Language Workbenches: The Killer-App for Domain Specific Languages?

) A t ntact
_Home Blog Articles Books MZOU f/loe &L ThoughtWorks

Language Workbenches: The Killer-App for Domain
Specific Languages?

Martin Fowler

Most new ideas in softwar e developments are really new variations on old ideas. This article describes one
of these, the growing idea of a class of toolsthat | call Language Workbenches - examples of which include
Intentional Software, JetBrains's Meta Programming System, and Microsoft's Software Factories. These
tools take an old style of development - which | call language oriented programming and use IDE tooling in
a bid to make language oriented programming a viable approach. Although I'm not enough of a
prognosticator to say whether they will succeed in their ambition, | do think that these tools are some of the
most interesting things on the horizon of software development. Interesting enough to write this essay to try
to explain, at least in outline, how they work and the main issues around their future usefulness.

Last significant update: 12 Jun 05

| Russian | Korean |

Contents

. A simple example of language oriented programming
. Traditions of language oriented programming

o Unix Little Languages

o Lisp

o Active DataModels

o Adaptive Object Models

o XML Configuration Files

o GUI Builders
. Pros and Cons of language oriented programming

o External DSL

o Internal DSL

o Involving Non-Programmers

o Summarizing the Trade-Offs in language oriented programming
. Today's Language Workbenches

http://www.martinfowl er.com/articles/languageWorkbench.html (1 of 27)12/12/2007 19:21:10

http://www.martinfowler.com/
http://martinfowler.com/
http://martinfowler.com/bliki
http://martinfowler.com/articles.html
http://martinfowler.com/books.html
http://martinfowler.com/aboutMe.html
http://martinfowler.com/aboutMe.html
http://martinfowler.com/aboutMe.html#contactInfo
http://martinfowler.com/aboutMe.html#contactInfo
http://www.thoughtworks.com/
http://martinfowler.com/
http://www.maxkir.com/sd/languageWorkbenches.html
http://younghoe.info/category/MartinFowler

Language Workbenches: The Killer-App for Domain Specific Languages?

o Intentional Software
o Meta-Programming System
o Software Factories
o Model Driven Architecture (MDA)
. Elements of a L anguage Workbench
o Defining anew DSL
. Defining a Language Workbench
. How language workbenches alter the trade-offs for language oriented programming.
. Changing our conception of DSLs
. Conclusions

Related Articles

. Generating Codefor DSLs
. A Language Workbench in Action - MPS.
. Language Workbenches and Model Driven Architecture

For along time there's been a style of software development that seeks to describe software systems using a
collection of domain specific languages. Y ou see thisin the Unix tradition of 'little languages which
generate code vialex and yacc; you seeit in the Lisp community with languages developed inside Lisp, often
with the help of Lisp's macros. Such approaches are much liked by their advocates, but this style of thinking
hasn't caught on as much as many of these people would like.

In the last few years there's been an attempt to support this style of development through a new class of
software tool. The earliest and best known of these is Intentional Programming - originally developed by
Charles Simonyi while at Microsoft. However there are other people doing similar things too, generating
enough momentum to create some interest in this approach.

At this point I'm going to coin some terminology that I'll usein the rest of this essay. Asusual there's no
standard terminology in thisfield, so don't expect the terms | use to be used in this style elsewhere. I'm going
to give abrief definition here, but will explain much more about them as the essay goes on - so don't worry if
you don't follow the definitions immediately.

The two main terms I'm specifically coining for this article are 'L anguage Oriented Programming' and
‘Language Workbench'. | use Language Oriented Programming to mean the general style of development
which operates about the idea of building software around a set of domain specific languages. | use

L anguage Wor kbench as a generic term for this new breed of tools. So alanguage workbench is one way to
do language oriented programming. Y ou may also be unfamiliar with the term Domain Specific Language
(usually abbreviated to DSL). It isalimited form of computer language designed for a specific class of
problems. Some communities like to use DSL only for problem domain languages, but I'm following the
usage that uses DSL for any limited domain.

http://www.martinfowl er.com/articles/languageWorkbench.html (2 of 27)12/12/2007 19:21:10

http://www.martinfowler.com/articles/codeGenDsl.html
http://www.martinfowler.com/articles/mpsAgree.html
http://www.martinfowler.com/articles/mdaLanguageWorkbench.html

Language Workbenches: The Killer-App for Domain Specific Languages?

I'm going to start by briefly describing the current world of language oriented programming with an example,
an overview of the different flavors, and various arguments about the pros and cons of the approach. If you're
familiar with language oriented programming you may want to skip through this stuff, but |'ve found that
many, indeed most, developers aren't that familiar with these ideas. Once these are explained I'll then build
on them to explain what language workbenches are and how they alter the trade-offs.

As| wrote this article, it turned out to be too much for asingle article, so I've separated some parts of the
discussion into other articles. I'll mention as | go in the text where it makes sense to go off an read those,
they're also linked just below the contents. In particular take alook at the example using MPS - this shows an
example DSL built using one of the current language workbenches and is probably the best way of getting a
feel for what they will be like. Y ou'll need to get through the general description of language workbenches
here before it'll make much sense.

A simple example of language oriented programming

I'm going to begin by running through a very simple example of language oriented programming and the
kind of situation that leads to it. Imagine we have a system that reads files and needs to create objects based
on thesefiles. Thefile format is one object per line. Each line can map to a different class, the classis
indicated by afour character code at the beginning of the line. The rest of the line contains the data for the
fields of the class, these vary depending on what class we are talking about. The fields are indicated by
position rather than delimiter. So a customer ID number might run from characters 4-8.

Here's some sample data

#123456789012345678901234567890123456789012345678901234567890

SVCLFOALER 10101M50120050313.
SVCLHCOHPE 10201DX0320050315.o

SVCLTWO x10301MRP220050329.
USGE10301TWO X50214..7050329.

The dots indicate some mumbly uninteresting data. The comment line at the top isto help you see the
character positions. The first four characters indicate the kind of data- SVCL indicates aservice call, USGE
arecord of usage. The characters after that represent the data for the object. So the characters from position 5
to 18 on a service cal indicate the name of the customer.

To turn these into objects you might be tempted to write specific code for each case, | hope that after afew
you'd want to simplify the task by writing a single reader class that you can parameterize with the details of
the fields for each class.

Here | have asimple classto do this. A reader classreads thefile. A reader can be parameterized with a

http://www.martinfowl er.com/articles/languageWorkbench.html (3 of 27)12/12/2007 19:21:10

http://www.martinfowler.com/articles/mpsAgree.html

Language Workbenches: The Killer-App for Domain Specific Languages?

collection of reader strategy classes - one for each target class. So for our example we'd have one strategy for
service calls, another for usages. | hold the strategies in a map keyed by the code.

Here's the code to process afile

cl ass Reader. ..
public IList Process(StreanReader input) {
| List result = new ArrayList();
string |ine;
while ((line = input.ReadLine()) != null)
ProcessLine(line, result);
return result;

}

private void ProcessLine(string line, IList result) {
I f (isBlank(line)) return;
i f (isComrent(line)) return;
string typeCode = Cet TypeCode(li ne);
| Reader Strategy strategy = (| Reader Strategy) strategi es[typeCode];
i f (null == strategy)
t hrow new Exception("Unable to find strategy");
resul t. Add(strategy. Process(line));

}

private static bool isComent(string line) {
return line[0] == "#";

}

private static bool i1sBlank(string line) {
return line == "";

}

private string Get TypeCode(string line) {
return line. Substring(0,4);

}

| Dictionary _strategies = new Hashtabl e();

public void AddStrategy(l Reader Strategy arg) {
_strategi es[arg. Code] = arg;

}

It just loops through the lines, reads enough to figure out what strategy to call, and then hands over to the
strategy to do the work. To get the reader to do the job you create a new reader, load it up with strategies and
let it loose on the files you want to process.

The strategies can also be parameterizable. We only need one strategy class, when we instantiate it we can
parameterize it with the code, target class, and details of what character positions on the input map to which
fields on the target class. | hold the latter in alist of field extractor classes.

http://www.martinfowl er.com/articles/languageWorkbench.html (4 of 27)12/12/2007 19:21:10

Language Workbenches: The Killer-App for Domain Specific Languages?

cl ass Reader Strat egy. ..

private string _code;

private Type _target;

private |IList extractors = new ArrayList();

publ i c Reader Strategy(string code, Type target) {
_code = code;
this. target = target;

}

public string Code {
get { return _code; }

}

| can add field extractors to the strategy once I've instantiated it.

cl ass Reader Strat egy. ..
public void AddFi el dExtractor(int begin, int end, string target) {
I f (!targetPropertyNanes(). Contains(target))
t hrow new NoFi el dl nTar get Exception(target, _target. Full Nane);
extractors. Add(new Fi el dExtractor (begin, end, target));
}
private |List targetPropertyNanmes() {
I List result = new ArraylList();
foreach (Propertylnfo p in _target. GetProperties())
resul t. Add(p. Nane) ;
return result;

}

To process the line the strategy creates the target class and uses the extractors to get the field data

cl ass Reader Strategy. ..
public object Process(string line) {
object result = Activator.Createl nstance(_target);
foreach (Fiel dExtractor ex in extractors)
ex.extractField(line, result);
return result;

}

The extractors ssmply pull the data out of the right bit of the line, and use reflection to put the value into the
target object.

class FieldExtractor...
private int _begin, _end;
private string _targetPropertyNane;
public FieldExtractor(int begin, int end, string target) {

http://www.martinfowl er.com/articles/languageWorkbench.html (5 of 27)12/12/2007 19:21:10

Language Workbenches: The Killer-App for Domain Specific Languages?

_begin = begin;
_end = end;
_targetPropertyNane = target,;

}

public void extractField(string Iine, object targetQject) {
string value = line. Substring(_begin, _end - _begin + 1);
set Val ue(target Cbj ect, val ue);

}

private void setVal ue(object targetCbject, string value) {
Propertylnfo prop = target Obj ect. Get Type(). Get Property
(_target PropertyNane) ;
prop. Set Val ue(t arget Cbj ect, value, null);

}

So far what I've described is avery ssimple library for doing this kind of thing. Essentialy I've built an
abstraction which | can then use to specify the concrete work. To use the abstraction | need to configure the
strategies and load them into the reader. Here's examples of this for the two example cases.

public void Configure(Reader target) {
target. AddStrat egy(Confi gureServiceCall ());
t arget. AddSt r at egy(Confi gureUsage());
}
private Reader Strategy ConfigureServiceCall () {
Reader Strategy result = new Reader Strat egy("SVCL", typeof
(ServiceCall));
resul t. AddFi el dExtractor (4, 18, "CustonerNane");
resul t. AddFi el dExtractor (19, 23, "CustonerlD");
resul t. AddFi el dExtractor (24, 27, "Call TypeCode");
resul t. AddFi el dExtractor (28, 35, "DateOCall String");
return result;
}
private Reader Strategy ConfigureUsage() {
Reader Strategy result = new Reader Strat egy("USGE", typeof (Usage));
resul t. AddFi el dExtractor (4, 8, "CustonerlD");
resul t. AddFi el dExtractor (9, 22, "CustonerNane");
resul t. AddFi el dExtractor (30, 30, "Cycle");
resul t. AddFi el dExtractor (31, 36, "ReadDate");
return result;

}

| look at this astwo different styles of code. The Reader and Strategy classes are an abstraction, this last bit
of codeis configuration. When you're building these kinds of library classes it often helpsto think of these
two pieces. abstraction and configuration. The abstraction may be a class library, aframework, or just a set
of function calls. The abstraction may be reusable in many projects, but it doesn't haveto be. The
configuration code tends to be specific; rather smple, straight-ahead code.

http://www.martinfowl er.com/articles/languageWorkbench.html (6 of 27)12/12/2007 19:21:10

Language Workbenches: The Killer-App for Domain Specific Languages?

Since the configuration is pretty simple and likely to change more often than the abstraction, a common
approach is to separate it further and take the configuration out of C# altogether. The current fashion is to put
itinan XML file.

<Reader Confi gur ati on>
<Mappi ng Code "SVCL" Targetd ass = "dsl. ServiceCall">
<Fi el d nane "Cust oner Nane" start = "4" end = "18"/>
<Fi el d nane "Custonerl D' start = "19" end = "23"/>
<Fi el d nane "Cal | TypeCode" start = "24" end = "27"/>
<Fi el d nane "DateOrCal |l String" start = "28" end = "35"/>
</ Mappi ng>
<Mappi ng Code
<Fi el d nane
<Fi el d nane
<Fi el d nane
<Fi el d nane
</ Mappi ng>
</ Reader Confi gurati on>

"USGE" Targetd ass = "dsl. Usage">
“"Custonerl D' start = "4" end = "8"/>
"Cust oner Nane" start = "9" end = "22"/>
"Cycle" start = "30" end = "30"/>
"ReadDat e" start = "31" end = "36"/>

XML hasits uses, but isn't exactly easy to read. We could make it easier to see what's going on by using a
custom syntax. Perhaps like this:

mappi ng SVCL dsl . Servi ceCal |
4-18: Custoner Nane
19-23: CustonerlD
24-27 : Cal |l TypeCode
28-35 : DateOrCall String

mappi ng USCGE dsl . Usage
4-8 : Custonerl D
9-22: Cust oner Nane
30-30: Cycle
31-36: ReadDat e

Since you're now familiar with the problem, you should be able to read the syntax with no help from me.

Asyou look at this last example, you can see that what we have hereis avery small programming language -
one that's suitable (only) for the purpose of mapping fixed length fields into classes. It's a classic example of
the Unix tradition of 'little languages. It isa Domain Specific Language for the task.

Thislanguage is a Domain Specific Language, and shares many of the characteristics of DSLs. Firstly it's
suitable only for avery narrow purpose - it can't do anything other than map these particular fixed length

http://www.martinfowl er.com/articles/languageWorkbench.html (7 of 27)12/12/2007 19:21:10

Language Workbenches: The Killer-App for Domain Specific Languages?

records to classes. Asaresult the DSL isvery simple - there's no facility for control structures or anything
else. It's not even Turing complete. Y ou couldn't write awhole application in this language - al you candois
describe one small aspect of an application. As aresult the DSL has to be combined with other languages to
get anything done. But the ssimplicity of the DSL meansit's easy to edit and trandate. (I'll expand on the pros
and cons of DSLs shortly.)

Now look again at the XML representation. IsthisaDSL? | would argue that it is. It'sin an XML syntax -
but it's still aDSL - indeed in many ways it's the same DSL as the previous example.

Thisisagood moment to introduce a common distinction that you run into in programming language circles
- the distinction between abstract and concrete syntax. The concr ete syntax of alanguage isits syntax inits
representation that we see. The XML and custom language files have different concrete syntaxes. However
both share the same basic structure: you have multiple mappings, each with a code, atarget class name, and a
set of fields. Thisbasic structure is the abstract syntax. When most developers think about programming
language syntax they don't make this separation, but it's an important one when you use DSLs. Y ou can think
of thisin two ways. You can either say we have one language with two concrete syntaxes, or two languages
that share the same abstract syntax.

This example thus raises adesign issue - isit better to have custom concrete syntax for aDSL or an XML
concrete syntax. The XML syntax can be easier to parse since there are so many XML tools available;
although in this case the custom syntax was actually easier. I'd contend that the custom syntax is much easier
to read, at least in this case. But however you view this choice the core trade-offs around DSL s are the same.
Indeed you can argue that any XML configuration fileis essentially aDSL.

Let's go back a step further, back to the configuration codein C# - isthisaDSL?
While you're thinking of that ook at this code. Does thislook like aDSL for this problem?

mappi ng(' SVCL', ServiceCall) do
extract 4..18, 'custoner_nane'
extract 19..23, 'custoner |D
extract 24..27, 'call _type_code'
extract 28..35, 'date_of _call _string

end

mappi ng(' USGE' , Usage) do
extract 9..22, 'custoner_ nane'
extract 4..8, 'custoner_ID
extract 30..30, 'cycle'
extract 31..36, 'read date'

end

This second piece of code relates to the C# one. Those of you who know my language likings will have
guessed that this last exampleisin fact ruby code. In fact it's the exact moral equivalent of the C# example. It
looks much more like a custom DSL due to various ruby features. minimally intrusive syntax, literals for

http://www.martinfowl er.com/articles/languageWorkbench.html (8 of 27)12/12/2007 19:21:10

Language Workbenches: The Killer-App for Domain Specific Languages?

ranges, and flexible runtime evaluation. Thisisthe full configuration file which can be read in and evaluated
in a object instance's scope at runtime. But it's still pure ruby and interacts with the framework code through
the method call mappi ng and ext r act which correspond to AddSt r at egy and

AddFi el dExt r act or inthe C# example.

| would argue that both the C# and ruby examples are DSLs. In both cases we use a subset of the capabilities
of the host language and capture same ideas as our XML and custom syntax. Essentially we are embedding
the DSL into our host language, using a subset of our host language as the custom syntax for our abstract
language. To an extent thisis more a matter of attitude than of anything else. I'm choosing to look at the C#
and Ruby code through language oriented programming glasses. But it's a point of view with along tradition
- Lisp programmers often think of creating DSLsinside Lisp. The trade offs for these internal DSLs are
obviously different than for external DSLs, but a number of similarities remain. (I'll expand on these trade-
offs later too.)

So now I've shown an example of aDSL | can better define language oriented programming. Language
oriented programming is about describing a system through multiple DSLs. It's a graduated thing, you can
use a little language oriented programming in a system where just some of its functionality is represented in
DSLs; or you can represent most functionality in DSLs and use alot of language oriented programming.
How much language oriented programming you use is hard to measure, especialy if you use in-language
DSLs. Typically, like with any reusable code, you write some DSL s yourself and use other DSLs from
elsawhere.

Traditions of language oriented programming

As my example shows, language oriented programming isn't something new - people have been doing
language oriented programming for quite some time. So it's worth taking alook at language oriented
programming in the state as it currently stands before we look at what language workbenches bring to the
picture.

There are number of styles of language oriented programming that are out there. Thisis agood moment to
summarize afew of them.

Unix Little Languages

One of the most obviously DSLy parts of the world is the Unix tradition of writing little languages. These are
external DSL systems, that typically use Unix's built in tools to help with trandlation. While at university |
played alittle with lex and yacc - similar tools are aregular part of the Unix tool-chain. These tools make it
easy to write parsers and generate code (often in C) for little languages. Awk is a good example of this kind
of mini-language.

Lisp

http://www.martinfowl er.com/articles/languageWorkbench.html (9 of 27)12/12/2007 19:21:10

http://www.catb.org/~esr/writings/taoup/html/minilanguageschapter.html

Language Workbenches: The Killer-App for Domain Specific Languages?

Lisp is probably the strongest example of expressing DSLs directly in the language itself.. Symbolic
processing is embedded into the name as well as practice of lispers. Doing thisis helped by the facilities of
lisp - minimalist syntax, closures, and macros present a heady cocktail of DSL tooling. Paul Graham writes a
lot about this style of development. Smalltalk also has a strong tradition of this style of development.

Active Data Models

If you run into some more sophisticated data modeler types, they'll show you how highly variable parts of a
system can be encoded by data in database tables (often referred to as meta-data tables, or table-driven
programs). Code can then interpret the data in the tables to carry out the behavior.

Thisis essentially a DSL whose concrete syntax is the database tables. Often these tables are managed
through some form of GUI interface to edit this active data. Usually people doing this don't think about
creating a language and usually the difficulty of working with the relational concrete syntax helps to keep the
languages small and well focused.

Adaptive Object Models

Tak enough to hardcore object programmers, and they'll tell you about systems they've built that rely on
composition of objects into flexible and powerful environments. Such systems are built of sophisticated
domain models where most of the behavior comes from wiring up objects into configurations to handle a
range of complex cases. OO people treat adaptive object models as active data models on steroids.

Such adaptive models are an in-language DSL. Experience so far indicates that they allow people familiar
with the adaptive model to be extremely productive once the model is developed and shaken down. The dark
sideisthat such models are often very difficult for new people to understand.

XML Configuration Files

Visit amodern Java project, and you'd be forgiven for thinking that there's more XML in the system than
Java. Enterprise Java system use a range of frameworks, most of which boast complex XML configuration
files. Thesefiles are essentially DSLs. XML makes it easy to parse, although not as easily readable as a
custom format might be. People do write plug-ins for IDEsS to help manipulate the XML files for those who
find that angle brackets hurt the eyes.

GUI Builders

Ever since people started to build GUI s, systems have been around that allow you lay out the GUI through
drag and drop of controls. Visual Basic is probably the most famous example, but |'ve used similar screen
builders for character screenslong before GUIs became common. These tools either store layout in a closed
format, generating suitable code for execution; or they try to put al the necessary information in the
generated code. Although they are visually nice, we increasingly see that although it makes for attractive

http://www.martinfowl er.com/articles/languageWorkbench.html (10 of 27)12/12/2007 19:21:10

http://www.paulgraham.com/progbot.html
http://www.adaptiveobjectmodel.com/

Language Workbenches: The Killer-App for Domain Specific Languages?

demos, there are limitations with this style of interaction. So much so that many experienced GUI developers
discourage using GUI builders for reasonably complex applications.

GUI buildersare aform of DSL, but one where editing experience is quite different from the textual
programming languages that we are used to. Hence they are often not thought of as languages by people
building them - which some see as part of their problem.

Pros and Cons of language oriented programming

Reflecting on these styles we can see that various forms of language oriented programming are pretty
popular. Generalizing grossly, | find it useful to divide them into two broader styles. External DSLs are
written in adifferent language than the main (host) language of the application and are transformed into it
using some form of compiler or interpreter. The Unix little languages, active data models, and XML
configuration files al fall into this category. I nternal DSL s morph the host language into a DSL itself - the
Lisp tradition is the best example of this.

I've coined the external/internal terms for this article since there's not a clear pair of termsfor what | feel isa
useful distinction. Internal DSLs are often called 'embedded DSL S but I've avoided the 'embedded' term
because it gets confused with embedded languages in applications (such as VBA embedded into Word which
if anything is an external DSL.) However you'll probably come across the embedded term if you look around
at more writing on DSLs.

The trade-offs for external DSLs and internal DSLs are fairly different, so it's best to examine them
Separately.

External DSL

| define an external DSL as one that's written in a separate language to the main language of an application,
such as the last two formsin our ssimple example. Unix little languages and XML configuration files are
good examples of this style.

The key strength of an external DSL isthat you are free to use any form that you fancy. Asaresult you get a
lot of ability to express the domain in the easiest form possible to read and modify. The format is limited
only by your ability to build atranslator that can parse the configuration file and produce something
executable - usually in your base language..

An obvious disadvantage then follows from this - you have to build this transator. For a simple language,
like I've shown above, thisis not difficult. Although more complex languages make it harder - it's still not
that bad. Parser generator and compiler compiler tools exist that can help you manipulate quite complex
languages, and of course the whole point of DSLs isthat they are usually quite smple. XML restricts the
form of the DSL, but makesit very easy to parse.

http://www.martinfowl er.com/articles/languageWorkbench.html (11 of 27)12/12/2007 19:21:10

http://www.martinfowler.com/articles/codeGenDsl.html

Language Workbenches: The Killer-App for Domain Specific Languages?

The big disadvantage of external DSLsis that they lack what | call symbolic integration - that isthe DSL
isn't really linked into our base language. The base language environment isn't aware of what we're doing.
Now that programming environments are getting more sophisticated, this becomes an increasing problem.

For asimple example, consider if we want to rename the properties on the target classin my simple example.
With afirst class modern IDE, automatic refactorings for renaming are habitual. But such a rename won't
propagate into the DSL. Thereiswhat I'll call asymbolic barrier between the world of C# and thefile
mapping DSL. We can translate our mapping into C#, but the barrier limits our ability to manipulate the
overal program.

Thislack of integration hits usin lots of ways with tooling. Firstly - how do we edit our DSL? A text editor
will do the job - but modern IDEs increasingly make text editors look primitive. | should get a pop-up list
and completion on the field names, red squiggles if the character ranges overlap. But to do this| need an
editor that understands the semantics of my DSL.

Maybe | can live without a semantic editor. But then think about debugging. My debugger can step into the
C# trandations, but can't get into the true source itself. What | really would likeis afull-blown IDE for my
DSL. In the days of text editors and simple debuggers this wasn't a big issue - but we now live in a post-

IntelliJworld.

A particularly common objection to external DSL s is the language cacophony problem. This concern is that
languages are hard to learn, so using many languages will be much more complicated than using asingle
language. To some extent this concern is based on a misconception about DSLs. Those having the concern
often imagine multiple general purpose languages, which indeed could easily result in cacophony. But DSLs
tend to be limited and simple which makes them easier to learn. Thisisreinforced by their closeness to the
domain. DSLsdon't look like regular programming languages.

Fundamentally in any reasonably sized program you are dealing with a bunch of abstractions that you need
to manipulate, such as the file reading example in the introductory example. Commonly we manipulate these
abstractions using objects and methods. This works, but provides alimited grammar to express what we want
to say (although how limited depends on our base language). Using external DSL s gives us an opportunity to
have agrammar that is easier to manipulate. The question is whether the added ease of manipulating through
the external DSL is greater than the cost of understanding the new DSL in the first place.

Related to thisissue are concerns over the difficulty of designing DSLs - language design is hard thus
designing multiple DSLswill be too hard for most projects. Again this objection often rests upon thinking
about general purpose languages rather than DSLs. Here | think the fundamental issue is getting a good
abstraction - that's the hard part of the task. The difference between API design and DSL design isthen
rather small - so | don't think designing DSL s is going to be significantly harder than designing good APIs.

For many people, one of the big strengths of an external DSL isthat the DSL can be evaluated at runtime.
This allows commonly changed parameters to be altered without recompiling the program. Thisis a major
reason why XML configuration files have become so popular in the Javaworld. While thisis an important

http://www.martinfowl er.com/articles/languageWorkbench.html (12 of 27)12/12/2007 19:21:10

http://martinfowler.com/bliki/PostIntelliJ.html
http://martinfowler.com/bliki/PostIntelliJ.html

Language Workbenches: The Killer-App for Domain Specific Languages?

issue with statically compiled languages, it's important to remember that many languages can easily evaluate
expressions at runtime, so for them it's not a problem. There's also growing interest in mixing compile-time
and runtime languages, such as IronPython in .NET. Thiswould allow you to evaluate an IronPython internal
DSL in the context of amostly C# system. Thisis acommon technique in the Unix world mixing C/C++
with scripting languages.

Internal DSL

Internal DSL s flip the pros and cons of ex-language DSLs. We eliminate the symbolic barrier with our base
language. We also have the full power of our base language available to us at all times, together with all the
tooling that existsin our base language. Lisp and adaptive object models are examples of internal DSLs.

One of the problemsin discussing thisisthat there is a big difference between mainstream curly brace
programming languages (C, C++, Java, C#) and those languages like Lisp that are particularly suited to
internal DSLs. Theinternal DSL style is much more achievablein Lisp or Smalltalk than in Java or C# -
indeed advocates of dynamic languages point this out as one of their major strengths. We're seeing some of
this be rediscovered with scripting languages - consider the meta-programming capabilities of Ruby and how
they are used by the Rails framework. This problem is compounded by the fact that many programmers have

never used a dynamic language seriously, and thus don't have an appreciation of their capabilities (and true
limitations.)

Internal DSLs are limited by the syntax and structure of your base language. More dynamic languages suffer
less of alimitation. They have aminimally intrusive syntax (such aslisp, smalltalk, and scripting languages)
which tends to work better than mainstream curly brace languages, something that's very visible when you
compare the C# and ruby examples. Language features such as closures and macros are also valuable. While
much of this machinery is missing from C based languages, we're seeing features that can support some of
this thinking. Annotations (attributes in C#) are a good example of this kind of language feature which could
be quite useful for this kind of purpose.

While you have the tooling of your base language, this base language doesn't actually know what you are up
to with your DSL - so the tools don't fully support the DSL. Y ou're still better off than with atext editor, but
there's much room for improvement.

Having the full power of the language available to you in the DSL isamixed blessing. If you're familiar with
the base language, all iswell. However one of the strengths of a DSL isthat it allows people to program in it
without knowing the full base language - which makes it smpler for lay programmersto enter domain
specific information directly into the system. An internal DSL can make it hard to do this because there are
many places where a user can get confused if they aren't familiar with the full base language.

One way of thinking about thisisthat a general purpose programming language gives you lots of tools - but
your DSL uses only afew of these tools. Having more tools than you need often makes things harder -
because you have to learn what all these tools are before you can figure out the few you use. Ideally you
want only the actual tools you need for your job - certainly no less, but only afew more. (Charles Simonyi
discussed thisidea with the notion of degrees of freedom.)

http://www.martinfowl er.com/articles/languageWorkbench.html (13 of 27)12/12/2007 19:21:10

http://poignantguide.net/ruby/chapter-6.html
http://www.rubyonrails.org/
http://blog.intentionalsoftware.com/intentional_software/2005/05/notations_and_p.html

Language Workbenches: The Killer-App for Domain Specific Languages?

There's an analogy here with office tools. Many people complain that modern word processors are so
difficult to use because they have hundreds of features, far more than any single person needs. But since all
these features are needed by somebody, an office program ends up satisfying everyone by building alarge
system. An alternative would be to have multiple office tools, each focused on asingle task. Each of these
tools would then be much easier to learn and use. The problem, of course, isthat it's expensive to build al
these special purpose office tools. It'savery similar trade-off to that between general purpose programming
languages (with internal DSLs) and external DSLs.

Sinceinternal DSLs are close to the programming language, this can present a difficulty when you want to
express something that doesn't map well to the programming language itself. For example, in Enterprise
Applicationsit's common to have a notion of layers. These layers can be defined to a large extent by using
the package construct of the programming language, but it's hard to define the dependency rules between the
layers. So you might put all your Ul code in MyA pp.Presentation and your domain logic in MyApp.Domain
but there's no mechanism with an internal DSL to indicate that classes in MyApp.Domain should not
reference classes in MyA pp.Presentation. To some extent this again reflects the limited dynamism of
common languages - this kind of thing was possible in Smalltalk since you have deeper access to the meta-
levels.

(Asacomparison, it would be interesting to see my more complex example developed in one of these

dynamic languages. | probably won't get around to it, but | suspect someone else might, in which case I'll
update the further reading.)

Involving Non-Programmers

One of the themes that winds constantly across both forms of language oriented programming is the
involvement of lay programmers. domain experts who are not professional programmers but program in
DSL s as part of the development effort. The goal of lay programming has been a constant goal of the
software world - indeed many believed the early high level languages (COBOL and FORTRAN) heralded
the end of programmers as users would use them. This reminds us of what | call the COBOL inference -
that most technologies that are supposed to eliminate professional programmers do nothing of the sort.

Despite the COBOL inference, people do succeed in getting direct user input into programs from time to
time. One way of doing thisisto carve out a part of the problem that is sufficiently easy and limited that
users can safely and comfortably program in this space. Y ou then turn each of these user programmable

areasinto aDSL. These DSLs can be quite sophisticated - MatL ab is a good example of a quite complex
DSL that works because it is focused on adomain.

The advantage of an external DSL for a user programmable DSL is that you can drop all the baggage of your
host language and present something that's very clear for the user. This matters particularly for languages
with amore restrictive syntax. But even with simple languages you have an issue with internal DSLsin that
auser can easily do things that make sense in the language but are out of scope of the DSL. This getsthe
user confused with what looks to them as odd behavior and cryptic error messages.

http://www.martinfowl er.com/articles/languageWorkbench.html (14 of 27)12/12/2007 19:21:10

http://www.martinfowler.com/articles/mpsAgree.html
http://martinfowler.com/bliki/LanguageWorkbenchReadings.html

Language Workbenches: The Killer-App for Domain Specific Languages?

Many proponents of language oriented programming have avision of the future where all the domain logic
of asystem is done by users. Programmers then write the necessary support tools to allow them to edit and
compile these programs. While this would not mean the end of professional programmers - it would greatly
reduce how many you need (since much of these tools would be reusable) and it would remove much of the
communication issues that slow down software development today. Thislay programmer vision is an
attractive one - but the COBOL inference hangs mockingly over it.

In the end | see lay programming as a valuable thing to obtain, but not the whole point of language oriented
programming. A good DSL makes professional programmers more productive even if it isn't embraced by
user programmers. A good DSL may end up having professional programmer to writeit - but be usefully
reviewable by domain experts.

The lay programmer argument is a high stakes bet. If someone justifies some technology based primarily on
enabling large scale user programming | overflow with skepticism. Y et if such an approach could succeed it
would provide an enormous benefit. This wouldn't come from eliminating professional programmers, but on
improving the often dire state of communication between domain experts and programmers. This lack of
communication is often the biggest roadblock in software development projects.

Summarizing the Trade-Offs in language oriented programming

For me the fundamental issue in language oriented programming is the benefit of using DSL s versus the cost
of building the necessary tools to support them effectively. Using internal DSL s reduces the tool cost - but
the resulting constraints on the DSL itself can also greatly reduce the benefits, particularly if you are limited
to C-based languages. An external DSL gives you the most potential to realize benefits, but comes at a
greater cost to design the language, build the translator, and consider tools to support programming.

Thisiswhy language oriented programming hasn't caught on so much. Both in-language and ex-language
techniques have significant disadvantages. As aresult thereis a gnawing gap - a sense that we should be able
to do more with DSL s than we currently have.

Thisleads nicely into the justification for language workbenches. Essentially the promise of language
workbenches is that they provide the flexibility of external DSLs without a semantic barrier. Furthermore
they make it easy to build tools that match the best of modern IDEs. The result makes language oriented
programming much easier to build and support, lowering the barriers that have made language oriented
programming so awkward for so many.

Today's Language Workbenches

I'll start by briefly mentioning some of the tools that 1've come across that fit this category of language
workbench. Remember that all of these arein the early stages of development. We're still some years from
seeing language workbenches that can be used for large scal e software development.

http://www.martinfowl er.com/articles/languageWorkbench.html (15 of 27)12/12/2007 19:21:10

Language Workbenches: The Killer-App for Domain Specific Languages?

Intentional Software

The godfather of these toolsis Intentional Programming. Intentional Programming was originally developed
by Charles Simonyi at Microsoft Research. A few years ago Simonyi left Microsoft and created his own
company to develop Intentional Software independently. Asis common with such startups, he's not been

very open about developments. As aresult there is adearth of information about what isin Intentional
Software and how it might be used.

I've had the opportunity to spend alittle time with Intentional Software and several of my colleagues at
ThoughtWorks have worked closely with Intentional over the last year or so. Asaresult I've had the
opportunity to peek behind the Intentional curtain - although I'm restricted in how much | can say about what
| saw there. Fortunately they intend to start opening up about their work over the next year or so.

(As aterminological note the Intentional folks use the term "Intentional Programming" to refer to the older
work they did at Microsoft and "Intentional Software" to refer to what they've been doing since.)

Meta-Programming System

A newer initiative is the Meta Programming System developed by JetBrains. JetBrains have quite a
reputation amongst software developers due to their superb IDE tools.

JetBrains's experience with IDEs is relevant to language workbenches in a couple of ways. Firstly their
success with IntelliJ givesthem alot of credibility in the tools world - both for their technical ability and for
their pragmatism. Secondly much of the capabilities of alanguage workbench aretied very closely to the
features that make post-1ntelliJ IDEs so capable.

JetBrains have spent a couple of years building a sophisticated environment for devel oping web applications
called Fabrique. The experience of building Fabrique convinced them that they needed a platform to build
these kinds of tools more effectively in the future - this desire is what led them to develop MPS.

MPSis strongly influenced by what has been made public about Intentional Software. It's had much lesstime
in development than Intentional's work, but JetBrains believe in avery open development cycle. They have
made MPS available under an Early Access Program as soon as they have something that's usable. Currently
they hope to do thisin the first half of 2005.

I've been fortunate in working quite closely recently with Sergey Dmitriev - the lead behind MPS. It helps
that the MPS activity comes out of JetBrains's Massachusetts office, which makes it easy for meto visit
them. As aresult of this geographic similarity and their openness, I've used MPS to help describe some
detailed examples (although they won't make much sense until I've got a bit further with this article. Don't

worry I'll give you the link again when itstime.)

Software Factories

http://www.martinfowl er.com/articles/languageWorkbench.html (16 of 27)12/12/2007 19:21:10

http://intentsoft.com/
http://www.jetbrains.com/mps
http://jetbrains.com/
http://www.martinfowler.com/articles/mpsAgree.html

Language Workbenches: The Killer-App for Domain Specific Languages?

Software Factoriesis an initiative headed by Jack Greenfield and Keith Short at Microsoft. There are several
elements to software factories which | won't go into here (other than saying don't |et the terrible name put
you off.) The element that is relevant to this article isthe DSL effort - language oriented programming plays
amgor role in Software Factories.

The software factories team has a background in Model Driven Development. They include people who have
been active in CASE tool development and also many leading lights of the OO community in the UK. So it's
no surprise that their DSLs tend to a more graphical approach. Unlike most CA SE tool people, however, they
take a serious interest in semantics and control over code generation.

Much of my discussion here refers to the traditional programming of an application. The Software Factories
team in particular is also very interested in using DSLs for other areas of software development that often
don't get automated such as deployment, testing, and documentation. They are also exploring simulators for
situations where you don't want to execute the DSL directly in development - such as deployment DSLs.

The DSL team at Microsoft have been making downloads available for several months as part of Visual
Studio 2005 Team System.

Model Driven Architecture (MDA)

If you've been tracking the OMG's MDA, you'll notice many similarities between what I've been saying
about language workbenches and the MDA vision. It's a contentious issue, but for now I'll say that some
visions of MDA are forms of language workbench - but not all of them. I'll also say that | believe that
building a language workbench on top of MDA is serioudly flawed. |'ve written a connected article to discuss

thisin more detail, but it won't make much sense until you've finished with this one.

Elements of a Language Workbench

Although these tools are all different, they do share some common characteristics and similar parts.

One of the strongest qualities of language workbenchesis that they alter the relationship between editing and
compiling the program. Essentially they shift from editing text files to editing the abstract representation of
the program. Let me spend some paragraphs to explain that |ast sentence.

In conventional programming we edit the text of the program by using atext editor on text files. We then
make that file executable by running a trandlator that turns those text files into something the computer can
understand and execute. That translation may occur at execution time, as for scripting languages like Python
or Ruby, or as a separate step for compiled languages such as Java, C# and C.

http://www.martinfowl er.com/articles/languageWorkbench.html (17 of 27)12/12/2007 19:21:10

http://www.softwarefactories.com/
http://lab.msdn.microsoft.com/teamsystem/workshop/dsltools/default.aspx
http://www.martinfowler.com/articles/mdaLanguageWorkbench.html

Language Workbenches: The Killer-App for Domain Specific Languages?

compiler

7 |x |x generate
parse

absract reprasentation

fon. exe
foo.og

exacitiable representation

adifable rapresentalion
slorage represantalion

Figure 1: A outline of traditional compilation.

Let me break this process down abit. Figure 1 shows a simplified view of the compilation process. To turn
foo.csinto something executable, we run the compiler on it. For the purposes of this discussion we can break
the compilation process into two steps. The first step takes the text from the file foo.cs and parsesit into an
abstract syntax tree (AST). The second step walks this tree generating CLR byte codes that it puts into an
assembly (an exefile).

See Related Article: Generating Code for DSLs

Describes in more detail how you do code generation from an external DSL.

We can think of the program having a number of representations where the compiler translates between the
representations. The source file is the editable representation - that is thisis the representation that we

mani pulate when we want to change the program. It's also the storage representation - the one that's kept in
source code control and used should we want to get at the program again. When we run the compiler the first
phase maps the editabl e representation to the abstract representation (the abstract syntax tree), and then the
code generator turns that into the executabl e representation (the CLR byte code).

(There are more trand ations on the executable code before it's really the final executable. But once we have
the byte code the compiler's work is done and al that's left remains with later stages outside its scope.)

http://www.martinfowl er.com/articles/languageWorkbench.html (18 of 27)12/12/2007 19:21:10

http://www.martinfowler.com/articles/codeGenDsl.html

Language Workbenches: The Killer-App for Domain Specific Languages?

The abstract representation is very transient - it only exists while the compiler is running and serves only to
separate the compilation into two logical steps. Thistransienceis, of course, alarge part of why it's so hard
to get symbolic integration between external DSLs. Each language runs through a separate compilation, so
there's no linking between the abstract representation. Things only come together with the generated code, at
which point key abstractions are |ost.

The more sophisticated post-IntelliJ IDEs bring a significant change to this model. When the IDE loads the
fileit creates an abstract representation in-memory, which it uses to help you edit the file. (Smalltalk did a
limited version of thistoo.) This abstract representation helps with simple things like method name
completion and sophisticated things like refactoring (automated refactoring is a transform on the abstract
representation).

My colleague Matt Foemmel described how this struck him one time while working in IntelliJ. He made a
change that was strongly assisted by these features and suddenly realized that he wasn't typing text - instead
he was running commands against the abstract representation. Although the IDE translated these changesin
abstract representation back into the text - it was really the abstract representation he was manipulating. If
you've had asimilar feeling while working with a modern IDE you're getting a sense of what a language
workbench does.

storage representation

store
editor I;
‘I -y -
> 7 5 5 generate
projection |]
, s #
o ”
P " 4 absract representation
executable reprasentation
editalie reprasentation

Figure 2: Manipulating representations with a language workbench.

http://www.martinfowl er.com/articles/languageWorkbench.html (19 of 27)12/12/2007 19:21:10

Language Workbenches: The Killer-App for Domain Specific Languages?

Figure 2 shows how this process works with a language workbench. The key difference here is that the
‘source’ is no longer the editable textual files. The key source that you manipulate is the abstract
representation itself. In order to edit it, the language workbench projects the abstract representation into some
form of editable representation. But this editable representation is purely transient - it's only there to help the
human. The true source is the persistent abstract representation.

The fact that the editable representation is merely a projection of the abstract representation leads to afew
points. Perhaps the most important is that there is no need for the editable representation to be complete -
some aspects of the abstract representation can be missing if they aren't important to the task at hand.
Furthermore you can have multiple projections - each showing different aspects of the abstract
representation. Since the projection isinside the language workbench the editabl e representation is much
more active than atext file. This projecting editor istightly bound up with the language itself. Asaresultin
thinking about your editable representations you actively think about how an editor works with them. This
leads to different ideas than you would get from a purely passive editable representation such as text.

A language workbench separates the storage representation from the editabl e representation. The storage
representation is now a serialization of the abstract representation. A common way to do thisis XML - but
this XML isn't designed for human editing. Having XML as the storage representation is helpful for tool
interoperability - although such interoperability islikely to be very hard.

The code generation is pretty much the same, although such tools are likely to treat traditional source asthe
executable representation. If they do generate regular language source files, these files aren't really source
and like other generated code should not be edited directly. As language workbenches mature we should see
more reliance on generating non-editable structures such as byte-code.

One non-obvious, yet important feature, for alanguage workbench is that the abstract representation has to
be comfortable with errors and ambiguities. Traditionally people have felt that if you are to have an abstract
representation it needs to be kept correct - you shouldn't be able to put incorrect information into it. This
assumption, however, led to lousy usability. Post-IntelliJ IDEs realized this and react gracefully to erroneous
states. For example you can perform refactorings on programs that have compilation errors (very necessary
for good usability.)

This becomes even more important if you want to capture complex information from multiple sources. Y ou
can't keep everything consistent and correct all the time. So you have to deal with ambiguous and erroneous
states - highlighting errors rather than refusing input. Y ou should also allow people to easily enter non-
computable information (such as documentation) into the model. This way scanned napkins can be linked
directly to the resulting DSL code.

Defining a new DSL
With this kind of setup in place, there are three main parts to defining a new DSL:

. Define the abstract syntax, that is the schema of the abstract representation.

http://www.martinfowl er.com/articles/languageWorkbench.html (20 of 27)12/12/2007 19:21:10

Language Workbenches: The Killer-App for Domain Specific Languages?

. Define an editor to let people manipulate the abstract representation through a projection.
. Defineagenerator. This describes how to trandate the abstract representation into an executable
representation. In practice the generator defines the semantics of the DSL.

Thisisthe main trio, but there will be variations. As | indicated earlier, there is no reason why you can't have
multiple editors or generators for aDSL. Multiple editors could be common. Different people may like
different editing experiences. For example, Intentional’s editor alows you to switch between different
projections of the same model easily so you can view a hierarchic data structure as lispy lists, nested boxes,
or atree.

Multiple generators might appear for several reasons. Y ou may want them to bind against different
frameworks that do similar things. A good example of thiswould be the irritatingly multiple dialects of SQL.
Another reason is for different implementation trade-offs with different performance characteristics or library
dependencies. A third reason would be to generate different languages: allowing asingle DSL to generate
either Java or C#, for example.

Another optional extramight be to define trandators for the storage representation. We can assume that
language workbenches will come with a default storage schema that handles serialization of the abstract
representation automatically. However you may want to generate alternative storage representations for
interoperability or transfer between tools. Unlike the generator this would have to be atwo way
representation.

A different kind of generator would define human readable documentation - the language workbench
equivalent of javadoc. Although most interaction with the language workbench would come through the
editors, there'll still be aneed to generate web or paper documentation.

See Related Article: A Language Workbench in Action - MPS.

An example of how to define a DSL using JetBrains's Meta-Programming System (MPS). Provides a
concrete example of how alanguage workbench works.

Defining a Language Workbench

There is no generally accepted definition of what makes a language workbench. Thisisn't surprising asl've
just made up the term for this article! But it strikes me that to avoid the rampant ambiguity that surrounds so
many topics in the software business (eg components, Service Oriented Architecture), | should try to make a
first stab of the essential characteristics of alanguage workbench, which | now can do briefly as |'ve
provided the necessary background.

. Userscan freely define new languages which are fully integrated with each other.
. The primary source of information is a persistent abstract representation.

http://www.martinfowl er.com/articles/languageWorkbench.html (21 of 27)12/12/2007 19:21:10

http://www.martinfowler.com/articles/mpsAgree.html

Language Workbenches: The Killer-App for Domain Specific Languages?

. Language designers definea DSL in three main parts. schema, editor(s), and generator(s).

. Language users manipulate a DSL through a projectional editor.

. A language workbench can persist incomplete or contradictory information in its abstract
representation.

How language workbenches alter the trade-offs for language
oriented programming.

A while ago | discussed the trade-offs for language oriented programming. Language workbenches clearly
affect that trade-off with a number of new things to consider.

The most obvious change that a language workbench makes to the equation is the ease of creating external
DSLs. You no longer have to write a parser. Y ou do have to define abstract syntax - but that's actualy a
pretty straightforward data modeling step. In addition your DSL gets a powerful IDE - athough you do have
to spend some time defining that editor. The generator is still something you have to do, and my sense is that
it isn't much easier than it ever was. But then building a generator for agood and ssmple DSL is one of the
easiest parts of the exercise.

The second big plus of alanguage workbench is that you get symbolic integration. The ability to take an
excel-like formulalanguage, and just plug it into your own specialized language is pretty nifty. Asisthe
ability to change symbols in one language and have those changes ripple through the whole system, which is
aplausible thing to consider with a language workbench (I'm not sure if any of them can do that yet.)

Thisissue of refactoring is one of the big issues in language workbenches. When | explain using alanguage
workbench it's easy to fall into the trap of describing it as "first define a DSL, then build stuff using it." If
you've read much of what 1've written in the past that notion should set off many alarm bells. I'm abig
advocate of evolutionary design - which in this context means that you need to be able to evolve aDSL and
any code built in the DSL together. That's a hard problem, but one that was acknowledged since early onin
Intentional’s development. It's too early to tell how well evolving aDSL concurrently with its use will work
out in mature language workbenches - but alack of this capability would be a big negative against them.

The biggest medium term problem that | see for language workbenchesis the risk of vendor lock-in. There
are no standards for defining the trio of schema, editor and generator. Once you define alanguage in a
language workbench you are tied to that language workbench. There's no standard for interchange between
the different language workbenches - this would |eave you with reimplementing the trio if you wanted to
change your language workbench. It may be that over time we would see some kind of special storage
representation designed to interchange DSL s - an interchange representation. But unless a robust story
appears here, vendor lock-in remainsabig risk. (MDA claimsto offer an answer to this, but it's partial at

best.)

One mitigation to thisisif you see the language workbench as atool to help you generate sources. An

http://www.martinfowl er.com/articles/languageWorkbench.html (22 of 27)12/12/2007 19:21:10

Language Workbenches: The Killer-App for Domain Specific Languages?

example of thiswould be to use a language workbench to get all your Java XML configuration files under
control. If the worst happened and you had to ditch the language workbench then you still have the generated
configuration files. Providing you pay attention to clean looking generated files, you might not even be
worse off than writing them yourself. Even for deeper capabilities you could still generate well-structured
Java code. This does mitigate the risk to some extent, at least you won't be completely high and dry. But
vendor lock-inis still something to think about.

This gquestion about tooling is one of the consequences of moving away from text files as sources. Other
Issues come up - issues that we've managed to solve with text but now have to rethink with the central role of
an abstract representation. High on my list isthat of version control. We know how to do effective version
control for textual sources with good diff and merge capabilities. To be effective language workbenches will
need to be able to provide diff and merge of the abstract representation itself. In theory this should be
solvable and unlocks the opportunity of real semantic diffs (where renaming a symbol is understood as that
act not just something you have to infer from its result as you do with text.) Intentional seem to have a good
solution here, but we're yet to try it out in practice.

Back on the positive note, the combination of custom language and editor may finally open the way to make
DSL s editable by non-programmers. In addition the symbolic integration removes the problem of user code

and the core program getting out of sync. The use of editors may be the single biggest tool to help break the

COBOL inference - providing environments where the tool is customized for user interaction.

This promise of bringing domain experts more directly into the development effort is perhaps the most
tantalizing part of the language workbench promise. Time and time again we see that whatever tools we
programmers use to boost our productivity there's a sense that we are optimizing the idle loop. On most
projects | visit the biggest issue is the communication between the devel opers and the business. If that's
working well, then you can make progress even with second rate technology. If that relationship is broken,
than even Smalltalk won't save you.

Most proponents of language oriented programming talk about involving domain experts more. Indeed |'ve
even heard claims of secretaries happily programming in Lisp'sinternal DSLs. Most of the time, however,
these efforts have failed to really take off. By combining the advantages of afocused external DSL with a
sophisticated editor and development environment, maybe we can finally begin to chip away at this problem.
If so the upside will be enormous. Indeed its striking how much this user-involvement is seemsto be the
primary driving force behind Charles Simonyi's work, underpinning most of the decisions in Intentional
Software.

The biggest short term limitation of these tools is maturity. It will take awhile before these tools will hit
even the leading edge of developers. But as we know that can change quickly - just reflect on tool and
language choices a decade ago compared to now.

See Related Article: Language Workbenches and Model Driven Architecture

Discusses how the OMG Model Driven Architecture relates to language workbenches.

http://www.martinfowl er.com/articles/languageWorkbench.html (23 of 27)12/12/2007 19:21:10

http://www.martinfowler.com/articles/mdaLanguageWorkbench.html

Language Workbenches: The Killer-App for Domain Specific Languages?

Changing our conception of DSLs

The examples I've used in this article are actually pretty uninteresting examples of DSLs. | used them
because they were easy to talk about and build. But even the more complex agreement DSL is pretty
conventional - it's easy to see how it could be done as atraditional textual DSL. Many people look to
producing graphical DSLs, but even these don't capture the full potential. The biggest danger in using the
term 'language’ isthat it can lead people to miss the point of what can really be done with language
workbenches.

When | was talking with my colleagues about OOPSLA 2004, the biggest buzz was some demonstrations by
Jonathon Edwards on Example Centric Programming. The key idea was an editor that showed not just
program code, but also the results of example executions in that code. The idea was that although we
manipulate an abstraction, we often find it easier to think in terms of concrete cases. This leaning towards
examplesis alarge part of the appeal of Test Driven Development - | think of it as Specification by Example.

Edwards has developed hisideas further into atool called Subtext. Subtext shares some principles of
language workbenches - in particular the idea of moving away from textual source code. While subtext is
less interesting in supporting easy definition of new languages, it provides an interesting glimpse of the kind
of thinking that could develop as language workbenches make us think about language and tool as deeply
intertwined.

Indeed this may be the strongest reason why language workbenches may be able to avoid the baleful
influence of the COBOL inference. As| argued earlier, we constantly come up with technologies to
empower users as lay programmers, but regularly fail. Let's consider one technology that has really
succeeded in making lay programmers effective - spreadsheets.

Most programmers don't think of spreadsheets as a programming environment. Y et many lay programmers
create sophisticated systems using them. Spreadsheets are a fascinating programming environment that
suggest characteristics for alay programming tool might need:

. Immediate feedback - including showing the results of example calculations right away.

. Deep integration of tool and language

. No textual source

« No need to show all information all the time - formulae are only visible when you edit the cell
containing them, otherwise the value is shown.

Spreadsheets are also very frustrating. Their lack of structure encourages experimentation, but often | feel a
touch more structure could make certain problems much easier to deal with.

So when we think of the DSL s in alanguage workbench, we should be thinking less of the kinds of
languages |'ve shown here - or of the graphical languages beloved by modelers. Instead we should be

http://www.martinfowl er.com/articles/languageWorkbench.html (24 of 27)12/12/2007 19:21:10

http://martinfowler.com/bliki/SpecificationByExample.html
http://subtextual.org/

Language Workbenches: The Killer-App for Domain Specific Languages?

thinking of things like the next generation of spreadshests.

Conclusions

My main purpose in writing this was to give you an introduction to language workbenches. At the least |
hope you now understand enough to hold your end up if your manager asks you to replace your entire
programming environment with them.

As| seeit, language workbenches offer two principal advantages. One isimproved programmer productivity
by giving them better tools for the job. The other isimproving the productivity of development by forging a
closer relationship with domain experts by allowing domain experts more opportunity to contribute directly
to the development base. Only time will tell if these advantages will actually be realized. Looking at the two
| would say that improving productivity is more likely to happen but carries less impact. If language
workbenches made a serious impression on the relationship between development and domain experts it
could have a tremendous effect - but it has to overcome the COBOL inference to succeed.

Perhaps the most interesting thing that I've come to realize is that we probably have little ideawhat DSLs
will look like once we've had experiences with language workbenches. So far my thinking is still very much
constrained by thinking about what textual and graphical languages are like. Y et the interplay of editors and
schema opens up possibilities that are quite different to most people'sidea of an external DSL. If language
workbenches live up to their hopes, in ten years time we'll look back and laugh at what we now think DSLs
should look like.

Asl'veindicated, language workbenches are still in avery early stage of development. It will be several
years before we are able to seriously kick their tires. I'm not going to make predictions about whether they
will, as their advocates hope, change the face of software development. I'm not much of a technology
futurist. What | do believe is that |language workbenches are one of the most interesting ideas that's out there
on the edge of our vision. If they do realize their potential, they'll certainly have a huge effect on our
profession. Even if not, | suspect they'll lead to plenty of interesting ideas.

So | suggest you keep an eye on this space. It's an interesting field and one with enough life to stay
interesting for many years. I've been fortunate to have a good view of it in recent months, and | intend to
continue my interest for awhile yet.

Further Reading

| decided to put references to further reading here on my bliki. Thisway it's easier to keep track of updates.

http://www.martinfowl er.com/articles/languageWorkbench.html (25 of 27)12/12/2007 19:21:10

http://martinfowler.com/bliki/LanguageWorkbenchReadings.html

Language Workbenches: The Killer-App for Domain Specific Languages?

Acknowledgments

My deepest thanks go to my fellow-ThoughtWorker Matt Foemmel. Matt has long been alynch-pin
toolsmith at ThoughtWorks and has constantly been looking for ways to jump forwards in our development
work. He started getting interested in Intentional Programming in early 2004 and I've benefited greatly from
his investigations. His active involvement with development at Intentional Software this last year has been
very helpful to me in understanding this environment.

When | heard that one of the few software tools companies | admire were working in thisfield | was
immediately interested. The fact that Sergey Dmitriev was based a few miles away from me in Boston made
it even better. Sergey gave me incredible access to MPS as he's been developing it. He and his team has
taken this agreement example and implementing it in MPS so that | could describe something that wasn't
entirely vaporware. Igor Alshannikov helped me out when | had the inevitable problems you get with
software that's till in mid devel opment.

Intentional Software has been very quiet in the last few years as they've been developing their ideas. Charles
Simonyi has granted me remarkable accessto their tools and plans. I've also been able renew my
collaborations with Magnus Christerson, who is also now at Intentional.

Like many peoplein the UK in the 80'sand 90's, | benefited greatly from the leadership of the OO
community there from Steve Cook. Since then he's helped me through thickets of the UML specification and
for this article he's been very helpful with information on Microsoft's Software Factories initiative. It's helped
to see many long term friends of mine on this project: Keith Short, Jack Greenfield, Alan Wills, and Stuart
Kent have all been great sources of information.

I've had several entertaining visitsto MIT, thanks to professor Daniel Jackson. In particular he introduced me
to Jonathon Edwards. Not for the first time | didn't really understand dramatic ideas when | first saw them,
but | do learn eventually.

One of the greatest things about being at ThoughtWorks is ready access to very talented people doing
interesting things. In this case it's been mighty useful to have access to people working closely with the
Intentional tools: Matt Foemmel, Jeremy Stell-Smith, and Jason Wadsworth.

And speaking of fellow ThoughtWorkers, Rebecca Parsons and Dave Rice have been fine intellectual
sounding boards - essential to keeping my thinking on track.

Aswell as providing this kind of background information to write these articles, I've also received helpful
reviews on an early draft from Rebecca Parsons, Dave '‘Bedarra Thomas, Steve Cook, Jack Greenfield, Bill
Caputo, Obie Fernandez, Magnus Christerson and Igor Alshannikov

Thanks for Reuven Y agel, Dave Hoover and Ravi Mohan for spotting and sending me typos.

http://www.martinfowl er.com/articles/languageWorkbench.html (26 of 27)12/12/2007 19:21:10

Language Workbenches: The Killer-App for Domain Specific Languages?

Significant Revisions

12 Jun 05: First publication.

- ThoughtWorks:

The art of heavy Bfting =

© Copyright Martin Fowler, all rights reserved

http://www.martinfowl er.com/articles/languageWorkbench.html (27 of 27)12/12/2007 19:21:10

http://www.martinfowler.com/
http://www.thoughtworks.com/
http://www.martinfowler.com/

	martinfowler.com
	Language Workbenches: The Killer-App for Domain Specific Languages?

