a family, that is usually done through a feature diagram
[17]. The management of these variability models is made translating the feature model
to a propositional logic formula. To process that formula, boolean SATisfiability problem
(SAT) solvers and BDDs are frequently utilised.

The aims of this work are:

• Providing a way to build the BDD of a very big family. R will be the tool used to
choose what order of the variables is going to produce a compact BDD, meaning
which one that needs the less possible memory.

• Being able to work with the selected BDD.

4

1.2. Goals and motivation

1.2 Goals and motivation

Based on the situation previously described, it is expected to deal with the implemen-
tation of a library for R that allows to define and to modify BDDs as simply and fast as
possible, having the chance of applying some operations over them efficiently, too.

The development has been focused in the ease of its use from the point of view of a
R programmer, as well as an user coming from the BDDs field. The conceived instruc-
tions are simple and with default parameters, minimising the need of informing too many
elements to work easily, but keeping it highly configurable for that situations when it is re-
quired a more complex setting up of the paramenters. In addition, the library is modelled
under a multiplatform environment, being available for computers working with Windows
and Linux.

The notation of the expressions passed as input to the functions has been conceived
following the same principle of keeping it as simple as possible, being able to define them
as logic expressions or in Conjunctive Normal Form (CNF).

To reach it, the following goals have been set up:

• Designing and Developing a library for R which manages BDDs in a very efficient
way. These package will be simple, extensible and robust.

• Generating a full and high-quality documentation, allowing an Open Source develop
and simplifying the task for adding funcionality by the community of programmers.

1.3 Content of the document

To explain the process of reaching the defined goals, the thesis made is divided in
chapters addressing the different facets that the project is made of:

• Background and related work: This section makes a description of the current
situation over the considered work is based on and the related developments.

• Analysis and design of the solution: When the development frame is known,
the solution to introduce, the specification of the model and the phases of the im-
plementation are defined.

• Development of the proposed solution: Once the library is well-defined, it is
described the followed process in order to build the wrapper and modify it in further
updates.

• Experimental validation: After the development of the application, the validity
of the solution will be shown by the resolution of some studied problems.

• Conclusions and future work: Finally, when the goals of the project are met,
the final conclusions obtained after its realization will be explained, as well as the
lines that could be followed for a improvement of the current work.

5

Chapter 2

Background and related work

SPLs have increased their popularity in the software industry due to the capability of
achieving the reuse of code and structures. As a result, companies which apply those
techniques have reduced the cost of software development, its maintenance and the time
to market [18]. The key of this concept is the identification of common parts among the
different products on a family in order to be able to model a reusable entity.

The main difference with respect to a traditional development is the logical separa-
tion between the core of the application, reusable software assets and actual application
code [19].

Figure 2.1 represents the differences on costs when a company uses SPLs and when it
follows a traditional system of development [20]. It could be discovered that at first the
cost of using a SPL is higher than when a current practice is used, but when the number
of products starts to increase, the investment it is quickly compensated because of the
high reusability of the code.

Figure 2.1: Economic comparison of the usage of traditional development practices
versus SPLs

6

2.1. Feature models

In view of this analysis, it is worth the effort of a methodology change and to invest in
that concept, because at the end results are better even thought the initial penalisation.
At first, when an organization decides to use SPLs, the design and development are less
efficient because of it has to be thought for general purpose, not only for solving a specific
problem.

2.1 Feature models

According to the Institute of Electrical and Electronics Engineers (IEEE) [21], a fea-
ture is “a distinguishing characteristic of a software item (e.g., performance, portability,
or functionality)”. In order to approach to the optimal solution for the code reusability
problem, feature models are used to expose those characteristics of the system, being re-
flected on propositional logic formulas. Once a logic structure is built, it is possible to
apply as many operations as is needed to reach a good solution to the explained casuistry.

Informally, a feature model is a simple, hierarchical representation that captures the
commonality and variability os a product line. Every of these relevant characteristics of
the problem space is translated as a feature in the model, which can be considered like
something relevant for some stakeholder.

Domain analysis has as aim defining the different capabilities of interfaces to exploit
commonality through the systematic exploration of software environments [22]. Some of
the most relevant works in this field [23] [24] suggest the Domain Analysis and Reuse
Environment (DARE) as a technique to execute a successful domain analysis, which has
the following phases:

1. Context analysis: Returns the context of the domain providing the required inputs
and outputs and identifying relationships with other interfaces.

2. Domain modelling: Describes the problems addressed by software in the domain,
matching the different features in the domain.

3. Architecture modelling: Defines the implementation of software in the domain. The
created structures are used as architectural models for generating applications from
the domain model.

In practice, feature models are represented with a specific notation which allows cap-
turing the different elements of the problem. The first widely extended notation was the
Feature-Oriented Domain Analysis (FODA) [22], but nowadays the most accepted one is
Czarnecki-Eisenecker’s notation [25] [26].

2.2 Binary decision diagrams

As a result of the explained process, a propositional logic formula can be built repre-
senting the feature model, making the optimization tasks easier. The solution in which
the present work is focused on is the usage of BDDs in order to handle the logic sentence.

A BDD is a data structure used to represent boolean functions, reflecting the relation-
ships between boolean variables. Graphically, a BDD could be represented as a finite

7

2.2. Binary decision diagrams

Directed Acyclic Graph (DAG) with a unique initial node (rooted), where there are de-
fined decision nodes and terminal nodes (or leaf nodes) [27]. Generally speaking, when the
term BDD is used, it usually refers to ROBDD, that are BDDs to which some ordering
and reducing techniques have been applied to. Figure 2.2 depicts a very simple ROBDD,
showing the different parts which is made up of.

x1

x2 x2

x3 x3

x4 x4

0 1

Decision nodes

Terminal nodes

Figure 2.2: Example of a BDD

In practice, every binary decision tree can be transformed to a BDD by maximally
reducing it applying two rules:

1. Merging any isomorphic subgraphs1.

2. Deleting any node whose two children are isomorphic.

As a boolean function, many logical operations can be executed to a BDD, being con-
juction, disjunction, negation or implication some examples. Individually, each operation
takes a polynomial time, but the repetition of these functions several times can result in
an exponentially big BDD [28]. The reason of this behaviour is that any of the operations
between two BDDs return a BDD with a size proportional to the product of the BDDs’
sizes. This is a real problem, and the amount of researches [5] [29] around that aspect is
an evidence of its relevance.

Consequently, it becomes crucial to care about the variable ordering when BDDs are
used. The problem of finding the best variable ordering is NP-hard, but there are some
efficient heuristic algorithms to tackle it. In the Table 2.1 are represented the most
widely used algorithms and their implementation in the selected BDD managers on this
project [30] [31].

1In graph theory, an isomorphism is an edge-preserving vertex bijection which preserves an equivalence
mapping between vertices.

8

2.2. Binary decision diagrams

Table 2.1: Description and implementation of the main BDD ordering algorithms

Algorithm Description BuDDy CUDD

Win2 Sliding window of size 2 Yes Yes

Win2ite Repeated Win2 until no further progress is done Yes No

Win2con Converging variant of Win2 No Yes

Win3 Sliding window of size 3 Yes Yes

Win3ite Repeated Win3 until no further progress is done Yes No

Win3con Converging variant of Win3 No Yes

Win4 Sliding window of size 4 No Yes

Win4con Converging variant of Win4 No Yes

Sift Blocks are moved through all possible positions Yes Yes

SiftIte Repeated Sift until no further progress is done Yes No

SiftCon Converging variant of Sift No Yes

SiftSym Symmetric variant of Sift No Yes

SiftSymCon Converging variant of SiftSym No Yes

SiftGr Implementation of group sifting No Yes

Random Select a random position for each variable Yes Yes

RandomPv Same as Random but pivoting over a variable No Yes

Annealing Simulated annealing No Yes

Genetic Genetic algorithm No Yes

Exact Programming approach to exact oredering No Yes

9

Chapter 3

Analysis and design of the solution

Once the background that surrounds the suggested development has been studied, it is
time to start thinking about a solution capable of solving a series of well-defined require-
ments:

• The package must be able to create, custimize and manage BDDs in R.

• The implemented operations have to be efficient and simple, not being necessary a
deep knowledge about the library to work with it, but keeping the chance of adding
as complexity as the programmer could need.

• Firstly, the package will use BuDDy and CUDD as BDDs managers, but it must be
designed in such a way that new managers could be added without a great impact
in the design and development tasks.

• Also, if new dependencies are needed to include to the library, the process must not
mean a great effort to the developers. The Chapter 4 shows the process to build the
package in Linux and Windows, explaining how to add external code.

• As ordering a BDD turns into a key factor in terms of efficiency, some of the algo-
rithms explained in Chapter 2 have to be available.

• The project must have a complete and easy to understand documentation, not being
complicated to discover the usage of the different functions developed. Also, this
paper could be seen as a guide to know the library and the way to use it and, taking
advantage of its open source facet, to modify it.

3.1 API of the developed package

In Figure 1.1, reproduced again below, it was shown the suggested architecture, in order
to accomplish the aforementioned premises. The base of the created library, called rbdd,
is a C++ facade which encapsulates the interfaces to access to the different methods of the
BDDs managers implemented.

From the R side, as many functions as methods are in the mentioned facade have been
designed, and they could be classified depending on their goals in the categories explained
as an Application Programming Interface (API) in the following subsections.

10

3.1. API of the developed package

BuDDy

CUDD

Function1 C++

Function2 C++

FunctionN C++

C++ Facade

Wrapper

Interaction between the components of the suggested solution

3.1.1 Creating and setting up BDDs

These operations provide functionality to create a new BDD and to change the default
configuration in order to custimize the structure and adapt according to the necessity of
the users.

At this point the BDD manager is selected (being BuDDy the default manager), and it
is mandatory to execute the init bdd command before running any other instruction.

The desgined functions are shown in Tables 3.1 to 3.4:

11

3.1. API of the developed package

Table 3.1: init bdd command

init bdd(string bdd name, string library, int node num, int cache size)

This function creates an instance of the BDD factory. The user can choose the BDD
manager to work with, and its possible values are “buddy” and “cudd”.

Also, the number of nodes and the size of the cache can be provided. If BuDDy is selected
as manager, these values are set as 1 000, and if the manager selected is CUDD, both
values are 32 767.

It is mandatory to execute this instruction before executing any other command of this
library.

Arguments:

bdd name: Name of the BDD. It can contain letters, numbers and underscore.

library: (Optional) The library to use in order to implement the BDD oper-
ations. The possible values of this argument are “buddy” or “cudd”. Any other value
prompts an error message. If this value is ommited, “buddy” manager will be chosen.

node num: (Optional) Number of nodes availables to allocate variables in the
BDD. If BuDDy is selected as BDD manager, the default value is 1 000 and for CUDD its
value is 32 767.

cache size: (Optional) Size of the cache of the factory, it improves the speed of
the operations when instructions are executed repeatedly. The default value is 1 000 for
BuDDy and 32 767 for CUDD.

Returned value:

N/A.

Examples:

init bdd(‘‘bdd 1’’)

init bdd(‘‘bdd 1’’, ‘‘buddy’’)

init bdd(‘‘bdd 1’’, ‘‘cudd’’)

init bdd(‘‘bdd 1’’, ‘‘buddy’’, 2000)

init bdd(‘‘bdd 1’’, ‘‘cudd’’, 2000)

init bdd(‘‘bdd 1’’, ‘‘buddy’’, 2000, 5000)

init bdd(‘‘bdd 1’’, ‘‘cudd’’, 2000, 5000)

12

3.1. API of the developed package

Table 3.2: set max node num command

set max node num(string bdd name, int size)

With this command the user can modify the maximum number of nodes of the created
BDD.

Arguments:

bdd name: Name of the BDD.

size: The maximum number of nodes to set to the BDD factory, meaning the
number of nodes that can be allocated in the structure.

Returned value:

N/A.

Examples:

set max node num(‘‘bdd 1’’, 100)

Table 3.3: set cache ratio command

set cache ratio(string bdd name, int cache ratio)

This instruction allows to increase the cache ratio of the BDD.

Arguments:

bdd name: Name of the BDD.

cache ratio: The increasement to apply at the current cache ratio, used in
order to improve the speed of the execution of the operations storing them in a temporary
memory.

Returned value:

N/A.

Examples:

set cache ratio(‘‘bdd 1’’, 10)

13

3.1. API of the developed package

Table 3.4: reset bdd command

reset bdd(string bdd name)

It ends the BDD factory and starts it again with the same BDD manager that was chosen
in the init bdd() command.

Arguments:

bdd name: Name of the BDD.

Returned value:

N/A.

Examples:

reset bdd(‘‘bdd 1’’)

3.1.2 Creating and managing variables

Once the BDD factory is created, another important functionality is the ability of adding
logic variables in order to build the desired structure.

With the instructions described in Tables 3.5 to 3.8, users can add and manage variables
to the created BDDs.

Table 3.5: new variable command

new variable(string bdd name, string variable name, string var type)

This command creates a new variable to be used for the BDD factory.

Arguments:

bdd name: Name of the BDD.

variable name: The name of the variable. It can only contain letters and num-
bers.

var type: (Optional) Type of the variable. The possible values are “boolean”
and “tristate”. The default value is “boolean”.

Returned value:

index var: Index of the variable created. It returns -1 in case of error.

Examples:

new variable(‘‘bdd 1’’, ‘‘x’’)

new variable(‘‘bdd 1’’, ‘‘x1’’, ‘‘boolean’’)

new variable(‘‘bdd 1’’, ‘‘x2’’, ‘‘tristate’’)

14

3.1. API of the developed package

Table 3.6: new variable from expression command

new variable from expression(string bdd name, string expression)

This instruction is used to create a new variable after evaluating a logical expression. The
expression could be introduced explicitly (informing the name of the variables and the
logical operations) or using the CNF.

Arguments:

bdd name: Name of the BDD.

expression: The expression to evaluate.

If the expression is set from the explicit form, the variables used must exist in the factory,
showing an error if some of them do not. It also allows the use of parenthesis “()” to
indicate the priority of the operations.

The logical operators implemented are:

• and (“x and y”)

• or (“x or y”)

• not (“not x”)

• xor (“x xor y”)

• nand (“x nand y”)

• nor (“x nor y”)

• xnor (“x xnor y”)

• if then (“if x then y”)

• if then else (“if x then y else z”)

• implies (“x -> y”)

• if and only if <-> (“x iff y”)

• equal (“x = y”)

• true (“x = true”)

• false (“x = false”)

With the CNF way, the expression could be informed introducing the name of a file (.cnf)
that contains the expression following the syntax rules of that files, or entering the clauses
manually, where the variables are informed by their index, that can be consulted with the
print variables() command. It is mandatory to end the expression with a 0.

Returned value:

index var: Index of the variable created. It returns -1 if case of error.

Examples:

new variable from expression(‘‘bdd 1’’, ‘‘x and y or (not z and

x)’’)

new variable from expression(‘‘bdd 1’’, ‘‘1 2 0 -1 3 2 0’’)

new variable from expression(‘‘bdd 1’’, ‘‘cnfFile.cnf’’)
15

3.1. API of the developed package

Table 3.7: add cnf var command

add cnf var(string bdd name, string name)

This command adds an intermediate CNF variable that is not the result of the evaluation
of the CNF expression.

Arguments:

bdd name: Name of the BDD.

name: The name of the variable.

Returned value:

index var: Index of the variable created. It returns -1 in case of error.

Examples:

add cnf var(‘‘bdd 1’’, ‘‘1 1’’)

Table 3.8: restrict bdd command

restrict bdd(string bdd name, int expression, string var to restrict, string
variable name, bool positive form)

This command creates a new variable to be used for the BDD factory. It restricts the
value of a variable.

Arguments:

bdd name: Name of the BDD.

expression: Index of the expression to apply the restriction.

var to restrict: Name of the variable to restrict in the expression.

variable name: The name of the variable. It can only contain letters and num-
bers.

positive form: (Optional) Indicates if the value to restrict is in its positive or
negative form.

Returned value:

index var: Index of the variable created. It returns -1 in case of error.

Examples:

restrict bdd(‘‘bdd 1’’, 1, ‘‘x’’, ‘‘restrictVariable’’)

restrict bdd(‘‘bdd 1’’, 2, ‘‘y’’, ‘‘restrictVariable’’, FALSE)

3.1.3 Consulting operations

The following block of methods, represented in Tables 3.9 to 3.13 and ??, offers opera-
tions to know the state of the BDDs, its configuration or the assigned variables.

16

3.1. API of the developed package

Table 3.9: print bdd command

print bdd(string bdd name)

This instruction prints the solution of a BDD.

Arguments:

bdd name: Name of the BDD.

Returned value:

N/A.

Examples:

print bdd(‘‘bdd 1’’)

Table 3.10: get bdd library command

get bdd library(string bdd name)

This instruction returns the name of the BDD manager chosen.

Arguments:

bdd name: Name of the BDD.

Returned value:

N/A.

Examples:

get bdd library(‘‘bdd 1’’)

Table 3.11: get node num command

get node num(string bdd name)

Gets the number of active nodes in use.

Arguments:

bdd name: Name of the BDD.

Returned value:

node num: Number of active nodes in use.

Examples:

get node num(‘‘bdd 1’’)

17

3.1. API of the developed package

Table 3.12: is initialized command

is initialized(string bdd name)

This instruction allows to the user to know if the BDD factory has been initialized.

Arguments:

bdd name: Name of the BDD.

Returned value:

is initialized: It is true if the factory is initialized and false if it is not.

Examples:

is initialized(‘‘bdd 1’’)

Table 3.13: print variables command

print variables(string bdd name)

This function prints a table showing the index and the content of the variables created.

Arguments:

bdd name: Name of the BDD.

Returned value:

N/A.

Examples:

print variables(‘‘bdd 1’’)

Table 3.14: expression to string command

expression to string(string bdd name, int expression)

With this command the content of a variable is printed.

Arguments:

bdd name: Name of the BDD.

expression: The index of the variable to print.

Returned value:

N/A.

Examples:

expression to string(‘‘bdd 1’’, 1)

18

3.1. API of the developed package

3.1.4 Operations over BDDs

There are some functions implemented to work with the created (and configured) BDDs.
As a result of the execution of these instructions, the structure of the BDD might change,
so the user must be completely sure about the commands are going to be executed. These
intructions are explained in Tables 3.15 to 3.18.

Table 3.15: apply bdd command

apply bdd(string bdd name, int expression)

This function executes a logical operation expressed as a variable and assocaited to the
BDD manager through the new variable() or new variable from expression() instruction.

Arguments:

bdd name: Name of the BDD.

expression: The index of the variable with the expression to execute.

Returned value:

N/A.

Examples:

apply bdd(‘‘bdd 1’’, 1)

Table 3.16: done bdd command

done bdd(string bdd name)

This command finishes a BDD, liberating the memory space that it was using.

Arguments:

bdd name: Name of the BDD.

Returned value:

N/A.

Examples:

done bdd(‘‘bdd 1’’)

19

3.1. API of the developed package

Table 3.17: reorder bdd command

reorder bdd(string bdd name, string reorder method)

This instruction allows to reorder the BDD depending on the method specified on the
input parameter (if it is informed). The possible methods are:

• “none”

• “window2”

• “window3”

• “sift”

• “random”

Arguments:

bdd name: Name of the BDD.

reorder method: (Optional) The method for reordering the BDD. The default
value is “sift”.

Returned value:

N/A.

Examples:

reorder bdd(‘‘bdd 1’’)

reorder bdd(‘‘bdd 1’’, ‘‘window2’’)

20

3.1. API of the developed package

Table 3.18: same bdd command

same bdd(string name bdd 1, string name bdd 2)

This function compares two BDDs. The BDDs could be BDDs created with the init bdd()
or the read bdd() commands, expressions which involve BDDs or in the case of the second
expression, the constant BDDs “true” and “false”.

The logic operations allowed between BDDs are:

• ! (“!bdd 1”)

• && (“bdd 1 && bdd 2”)

• || (“bdd 1 || bdd 2”)

• != (“bdd 1 != bdd 2”)

• == (“bdd 1 == bdd 2”)

• < (“bdd 1 < bdd 2”)

• > (“bdd 1 > bdd 2”)

Arguments:

name bdd 1: The name of the first BDD.

name bdd 2: The name of the second BDD.

Returned value:

result: The result of comparing the BDDs.

Examples:

same bdd(‘‘bdd 1’’, ‘‘bdd 2’’)

same bdd(‘‘!bdd 1 && bdd 2’’, ‘‘bdd 3’’)

same bdd(‘‘!bdd 1’’, ‘‘true’’)

same bdd(‘‘!bdd 1’’, ‘‘false’’)

3.1.5 I/O operations

The last instructions (Tables 3.19 and 3.20) are related with saving an existing BDD
into a file and loading a BDD from a record.

21

3.2. Usage of the rbdd library

Table 3.19: read bdd command

read bdd(string bdd name, string file name)

Instruction to read a BDD from a file. If a name of BDD is provided, the content of the
file will be load on a BDD with that name.

Arguments:

bdd name: Name of the BDD.

file name: The name of the input file. The file must end in “.buddy” to store a
BuDDy BDD or in “.blif” to store a CUDD BDD.

Returned value:

N/A.

Examples:

read bdd(‘‘bdd 1’’, ‘‘buddyBDD.buddy’’)

read bdd(‘‘bdd 1’’, ‘‘cuddBDD.blif’’)

Table 3.20: save bdd command

save bdd(string bdd name, string file name)

Instruction to save a BDD to a file. If BuDDy is chosen as BDD manager, the output
extension is “.buddy”. If CUDD is the manager, the extension will be “.blif”.

The file is saved in the current R’s working directory.

Arguments:

bdd name: Name of the BDD.

file name: The name of the output file.

Returned value:

N/A.

Examples:

save bdd(‘‘bdd 1’’, ‘‘buddyExecution’’)

3.2 Usage of the rbdd library

As it was explained, one of the main aims of the present work is to provide a tool which
allows creating and managing BDD as simple as possible. Firstly, it is well documented,
and in case of error, it prints a descriptive message informing about what is the reasson of
the problem. The documentation of the library could be checked executing the instruction
help(package = rbdd). An example of that behaviour could be verified executing the
code shown in the Figure 3.1 and Figure 3.2. The first one fails because before executing
any designed instruction, command init bdd must be run. The second example shows

22

3.2. Usage of the rbdd library

what happens when a function is call with a non-valid parameter.

> library(rbdd)

> new_variable (" bdd_1", "x")

There is not a BDD created with name bdd_1. Create it with the

init_bdd command.

[1] -1

Figure 3.1: Execution of a command without running the init bdd instruction

> library(rbdd)

> init_bdd (" bdd_1", "invalid_manager ")

Unknown BDD library: invalid_manager. Expected values are "buddy"

and "cudd"

Figure 3.2: Execution of a method with an invalid input

A complete execution using the commands explained previously can be checked in the
Figure 3.3. Line 1 imports the created library and line 2 initializes the BDD manager with
the default parameters, that is using BuDDy functions. The way of adding new variables to
the BDD is shown in line 3 to line 5, and a variable built as a result of a logic expression is
assigned in line 6. To consult the logic variables added, the printVariables() command
could be utilized, as in line 7, which prints a table like that one shown from line 8 to
line 14. Line 15 solves the BDD, and the result could be saved in a file running the
command of the line 16. The last instructions check the library used and terminate the
BDD, liberating the disk space. The content of the generated file which stores the BDD
is printed in Figure 3.4 and it represents the solutions that satisfy the configured BDD.

1 > library(rbdd)

2 > init_bdd (" bdd_1")

3 > x = new_variable (" bdd_1", "x")

4 > y = new_variable (" bdd_1", "y")

5 > z = new_variable (" bdd_1", "z")

6 > expression = new_variable_from_expression (" bdd_1", "x and y or (y

and not z)")

7 > print_variables (" bdd_1")

8 ++++++++++++++++++++++++++++

9 Index variable -> Expression

10 ++++++++++++++++++++++++++++

11 Variable 1 -> x

12 Variable 2 -> y

13 Variable 3 -> z

14 Variable 4 -> (x and y) or (y and not z)

15 > apply_bdd (" bdd_1", expression)

16 > save_bdd (" bdd_1", "buddyExacution ")

17 > get_bdd_library (" bdd_1")

18 [1] "BuDDy"

19 > done_bdd (" bdd_1")

Figure 3.3: Full example of usage of the rbdd library

23

3.2. Usage of the rbdd library

4 4

0 1 2 3

7 2 1 0

11 1 0 7

4 1 0 1

14 0 11 4

Figure 3.4: Result of saving the BDD created

24

Chapter 4

Development of the proposed
solution

R is well-known by its capability to apply statistical functions to a huge set of data in a
very efficient way, but its performance decreases dramatically when not that specific code
is called. To fix this issue, a library to execute general purpose methods could be chosen,
improving in this way compilation and execution times.

Rcpp [32] is a library which provides functions available in R to execute code developed
in C++. To carry out that task, the package relies on the direct conversion between R data
types with the equivalent structures in C++ and viceversa, in such a way that invocations
between both parts could be as simple as possible. So, next functions are offered to the
user in order to make a type conversion [33]:

• Rcpp::as carries out the input conversion of the R functions to be used from the
C++ code.

• Rcpp::wrap obtains the analogous data type to that one returned by a C++ function,
which will be provided when the execution of the instruction ends.

Using this library corresponds perfectly with the aim of developing an open source ap-
plication, easily extensible. Adding new functions is as simple as including the code in a
single file and executing an instruction, as it will be explained below.

To make the creation of a package automatically, providing these functions available
from the moment when the library is built, the instruction Rcpp.package.skeleton()

can be run, giving to the programmer the basic skeleton of a R package with the detailed
Rcpp imports. This process generates the directory depicts in the Figure 4.1, and each
subdirectory and file have the following function:

• R: Subdirectory which contains the file RcppExports.R, where the available functions
from R are defined in.

• man: Folder where documentation of the package and the R defined methods are
placed.

• src: Contains the source code written in C++ to be accessed from the R side.

• DESCRIPTION: File with the basic information of the package.

• NAMESPACE: File where indicate the dependencies with other R libraries.

25

Figure 4.1: Structure of the library created with the instruction
Rcpp.package.skeleton()

Another feature of the Rcpp library is the possibility of automate the process of casting
between data, just adding the following line of code

1 //[[Rcpp:: export]]

before each C++ function, and using the instruction

1 Rcpp:: compileAttributes(‘‘package_name ’’)

After the execution of that process the file RcppExports.R is updated with the corre-
sponding code to make the conversion between parameters, and it is used as a link with
the definition of the R functions and the C++ methods.

26

4.1. Adding own functions

4.1 Adding own functions

The code that the programmer wants to be available from R must be in .cpp files inside
the src folder. Adding the line explained before, the data conversion between R types
and C++ types is made automatically, simplifying the tasks of the developers.

In the rbdd library, the methods of the C++ side have been designed to use as an inter-
mediate layer between R and the BDD managers functionalities. In order to achieve this
aim, the functions explained in Chapter 3 has been added to the rbddFunctions.cpp file
as well as multiple internal structures in order to keep the information available during
the session.

In addition, several auxiliary classes have been developed to provide supporting func-
tions, like the ones related to parsing functions, to give CNF utilities, to exploit the BDD
managers posibilities, etc.

If future developments are implemented and it is needed to add aditional functions to
the library, the steps to follow are to:-

1. Include the //[[Rcpp::export]] line before the declaration of the method in the
rbddFunctions.cpp file,

2. Add the code of the function which is called from R in the rbddFunctions.cpp file,

3. If there are other needed files, include them in the src folder,

4. Program the desired behaviour in the parent class of the BDD managers (vBDDFactory),
adding a new method for each new function, in the vBDDFactory.hpp file,

5. Write the code of the function in the specified BDD managers classes, such as
buddyFactory and cuddFactory,

6. Execute the Rcpp::compileAttributes(‘‘package name’’) instruction in order to
updete the RcppExports.R and RcppExports.cpp files.

4.2 Dealing with external dependencies

If external dependencies are needed, R does not advise to incorporate dynamic libraries,
represented with files with extension .dll or .so for libraries developed in Windows and
Linux, respectively [34]. To develop a package which uses some functionalities available
in an external library, it must be included a Makevars file, and in that file the following
variable has to be informed:

1 PKG_LIBS=dependency1.o dependency2.o ...

where files with .o extension are the result of the compilation of the source files of the
library that is the consumed dependency.

This implies that if a change is made over some of the source files of the extern depen-
dency, it would have to obtain the static file and replace it in the source directory. If the
modification is the addition of source files, it is enought to include them in the PKG LIBS

variable described before.

27

4.2. Dealing with external dependencies

The compilation of the source files of the library under a Linux-based environment is
made with GNU [35] tools like make, gcc, g++, etc.

In most cases it will be necessary to follow the typical way to compile a C++ library,
which is showed in the Figure 4.2. At the end of that process the .o files would be gener-
ated and ready to include in the src folder of the library.

1 cd dependency_directory

2 ./ configure CC=gcc CXX=g++ CXXFLAGS="-fPIC -std=c++11" CFLAGS="-

fPIC -std=c11"

3 make

Figure 4.2: Compilation process of an external library

However, if it is expected to generate a package to use it in a Windows system, that
compilation must be done in an equivalent system, too. So, it is required to use environ-
ments which provides these GNU utilities. A good example is MSYS [36], that includes a
Linux bash and the main tools needed to compile the C and C++ code.

It is worth nothing that if a library with compatibility with 32 and 64 bits systems it
is wanted to be develop, it is necessary the compilation of the dependencies under com-
piler of each architecture, and to include the .o files as are provided as the result of this
process into the source directory of the developed package. The Figure 4.3 shows how to
indicate in a unique Makevars file the location of the dependencies files depending on the
architecture and the operative system.

1 ifeq ($(OS),Windows_NT)

2 ifeq "$(WIN)" "64"

3 PKG_ROOT =./ include/windows/x64

4 else

5 PKG_ROOT =./ include/windows/x86

6 endif

7 else

8 UNAME_S := $(shell uname -s)

9 ifeq ($(UNAME_S),Linux)

10 PKG_ROOT = ./ include/linux

11 endif

12 endif

Figure 4.3: Location of the depencies depending of the architecture of the machine

To build the R library it is necessary to use the command:

1 R CMD INSTALL --build --compile -both package_name

28

Chapter 5

Experimental validation

The final step once the library has been built is to demonstrate it works as it is expected.
To achieve this aim some real examples will be implemented just utilising the developed
wrapper. Internet can provide a wide set of real usages of BDDs for solving a great variety
of problems.

To enrich the presentation of the results, a real example of a representition of an SPL
will be showed, as a proof of concept of the relationship between the main topics involved
on this work.

5.1 Propagation of a signal

The first example is the implementation of a signal propagator from the input to the
output of a circuit [37]. Sometimes it is needed to fix all the inputs of a gate except one of
them, so the signal can be propagated from that input to the output, in such a way that
a change on that signal will always have an effect on the output.

In order to simplify the problem, a gate of three inputs and an only output it is assumed,
representing the boolean function of the Equation (5.1):

z(a, b, c) = (a ∨ b) ∧ c (5.1)

and the truth table is described in Table 5.1.

The desired behaviour is to propagate the value of b to the output. So what it is needed
is to find the values of a and c which allow a change in the output when the value of b
changes. To found the solution of this problem, the function shown in the Equation (5.2)
that fulfill the requirement could be built.

p(a, c) = z(a, 0, c) ⊕ z(a, 1, c) (5.2)

29

5.1. Propagation of a signal

Table 5.1: Truth table of the propagator circuit

a b c z

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

With this expression and checking on the truth table, it could be set that the premise
it is satisfied only when a = 0 and c = 1.

To solve the problem using the developed library, the code illustrated in the Figure 5.1
could be used. The instructions initialize the BDD and the respective variables, print
them to check everything is correct, and applies the BDD in order to get the solution
which solves the set out problem. The last lines print the content of the solution and free
the memory space used.

The output obtained after executing this script is shown in the Figure 5.2. The last line
is the solution of the BDD, which means that the conditions that satisfy the premise are
those that a = 0 and c = 1, what is exactly the expected solution.

30

5.1. Propagation of a signal

1 # Loads the library

2 > library(rbdd)

3

4 # Creates the BDDfactory

5 > init_bdd (" signal_propagator ")

6

7 # Creates variables in the factory

8 > new_variable (" signal_propagator", "a")

9 > new_variable (" signal_propagator", "b")

10 > new_variable (" signal_propagator", "c")

11

12 # Creates a variable from an expression

13 > z = new_variable_from_expression (" signal_propagator", "(a or b)

and c")

14

15 # Creates variables restricting the value of a variable

16 > restrict_bdd (" signal_propagator", z, "b", "restrict1 ")

17 > restrict_bdd (" signal_propagator", z, "b", "restrict2", FALSE)

18 > fixed_b = new_variable_from_expression (" signal_propagator", "

restrict1 xor restrict2 ")

19

20 # Prints the defined variables

21 > cat("The defined variables are")

22 > print_variables (" signal_propagator ")

23

24 # Applies the final expression in order to be computed

25 > apply_bdd (" signal_propagator", fixed_b)

26

27 # Prints the solution of the BDD

28 > cat ("\ nThe solved bdd is:\n")

29 > print_bdd (" signal_propagator ")

30

31 # Frees the space used by the BDD

32 > done_bdd (" signal_propagator ")

Figure 5.1: Implementation of the signal propagator with rbdd

1 The defined variables are:

2 ++++++++++++++++++++++++++++

3 Index variable -> Expression

4 ++++++++++++++++++++++++++++

5 Variable 1 -> a

6 Variable 2 -> b

7 Variable 3 -> c

8 Variable 4 -> (a or b) and c

9 Variable 5 -> restrict1

10 Variable 6 -> restrict2

11 Variable 7 -> restrict1 xor restrict2

12

13 The solved bdd is:

14 <0:0, 2:1>

Figure 5.2: Output of the execution of the signal propagator example

31

5.2. Modified Condition / Decision Coverage

5.2 Modified Condition / Decision Coverage

When the behaviour of a condition is going to be tested in order to prove that it sat-
isfies the expected results, one way to be sure everything is correct is to check that for
all the possible combinations of the inputs, the calculated output is the right one. That
technique is known as Multiple Condition Coverage (MCC), and it can not be used in
real critical software projects, where the number of combinations grows exponentially. For
that reason, MCC is not a real possibility when the reliability of a software is pretented
to be checked.

For that reason, it comes to the conclusion that it is necessary to follow some criteria
which allow to cover as many options as it is possible with the less number of combinations.
In this way, the following approachs could be considered:

• Condition Coverage: Every logic variable is tested for all its possible values (0 or
1).

• Decision Condition Coverage (DCC): This technique increases the previous
method adding the tests which include all the possible options of the output.

• Modified Condition / Decision Coverage (MC/DC): It verifies that it is
checked the effect of changing the value of each variable independently of the value
of the other variables.

MC/DC is widely extended for testing critical software applications, like the software
of planes, which must have a high reliability [38]. The task of choosing a set of tests that
satisfied the MC/DC could be complex, because it has to be granted a sufficient coverage
of the branches and when the number of variables is big enough it could be almost impos-
sible to achive.

One way to achieve it could be to use the signal propagator explained in the previous
section could, applying it for every logic variable and selecting the result of each iteration.
The obtained output after each iteration is a set of the those tests which allow the signal
propagator of the variables. After that, the test designer has to choose those ones that
provide independence pairs for each condition.

In order to illustrate that use of the developed library with an example, it is going to
be calculated the test cases which satisfy the MC/DC of the Equation (5.3) [38].

z(a, b, c, d) = (a ∨ b) ∧ (c ∨ d) (5.3)

The truth table of that logic expression is shown in the Table 5.2.

Looking at the truth table, the test cases could be calculated studying the independent
effects of each variable, as it is highlighted in Table 5.3, Table 5.4, Table 5.5 and Table 5.6
for variables a, b, c and d, respectively. It has to be considered that the more number of
inputs the system has, the more difficult to select the appropriate set of conditions, so it
becomes critical to automate this process.

32

5.2. Modified Condition / Decision Coverage

Table 5.2: Truth table of the expression to apply the MC/DC technique

a b c d z

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

Table 5.3: Independent effect of the variable a

a b c d z

0 0 0 1 0

1 0 0 1 1

Table 5.4: Independent effect of the variable b

a b c d z

0 0 0 1 0

0 1 0 1 1

33

5.2. Modified Condition / Decision Coverage

Table 5.5: Independent effect of the variable c

a b c d z

0 1 0 0 0

0 1 1 0 1

Table 5.6: Independent effect of the variable d

a b c d z

0 1 0 0 0

0 1 0 1 1

Finally, the Table 5.7 shows the union of the solutions for every single variable, that
represents the actual set of test for the MC/DC of the proposed logical expression.

Table 5.7: Union of the independent effect of each variable

a b c d z

0 0 0 1 0

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

1 0 0 1 1

Figure 5.3 describes how to implement that functionality with the rbdd library, applying
the logic of the signal propagator for each variable.

The output after executing that script it is showed in the Figure 5.4, and it could be
observed that the different calculated sets include the expected results compared with the
theorical solution.

According to the Hayhurst el al.’s tutorial [38, Chapter 2, Table 3], the truth table is
like the one shown in the Table 5.8. Columns shaded in gray indicate the independence
pairs for each conditions.

34

5.2. Modified Condition / Decision Coverage

1 # Loads the library

2 > library(rbdd)

3

4 # Creates the BDDfactory

5 > init_bdd ("mcdc")

6

7 # Creates variables in the factory

8 > new_variable ("mcdc", "a")

9 > new_variable ("mcdc", "b")

10 > new_variable ("mcdc", "c")

11 > new_variable ("mcdc", "d")

12

13 # Creates a variable from an expression

14 > z = new_variable_from_expression ("mcdc", "(a or b) and (c or d)")

15

16 # Creates variables restricting the value of the variable a

17 > restrict_bdd ("mcdc", z, "a", "restrict1 ")

18 > restrict_bdd ("mcdc", z, "a", "restrict2", FALSE)

19 > fixed_a = new_variable_from_expression ("mcdc", "restrict1 xor

restrict2 ")

20

21 # Applies the final expression in order to be computed

22 > apply_bdd ("mcdc", fixed_a)

23

24 # Prints the solution of the BDD

25 > cat ("\ nCases when variable a is fixed are:\n")

26 > print_bdd ("mcdc")

27

28 # Creates variables restricting the value of the variable b

29 > restrict_bdd ("mcdc", z, "b", "restrict3 ")

30 > restrict_bdd ("mcdc", z, "b", "restrict4", FALSE)

31 > fixed_b = new_variable_from_expression ("mcdc", "restrict3 xor

restrict4 ")

32

33 # Applies the final expression in order to be computed

34 > apply_bdd ("mcdc", fixed_b)

35

36 # Prints the solution of the BDD

37 > cat ("\ nCases when variable b is fixed are:\n")

38 > print_bdd ("mcdc")

39

40 # Creates variables restricting the value of the variable c

41 > restrict_bdd ("mcdc", z, "c", "restrict5 ")

42 > restrict_bdd ("mcdc", z, "c", "restrict6", FALSE)

43 > fixed_c = new_variable_from_expression ("mcdc", "restrict5 xor

restrict6 ")

44

45 # Applies the final expression in order to be computed

46 > apply_bdd ("mcdc", fixed_c)

47

48 # Prints the solution of the BDD

49 > cat ("\ nCases when variable c is fixed are:\n")

50 > print_bdd ("mcdc")

35

5.2. Modified Condition / Decision Coverage

51 # Creates variables restricting the value of the variable d

52 > restrict_bdd ("mcdc", z, "d", "restrict7 ")

53 > restrict_bdd ("mcdc", z, "d", "restrict8", FALSE)

54 > fixed_d = new_variable_from_expression ("mcdc", "restrict7 xor

restrict8 ")

55

56 # Applies the final expression in order to be computed

57 > apply_bdd ("mcdc", fixed_d)

58

59 # Prints the solution of the BDD

60 > cat ("\ nCases when variable d is fixed are:\n")

61 > print_bdd ("mcdc")

62

63 # Frees the space used by the BDD

64 > done_bdd ("mcdc")

Figure 5.3: Getting test cases for MC/DC with rbdd

1

2 Cases when variable a is fixed are:

3 <1:0, 2:0, 3:1><1:0, 2:1>

4

5 Cases when variable b is fixed are:

6 <0:0, 2:0, 3:1><0:0, 2:1>

7

8 Cases when variable c is fixed are:

9 <0:0, 1:1, 3:0><0:1, 3:0>

10

11 Cases when variable d is fixed are:

12 <0:0, 1:1, 2:0><0:1, 2:0>

Figure 5.4: Output of the execution of the MC/DC test cases

36

5.2. Modified Condition / Decision Coverage

Table 5.8: Truth table of the problem with the independence effect of each variable

a b c d z a b c d

0 0 0 0 0

0 0 0 1 0 X X

0 0 1 0 0 X X

0 0 1 1 0 X X

0 1 0 0 0 X X

0 1 0 1 1 X X

0 1 1 0 1 X X

0 1 1 1 1 X

1 0 0 0 0 X X

1 0 0 1 1 X X

1 0 1 0 1 X X

1 0 1 1 1 X

1 1 0 0 0 X X

1 1 0 1 1 X

1 1 1 0 1 X

1 1 1 1 1

37

5.3. Implementing a SPL

5.3 Implementing a SPL

As it was explained at the begining of this work, one of the aims of the line which the
project belongs to is the systematic reuse of software. If it is put the development of SPLs
under the spotlight, it could be found that modeling the common structural parts and
variables of every product turns becomes crucial. To do it, feature diagrams are usually
utilised, for using them as a propositional logic formaula.

One method to solve the resultant logic formula applied to a feature model is to repre-
sent it as a BDD, and at which point the rbdd library could be useful. It has as advantages
the simple way to define the problem with a few number of instructions, the capability of
the package to reach the solution in a reasonable time and the posibility of reordering the
clauses in order to improve the execution speed of the program.

Benavides et al. [39] propose an example of a feature model, depicted in the Figure 5.5.
It is inspired by the mobile phone industry and it illustrates the way features are used
to design and build software for mobile phones. The software of the device is determined
by the features which it supports, so analysing the model it could be pointed that all the
telephones must include support for calls, and the posibility of displaying the information
in either a basic, colour or high resolution screen. Also, some optional features like the
avalability of Global Positioning System (GPS) or camera are described, too.

Mobile Phone

Calls GPS Screen

Basic Colour High resolution Camera MP3

Media

Mandatory

Optional

Alternative

Or

Requires

Excludes

Figure 5.5: Feature model which describes features of a mobile phone

The translation of a feature model into a propositional logic formula might follow the
following steps [39]:

1. Each feature of the feature model maps to a variable of the propositional formula,

2. Each relationship of the model is mapped into one or more small formulas depending
on the type of relationship,

3. The resulting formula is the conjunstion of all the resulting formulas of the previous
step plus and additional constraint assigning true to the variable that represents
the root.

38

5.3. Implementing a SPL

The rules for getting the equivalence between propositional formulas and relations in
the feature model are explained in Table 5.9.

Table 5.9: Mapping between features and propositional formulas

Relationship Propositional Logic Mapping

P

C
P ↔ C

P

C
C → P

P

C1 C2 C3

P ↔ (C1 ∨ C2 ∨ . . . ∨ Cn)

P

C1 C2 C3

C1 ↔ (¬C2 ∧ . . . ∧ ¬Cn ∧ P)) ∧
C2 ↔ (¬C1 ∧ . . . ∧ ¬Cn ∧ P)) ∧ . . . ∧
Cn ↔ (¬C1 ∧ ¬C2 ∧ . . . ∧ ¬Cn−1 ∧ P))

P C A → B

P C ¬(A ∧ B)

Following those guidelines, the code of the Figure 5.6 implements the problem exposed
previously in the Figure 5.5. Firstly, the variables of the model are created and the logic
expression is built. The generated output is shown in the Figure 5.7 and represents the
different scenarios which satisfy the premises defined in the designed system.

39

5.3. Implementing a SPL

1 # Loads the library

2 > library(rbdd)

3

4 # Creates the BDDfactory

5 > init_bdd (" feature_model ")

6

7 # Creates variables in the factory

8 > new_variable (" feature_model", "mobilePhone ")

9 > new_variable (" feature_model", "calls")

10 > new_variable (" feature_model", "gps")

11 > new_variable (" feature_model", "screen ")

12 > new_variable (" feature_model", "media")

13 > new_variable (" feature_model", "basic")

14 > new_variable (" feature_model", "colour ")

15 > new_variable (" feature_model", "highResolution ")

16 > new_variable (" feature_model", "camera ")

17 > new_variable (" feature_model", "mp3")

18

19 # Creates a variable from an expression

20 > expression = new_variable_from_expression (" feature_model", "(

mobilePhone = true) and (mobilePhone iff calls) and (gps ->

mobilePhone) and (mobilePhone iff screen) and (media ->

mobilePhone) and ((basic iff (not colour and not highResolution

and screen)) and (colour iff (not basic and not highResolution

and screen)) and (highResolution iff (not basic and not colour

and screen))) and (media iff (camera or mp3)) and not(gps and

basic) and (camera -> highResolution)")

21

22 # Applies the expression in order to be computed

23 > apply_bdd (" feature_model", expression)

24

25 # Prints the solution of the BDD

26 > cat ("\ nThe solution of the feature model is:\n")

27 > print_bdd (" feature_model ")

28

29 # Frees the space used by the BDD

30 > done_bdd (" feature_model ")

Figure 5.6: Code which implements the feature model

1 The solution of the feature model is:

2 <0:1, 1:1, 2:0, 3:1, 4:0, 5:0, 6:0, 7:1, 8:0, 9:0><0:1, 1:1, 2:0,

3:1, 4:0, 5:0, 6:1, 7:0, 8:0, 9:0><0:1, 1:1, 2:0, 3:1, 4:0, 5:1,

6:0, 7:0, 8:0, 9:0><0:1, 1:1, 2:0, 3:1, 4:1, 5:0, 6:0, 7:1,

8:0, 9:1><0:1, 1:1, 2:0, 3:1, 4:1, 5:0, 6:0, 7:1, 8:1><0:1, 1:1,

2:0, 3:1, 4:1, 5:0, 6:1, 7:0, 8:0, 9:1><0:1, 1:1, 2:0, 3:1,

4:1, 5:1, 6:0, 7:0, 8:0, 9:1><0:1, 1:1, 2:1, 3:1, 4:0, 5:0, 6:0,

7:1, 8:0, 9:0><0:1, 1:1, 2:1, 3:1, 4:0, 5:0, 6:1, 7:0, 8:0,

9:0><0:1, 1:1, 2:1, 3:1, 4:1, 5:0, 6:0, 7:1, 8:0, 9:1><0:1, 1:1,

2:1, 3:1, 4:1, 5:0, 6:0, 7:1, 8:1><0:1, 1:1, 2:1, 3:1, 4:1,

5:0, 6:1, 7:0, 8:0, 9:1>

Figure 5.7: Conditions which satisfied the proposed feature model

40

5.4. Increasing the number of nodes of a BDD

5.4 Increasing the number of nodes of a BDD

Finally, to complete the validation of the developed library, it is going to be analysed
how the number of nodes of a BDD changes when logical expressions are added to the
system and, therefore, its complexity increases. Also, it will be checked how the number
of nodes changes applying different reording algorithms.

To achieve that last behaviour, a BDD is going to be build reading expressions in CNF
and getting the number of nodes after each iteration, that is, when a new logic statement
is added to the structure. The files which contains the expressions are read sequentially,
adding a new sentence in each iteration and calculating the number of nodes at that mo-
ment.

The benchmark is designed building three BDDs, which features are described in the
Table 5.10. Figure 5.8 explains the set of instructions executed to obtain the number of
nodes of the first BDD studied, and its structure is analogous to the other BDDs.

Table 5.10: Features of the analysed BDDs

BDD Number of variables Number of expressions

axtls 56 64

fiasco 93 95

uClibc 204 178

1 > library(rbdd)

2 > library(ggplot2)

3

4 > axtls_file = file(" axtls.cnf")

5 > axtls_length = length(readLines(axtls_file))

6 > clauses = readLines(axtls_file , n = 1)

7 > last_space = gregexpr (" ", clauses , fixed=TRUE)

8 > loc <-last_space [[1]]

9 > space <-loc[length(loc)]

10 > clauses = substr(clauses , 0, space - 1)

11 > number_nodes_axtls_none = 0

12 > number_nodes_axtls_sift = 0

13 > number_nodes_axtls_rand = 0

14 > index = 1

15

16 > for (line_number in 1:(axtls_length - 1)) {

17 > init_bdd (" axtls")

18 > clauses_new = paste(clauses , line_number)

19 > liness = readLines(axtls_file , n = line_number + 1)

20 > liness [1] = clauses_new

21 > fileCon <-file(" output_axtls.cnf")

22 > writeLines(liness , fileCon)

23 > close(fileCon)

41

5.4. Increasing the number of nodes of a BDD

24 > axtls_exp = new_variable_from_expression (" axtls", "

output_axtls.cnf")

25 > apply_bdd (" axtls", axtls_exp)

26 > reorder_bdd (" axtls", "none")

27 > number_nodes_axtls_none[index] = get_node_num (" axtls")

28 > reorder_bdd (" axtls", "sift")

29 > number_nodes_axtls_sift[index] = get_node_num (" axtls")

30 > reorder_bdd (" axtls", "random ")

31 > number_nodes_axtls_rand[index] = get_node_num (" axtls")

32 > index = index + 1

33 > done_bdd (" axtls")

34 > }

35 > close(axtls_file)

36

37 > number_expressions <- seq(1, axtls_length - 1)

38 > axtls_none.data <- data.frame(number_expressions ,

number_nodes_axtls_none)

39 > axtls_sift.data <- data.frame(number_expressions ,

number_nodes_axtls_sift)

40 > axtls_rand.data <- data.frame(number_expressions ,

number_nodes_axtls_rand)

41 > axtls_graph <- ggplot () +

42 > geom_line(data=axtls_none.data , aes(x=number_expressions , y

=number_nodes_axtls_none , colour ="None"), color ="red") +

43 > geom_point(aes(x=number_expressions , y=

number_nodes_axtls_none , colour ="None"), size =1) +

44 > geom_line(data=axtls_sift.data , aes(x=number_expressions , y

=number_nodes_axtls_sift , colour ="Sift"), color ="blue") +

45 > geom_point(aes(x=number_expressions , y=

number_nodes_axtls_sift , colour ="Sift"), size =1) +

46 > geom_line(data=axtls_rand.data , aes(x=number_expressions , y

=number_nodes_axtls_rand , colour =" Random "), color ="green ") +

47 > geom_point(aes(x=number_expressions , y=

number_nodes_axtls_rand , colour =" Random "), size =1) +

48 > scale_colour_manual(name=" Ordering", values=c("None "=" red",

"Sift "=" blue", "Random "=" green ")) +

49 > labs(x = "Number of expressions", y = "Number of nodes") +

50 > theme_bw () + theme(axis.title.x = element_text(size = 15,

vjust =-.2)) + theme(axis.title.y = element_text(size = 15, vjust

=0.3))

Figure 5.8: Code which obtains the number of nodes i every iteration applying different
reorder algorithms

Figures 5.9a to 5.9c depict the result of executing the benchmark described. They show
the tables with the relationship between the increase of nodes in the BDD when the logic
expressions are added to the system for different reording algorithms.

The conclusion that it could be extracted after those executions is that every system is
different and its growth in terms of complexity varies a lot depending on how new elements
are added to the system, but choosing the right reorder algorithm means a crucial impact
in terms of memory space, especially when the system has a big number of expressions
and nodes. For that reason this task could not be afforded carelessly, turning into a key
factor in the development of BDDs phase.

42

5.4. Increasing the number of nodes of a BDD

(a) Reordering heurestic influence on the axtls BDD growth according to the formula size

(b) Reordering heurestic influence on the fiasco BDD growth according to the formula size

(c) Reordering heurestic influence on the uClibc BDD growth according to the formula size

Figure 5.9: Analysis of the raise of the number of nodes in a BDD when the number of
logic expressions increases

43

Chapter 6

Conclusions and future work

This chapter provides some consluding remarks and direction for future research.

6.1 Conclusions

The main challenge this work has faced is the creation of a library which is able to
create and manage BDDs, a kind of structure that allows to operate efficiently with com-
plex logic expressions. In addition, it was expected a friendly interface, not having a large
learning curve, but being possible to add features using instructions and changing the
default parameters to customise the behaviour of the program.

It could be confirmed that the aim has been successfully fullfilled, considering that it
has been made a complete specification to deal with the described problem and, taking it
as the basis, the system has been developed and validated.

To validate the library is the desired, four case studies have been used and discussed
the results after their execution.

Getting into detail, the obtained application allows to simplify the way an user can
operate with BDDs from R, something not possible to do without the rbdd library be-
cause of the nonexistent support of those structures in that programming language. In
addition, the library as well as its functions have been well documented, being designed
man pages accesible from the software environment using the command help(package =

rbdd), showing high-detailed descriptions of the instructions and their inputs and outputs,
examples of usage, etc.

Another accomplished goal has been the premise of keeping the developtment of the
solution under the philosophy of the free software. The code and some examples are avail-
able in a public git repository [40], so any user who wants to expand its functionalities to
adapt the library to cover specific requirements could do it easily, increasing the ability of
the software and resulting beneficiary the whole community.

To achieve the aims of the project, a number of concepts acquired during the master
have been applied, belonging to the main fields of the degree, such as the development of
SPLs or the specification of software systems. The fact of being a distance learning system
has promoted a new methodology of work, utterly different than the others followed on
previous stages of the studying lifetime.

44

6.2. Future work

As BDDs have not been a topic studied during the previous degree and the master, it
has been used the skills of researching in order to find useful information, finding valuable
references and turning to the authors who discussed about the features and benefits of
those structures.

Finally, project management has turned into a key factor related with the success in the
attainment of the defined aims. The freedom offered by the project director has allowed
to define a convenient schedule, completing each phase in the approppiate moment.

6.2 Future work

Due to the mentioned nature of free software of the implemented package, the possi-
bilities to increase the functionality of the tool are countless. Every target user, meaning
programmers coming from the logic field as well as R developers who want to utilise this
solution to afford operations for which BDDs are the more suitable option. In this way,
the structure of the library has been designed such that including new methods is a simple
process, described in Chapter 4.

Main operations have been deployed on the package, but there are some functions not
covered with the current version of the rbdd library. It could be added more BDD man-
agers, like JDD [9] or CAL [41], but that is a more complex task because it means adapting
the implemented methods to support those of the new manager.

Another point to work would be the publication of the package in the R repository [14].
The development of the library has followed the Comprehensive R Archive Network
(CRAN) Repository Policy [42], so this process would not be so hard.

Finally, a new interface could be developed to handle the BDDs on an object-oriented
way from the R side, providing a more R flavoured syntax to interact with the created
variables.

45

Bibliography

[1] D. E. Knuth, “Donald E. Knuth Lectures.” http://scpd.stanford.edu/

free-stuff/engineering-archives/donald-e-knuth-lectures. Checked:
27/09/2016.

[2] R. E. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation,” re-
search note, California Institute of Technology and Carnegie-Mellon University, Au-
gust 1986.

[3] C. Y. Lee, “Representation of Switching Circuits by Binary-Decision Programs,” Bell
System Technical Journal, no. 38, pp. 985–999, 1959.

[4] M. Mendonça, Efficient Reasoning Techniques for Large Scale Feature Models. PhD
thesis, University of Waterloo, Ontario, Canada, 2009.

[5] B. Bollig and Ingo Wegener, “Improving the Variable Ordering of OBDDs is NP-
Complete,” IEEE Transactions on Computers, vol. 9, no. 45, pp. 993–1002, 1996.

[6] N. Narodytska and Toby Walsh, “Constraint and Variable Ordering Heuristics for
Compiling Configuration Problems,” International Joint Conference on Artificial In-
telligence, no. 7, pp. 149–154, 2006.

[7] C. Meinel and Thorsten Theobald, Algorithms and Data Structures in VLSI Design.
Berlin: Springer-Verlag, 1988. ISBN 3-540-64486-5.

[8] “JavaBDD.” http://javabdd.sourceforge.net/. Checked: 27/09/2016.

[9] “JDD.” https://bitbucket.org/vahidi/jdd/wiki/Home. Checked: 27/09/2016.

[10] “CUDD.” http://vlsi.colorado.edu/~fabio/CUDD/. Checked: 27/09/2016.

[11] “BuDDy.” https://sourceforge.net/projects/buddy/. Checked: 27/09/2016.

[12] “The R Project for Statistical Computing.” https://www.r-project.org/. Checked:
27/09/2016.

[13] “The S System.” http://ect.bell-labs.com/sl/S/. Checked: 27/09/2016.

[14] “Available CRAN Packages.” https://cran.r-project.org/. Checked:
27/09/2016.

[15] “Ubuntu Release Notes.” https://wiki.ubuntu.com/XenialXerus/ReleaseNotes.
Checked: 30/09/2016.

[16] “The LaTeX Project.” https://www.latex-project.org/. Checked: 30/09/2016.

46

http://scpd.stanford.edu/free-stuff/engineering-archives/donald-e-knuth-lectures
http://scpd.stanford.edu/free-stuff/engineering-archives/donald-e-knuth-lectures
http://javabdd.sourceforge.net/
https://bitbucket.org/vahidi/jdd/wiki/Home
http://vlsi.colorado.edu/~fabio/CUDD/
https://sourceforge.net/projects/buddy/
https://www.r-project.org/
http://ect.bell-labs.com/sl/S/
https://cran.r-project.org/
https://wiki.ubuntu.com/XenialXerus/ReleaseNotes
https://www.latex-project.org/

Bibliography

[17] D. Fernández Amorós, Rubén Heradio, José A. Cerrada, and Carlos Cerrada, “A
Scalable Approach to Exact Model and Commonality Counting for Extended Fea-
ture Models,” research note, ETS de Ingenieŕıa Informática, Universidad Nacional de
Educación a Distancia, September 2014.

[18] J. Bosch, “Maturity and Evolution in Software Product Lines: Approaches, Artefacts
and Organization,” research note, University of Groningen, July 2002.

[19] D. Beuche and Mark Dalgarno, “Software Product Line Engineering with Feature
Models,” tech. rep., Pure Systems.

[20] P. Donohoe, “Introduction to Software Product Lines,” (Pittsburgh, PA 15213), Soft-
ware Engineering Institute, Carnegie Mellon University, 2014.

[21] I. of Electrical and Electronics Engineers, 829-2008 - IEEE Standard for Software
and System Test Documentation. 2008.

[22] K. C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson, “Feature-Oriented Domain Analysis (FODA) Feasibility Study,” technical
report, Software Engineering Institute - Carnegie-Mellon University, November 1990.

[23] K. A. Gilroy, Edward R. Comer, J. Kaye Grau, and Patrick J. Merlet, “Impact of
Domain Analysis on Reuse Methods,” technical report, U.S. Army Research Office,
November 1989.

[24] R. Prieto Dı̈¿1
2az, “Domain Analysis for Reusability,” (Washington DC), IEEE Com-

puter Society, 1987.

[25] K. Czarnecki, Simon Helsen, and Ulrich Eisenecker, “Staged Configuration Using
Feature Models,” technical report, University of Waterloo and University of Applied
Sciences Kaiserlautern, 2004.

[26] M. Šipka, “Exploring the Commonality in Feature Modeling Notations,” technical
report, Slovak University of Technology, 2005.

[27] R. Kaun and Manu Bansal, “BDD Ordering and Minimization Using Various
Crossover Operators in Genetic Algorithm,” International Journal of Innovative Re-
search in Electrical, Electronics, Instrumentation and Control Engineering, vol. 2,
no. 3, pp. 1247–1250, 2014.

[28] H. Reif Andersen, “An Introduction to Binary Decision Diagrams,” lecture notes, IT
University of Copenhagen, 1999.

[29] D. Sieling, “The Nonapproximability of OBDD Minimization,” Information and Com-
putation, vol. 172, no. 2, pp. 103–138, 2002.

[30] “BuDDy - Variable reordering.” http://buddy.sourceforge.net/manual/group_

_reorder.html. Checked: 19/01/2017.

[31] F. Somenzi, “CUDD: CU Decision Diagram Package Release 3.0.0,” December 2015.

[32] “CRAN - Package Rcpp.” https://cran.r-project.org/web/packages/Rcpp/.
Checked: 26/09/2016.

[33] D. Eddelbuettel, Seamless R and C++ Integration with Rcpp. New York: Springer,
2013. ISBN 978-1-4614-6867-7.

47

http://buddy.sourceforge.net/manual/group__reorder.html
http://buddy.sourceforge.net/manual/group__reorder.html
https://cran.r-project.org/web/packages/Rcpp/

Bibliography

[34] “Writing R Extensions.” https://cran.r-project.org/doc/manuals/R-exts.

html. Checked: 26/09/2016.

[35] “GNU operating system.” http://www.gnu.org/home.en.html. Checked:
26/09/2016.

[36] “MSYS.” http://www.mingw.org/wiki/msys. Checked: 26/09/2016.

[37] H. Cohen, “The BuDDy Library and Boolean Expressions.” http://www.

drdobbs.com/the-buddy-library-boolean-expressions/184401847. Checked:
17/03/2017.

[38] K. J. Hayhurst, Dan S. Veerhusen, John J. Chilenski, and Leanna K. Rierson, “A
Practical Tutorial on Modified Condition / Decision Coverage,” technical report,
National Aeronautics and Space Administration (NASA), May 2001.

[39] D. Benavides, Sergio Segura, and Antonio Ruiz Cortés, “Automated Analysis of Fea-
ture Models 20 Years Later: A Literature Review,” technical report, Department of
Languages and Computer Systems, University of Seville, Feb 2010.

[40] “Git repository of the rbdd project.” https://gitlab.com/rbdd-package/

rbdd-package. Checked: 22/04/2017.

[41] “CAL BDD.” https://embedded.eecs.berkeley.edu/Research/cal_bdd/.
Checked: 22/04/2017.

[42] “CRAN Repository Policy.” https://cran.r-project.org/web/packages/

policies.html. Checked: 22/04/2017.

48

https://cran.r-project.org/doc/manuals/R-exts.html
https://cran.r-project.org/doc/manuals/R-exts.html
http://www.gnu.org/home.en.html
http://www.mingw.org/wiki/msys
http://www.drdobbs.com/the-buddy-library-boolean-expressions/184401847
http://www.drdobbs.com/the-buddy-library-boolean-expressions/184401847
https://gitlab.com/rbdd-package/rbdd-package
https://gitlab.com/rbdd-package/rbdd-package
https://embedded.eecs.berkeley.edu/Research/cal_bdd/
https://cran.r-project.org/web/packages/policies.html
https://cran.r-project.org/web/packages/policies.html

List of Acronyms

API Application Programming Interface.

BDD Binary Decision Diagram.

CNF Conjunctive Normal Form.

CRAN Comprehensive R Archive Network.

DAG Directed Acyclic Graph.

DARE Domain Analysis and Reuse Environment.

DCC Decision Condition Coverage.

FODA Feature-Oriented Domain Analysis.

GNU GNU’s Not Unix.

GPS Global Positioning System.

IEEE Institute of Electrical and Electronics Engineers.

MC/DC Modified Condition / Decision Coverage.

MCC Multiple Condition Coverage.

OBDD Ordered Binary Decision Diagram.

ROBDD Reduced Ordered Binary Decision Diagram.

SAT boolean SATisfiability problem.

SPL Software Product Line.

UNED Universidad Nacional de Educación a Distancia.

49

	Authorship sworn declaration of the scientific work, to the defence of the Master's Thesis
	Publication and difussion authorisation of the Master's Thesis for academic purposes
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Development framework
	Goals and motivation
	Content of the document

	Background and related work
	Feature models
	Binary decision diagrams

	Analysis and design of the solution
	API of the developed package
	Creating and setting up BDDs
	Creating and managing variables
	Consulting operations
	Operations over BDDs
	I/O operations

	Usage of the rbdd library

	Development of the proposed solution
	Adding own functions
	Dealing with external dependencies

	Experimental validation
	Propagation of a signal
	Modified Condition / Decision Coverage
	Implementing a SPL
	Increasing the number of nodes of a BDD

	Conclusions and future work
	Conclusions
	Future work

	Bibliography
	List of Acronyms

