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Abstract
Current object-oriented (OO) and component technologies suffer from several problems such as
the lack of analysis and design methods for the development for reuse, lack of effective
techniques for dealing with many variants of components, loss of design knowledge due to the
semantic gap between domain abstractions and programming language features, and runtime
performance penalties for clean and flexible design.

This thesis proposes Generative Programming (GP) as a comprehensive software development
paradigm to achieving high intentionality, reusability, and adaptability without the need to
compromise the runtime performance and computing resources of the produced software.

In the area of analysis and design for GP, we investigate Domain Engineering (DE) methods and
their integration with OO analysis and design (OOA/D) methods. The main difference between
DE methods and OOA/D methods is that the first are geared towards developing whole families
of systems while the latter focus on developing single systems.

We identify feature modeling as the main contribution of DE to OOA/D. Feature models
represent the configurability aspect of reusable software at an abstract level, i.e. without
committing to any particular implementation technique such as inheritance, aggregation, or
parameterized classes. We give a precise and extended formulation of the feature diagram
notation and investigate the relationship between feature modeling, OO modeling and Aspect-
Oriented Programming.

In the area of implementation for GP, we study various metaprogramming technologies. We
identify modularly extensible programming environments as the ideal programming platform for
GP, which allows implementing domain-specific optimizations, domain-specific displaying and
editing, domain-specific debugging and code analysis, new composition mechanisms, etc., in a
scalable way. We also propose new implementation techniques such as configuration
generators based on mixin models with automatic configuration and configuration repositories
and make several contribution to template metaprogramming.

Based on the analysis of the areas mentioned above, we propose a new Domain Engineering
method for the development of algorithmic reusable libraries (DEMRAL), which integrates
various DE, OO, and AOP concepts. We validate the method by applying it to the domain of
matrix computations, which results in the development of the Generative Matrix Computation
Library (GMCL). We provide two implementation GMCL, one using generative programming
techniques in C++ and another one in Intentional Programming (an modularly extendible
programming environment).

In addition to validating the usefulness of DEMRAL, the GMCL case study provides a concrete
comparison of two generative implementation technologies. The C++ implementation of the
matrix component (which is a part of C++ GMCL) comprises only 7500 lines of C++ code, but it
is capable of generating more than 1840 different kinds of matrices. Despite the large number of
provided matrix variants, the performance of the generated code is comparable with the
performance of manually coded variants. The application of template metaprogramming allowed
a highly intentional library API and a highly efficient library implementation at the same time.
The implementation of GMCL within the Intentional Programming system (IP) demonstrates the
advantages of IP, particularly in the area of debugging and displaying.
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Chapter 1 What Is this Thesis About?

1.1 In a Nutshell
This thesis proposes Generative Programming (GP) as a comprehensive software development
paradigm to achieving high intentionality, reusability, and adaptability without the need to
compromise the runtime performance and computing resources of the produced software. In the
area of analysis and design for GP, Domain Engineering methods and their integration with OO
analysis and design methods are investigated. Furthermore, implementation technologies for GP
(especially metaprogramming technologies) are studied. Based on both analyses, a Domain
Engineering method for the development of algorithmic reusable libraries (DEMRAL) is
proposed. The method is then used to develop a generative matrix computation library (GMCL).
Finally, GMCL is implemented using generative programming techniques in C++ and in
Intentional Programming (an extendible programming environment). This case study validates
the usefulness of DEMRAL and provides a concrete comparison of two generative
implementation technologies.

1.2 Who Should Read It and How to Read It
This work covers a broad spectrum of topics related to Generative Programming including
theoretical, methodological, and technical issues. Thus, it is relevant to researchers,
methodologists, and practitioners.

If you are a researcher, this work offers you a comprehensive reference in areas of Domain
Engineering (Chapter 3), integration of Domain Engineering and OOA/D (Chapter 4), Generators
(Chapter 6), and Aspect-Oriented Programming (Chapter 7). The new Domain Engineering
method described in Chapter 9 will give you a valuable example of a specialized Domain
Engineering method incorporating OO and aspect-oriented concepts. Chapter 10 documents the
(as of writing) most comprehensive and publicly available case study in Domain Engineering.
Several contribution of this work to the state-of-the-art research are listed in Section 1.9.

If you are a methodologist, you will learn why current OOA/D methods do not support
development for reuse (e.g. development of frameworks and component libraries) and how to
change that. The most interesting chapters for a methodologist are Chapters 3, 4, 5, 9, and 10.
Specifically, you will

• learn about the role of Domain Engineering and how it addresses software reuse (Chapter
3);

• learn why it is important to integrate Domain Engineering with OOA/D and how to do it
(Chapters 4 and 5);
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• get a concrete method illustrating such an integration (Chapter 9) and a well documented
case study of applying this method (Chapter 10);

• learn about directions that will inevitably influence methods in future (e.g.
Metaprogramming in Chapter 6 and Aspect-Oriented Programming in Chapter 7).

If you are a practitioner, you will learn how to apply generative programming using today’s
technologies. You will also learn about new directions that will revolutionize software
development within the next decade. The most interesting chapters for a practitioner are
Chapters 6 (especially Section 6.4.2), 7, 8, and 10. Specifically, you will

• get a “canned” solution for writing reusable and highly-efficient C++ code, i.e. achieving
reusability and adaptability without incurring unnecessary runtime costs (Chapters 6, 8, 9,
and 10);

• learn about new directions in software development, which are already considered as
strategic in the industry, e.g. Microsoft’s Intentional Programming  (in Section 6.4.3);

• learn some principles of good design (e.g. Aspect-Oriented Programming in Chapter 7)
which, to a limited extent, can already be applied using current tools and languages.

1.3 Motivation

1.3.1 Advantages of the Object-Oriented Paradigm
It was also because of the advantages of the object-oriented (OO) paradigm that the 90’s have
seen such a wide use of OO technologies. We can summarize these advantages using the
object model:

• Classes and objects: Classes correspond to the concepts of a problem domain and objects
represent the concrete exemplars of these concepts. Classes provide a natural way to break
down complex problems into smaller problems and to effectively describe sets of similar
objects.

• Encapsulation and information hiding: Thanks to encapsulation, we can base our designs
on interfaces and exchange objects with compatible interfaces. Information hiding means
that the internals of an object remain hidden which promotes modularity.

• Inheritance: Inheritance allows us to compose and modify the characteristics of objects.
Inheritance represents one of the key mechanisms for organizing hierarchical designs and
achieving code reuse.

• Dynamic polymorphism1 and dynamic binding: Using polymorphism, we can write code
that works with different types. Thanks to dynamic binding, we can vary these types at
runtime. Both mechanisms play the pivotal role in writing compact and flexible code and in
achieving better reusability.

• Object identity: Object identity gives us a natural way to reference objects.

                                                                

1 Dynamic polymorphism in OO refers to the ability to respond to the same message by
executing different method implementations depending on the type of the receiver, i.e. the
implementation is selected at runtime. Dynamic binding is an implementation mechanism for
achieving dynamic polymorphism. With static polymorphism, on the other hand, the
implementation is selected at compile time (e.g. as in static method calls on instances of C++
template parameters).
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There are also other advantages, e.g. the use of the same modeling concepts in OOA/D2 and in
the implementation, the significant level of reuse offered by well-designed frameworks and class
libraries, the suitability of OO for distributed computing because of their underlying metaphor
of sending messages back and forth, etc.

1.3.2 Problems That Still Remain
Despite the advantages listed in the previous section, industrial experience shows that OO
technologies fail short to provide all the expected benefits (see e.g. [Web95, pp. 21-22]),
particularly, in the areas of

• reuse,

• adaptability,

• management of complexity, and

• performance.

Frameworks and class libraries were long touted as the OO technologies to achieve reuse.
While there are examples of successful, well-designed frameworks and class libraries (e.g.
Apple’s MacApp [Ros95] or Texas Instruments’ ControlWORKS [CW]), the number of failures
is probably much higher (e.g. Taligent’s CommonPoint; most failures remain unpublished,
though). The main problems of frameworks and class libraries include the following:

Lack of analysis and design methods for reusable frameworks and class libraries Most
OOA/D methods focus on the development of single systems rather than reusable models for
classes of systems. Frameworks and class libraries are currently developed ad-hoc rather than
systematically. They are often created as a byproduct of application development through an
iterative and opportunistic process of abstraction and generalization.

Generalization is usually achieved by introducing variation points (also referred to as “hot
spots” [Pre95]). Variation points allow us to provide alternative implementations of functional or
non-functional features, e.g. different formulas for calculating taxes, different persistency
mechanisms, etc. Adding more variation points and alternative features increases the
horizontal scope of a framework meaning that more specific applications can take advantage of
it (see Figure 1 for the explanation of the concepts of horizontal and vertical scope).

There are serious problems with an ad-hoc generalization process. On the one hand, there is a
good chance that some of the relevant variation points will not be identified. On the other hand,
many developers posses a natural tendency to over-generalize which may result in the
introduction of unnecessary variation points and thus superfluous complexity.

Problems with horizontal scaling The reusability of a framework or a class library can be
increased by adding new features and variation points. Unfortunately, as the number of
variation points increases, the complexity of the framework rapidly grows while its performance
usually deteriorates.3 Variation points are typically implemented using design patterns
described in [GHJV95], such as the strategy or the state pattern. With each additional variation
point, several new classes have to be introduced and some old classes need to be refactored.
This results in so-called “fragmentation of the design” and thus increased complexity. While
enlarging the horizontal scope of a framework inevitably increases its complexity (since new
cases have to be covered), some of this complexity results from the fact that OO modeling and
implementation languages do not provide language constructs to express design patterns more
declaratively (or intentionally) and to replace the corresponding, more complex, implementation

                                                                

2 Object-Oriented Analysis and Design Methods

3 The relationship between horizontal scaling and performance is discussed in [Big94] and
[Big97] as the library scaling problem.
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idioms.4 Furthermore, when using framework technology, adding certain kinds of features (such
as synchronization) might add more complexity than when adding other kinds of features. We
discuss this problem next. Finally, design patterns are usually implemented using dynamic
binding, even if some variation points remain frozen during runtime. Thus, each design pattern
typically introduces additional levels of indirection which remain at runtime and contribute to
performance degradation. In summary, enlarging the horizontal scope of a framework or a class
library causes both complexity explosion and rapid performance degradation.

Problems with separation of concerns, code tangling, and lack of linear modifiability Adding
certain kinds of features such as synchronization or some kinds of optimizations to a simple and
clean functional OO model usually leads to a great deal of extra complexity. This is so since
such features are usually expressed by small code fragments scattered throughout several
functional components. Kiczales et al. refer to such features as aspects [KLM+97] and to the
intertwined mixture of aspects and functional components as tangled code. Tangled code is
difficult to read, maintain, adapt, extend, and reuse. It is worth noting that the code tangling
problem tends to occur in later phases of the conventional development process. We usually
start with a clean, hierarchical functional design, then manually add various aspects (e.g. code
optimizations, distribution, synchronization), and the code becomes tangled. In addition to
inserting aspect code at different locations, adding an aspect to an existing design often
requires refactoring. For example, when we want to synchronize only a portion of a method (e.g.
for performance reasons), we usually factor out this portion into a separate method. This is
aggravated by the fact that different aspects usually require refactoring along different
structures. Finally, the separation of aspects is insufficient not only in the implementation code,
but also in the design models (e.g. class diagrams). A related concept to aspects and code
tangling is linear modifiability [Sim98]. We say that a system is linearly modifiable with respect
to some set of properties if modifying any of these properties requires only a well-localized
change. Of course, we want any important system property to be linearly modifiable. As
described above, in conventional OO software, aspects represent properties which are not
linearly modifiable.

“Object collisions”5 Even if the functionality of two or more class libraries or frameworks seems
to be complementary, their simultaneous reuse in one application could be impossible because
they use different error handling designs, memory management schemes, persistency
implementations, synchronization schemes, etc. There might be different causes for this
situation to occur. First, the lack of appropriate analysis and design method could have
prevented the identification of the relevant variation points in the frameworks in the first place.
Second, the horizontal scaling or the code tangling problem can make it hard to implement all
relevant variation points.

                                                                

4 An idiom is usually understood as an implementation of a higher-level modeling concept in a
specific programming language which otherwise does not provide an explicit construct for this
concept.

5 This phrase has been coined by Berlin [Ber90].
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Loss of design information Conventional programming involves the manual translation of
domain concepts living in the programmer’s head into a source program written in a concrete,
general-purpose programming language such as C++ or Java. This translation inevitably causes
important design information to be lost due to the semantic gap between the domain concepts
and the language mechanisms available in the programming language. Some of the deign
knowledge could be recorded in the form of comments, but the computer cannot take advantage
of such information. This loss of design information not only makes programs harder to
understand, but also creates the two hard problems: the legacy problem and the evolution
problem. In a time, where a new programming language enters the mainstream every few years
(e.g. C++, Smalltalk, and then Java), companies have a truly hard time protecting their
investment in Information Technology (IT). Today, most designs are expressed in a concrete
programming language meaning that the larger share of the design information is lost. Thus, it is
not possible to retarget existing application on to new platforms without significant costs. The
evolution problem causes the IT costs even more to climb. Software systems, instead of being
constantly improved, deteriorate over time and have to be eventually phased out.

1.4 Generative Programming
The previous section listed some problems of current OO technologies. It turns out that
problems such as

• lack of A/D methods for developing reusable software in the industrial practice,

• loss of design knowledge due to the semantic gap between domain abstractions and
programming language features, and

• runtime performance penalties for clean and flexible design

are not limited to OO technologies, but equally apply to other current technologies, e.g.
component technologies such as COM or CORBA.

Generative Programming (GP) is about designing and implementing software modules which
can be combined to generate specialized and highly optimized systems fulfilling specific
requirements [Eis97]. The goals are to (a) decrease the conceptual gap between program code
and domain concepts (known as achieving high intentionality), (b) achieve high reusability and
adaptability, (c) simplify managing many variants of a component, and (d) increase efficiency
(both in space and execution time) [CEG+98].

horizontal scope =
number of different applications that

can be build using the reusable
software

application napplication 1

reusable software
(e.g. framework or

class library)

vertical scope =
portion of an

average application
that is reused

from the reusable
software

Figure 1    Vertical and horizontal scope of reusable software
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To meet these goals, GP deploys several principles [CEG+98]:

• Separation of concerns: This term, coined by Dijkstra [Dij76], refers to the importance of
dealing with one important issue at a time. To avoid program code which deals with many
issues simultaneously, generative programming aims to separate each issue into a distinct
set of code. These pieces of code are combined to generate a needed component.

• Parameterization of differences: As in generic programming, parameterization allows us to
compactly represent families of components (i.e. components with many commonalities).

• Analysis and modeling of dependencies and interactions: Not all parameter value
combinations are usually valid, and the values of some parameters may imply the values of
some other parameters. These dependencies are referred to as horizontal configuration
knowledge, since they occur between parameters at one level of abstraction.

• Separating problem space from solution space: The problem space consists of the
domain-specific abstractions that application programmers would like to interact with,
whereas the solution space contains implementation components (e.g. generic
components). Both spaces have different structures and thus we map between them with
vertical configuration knowledge. The term vertical refers to interaction between
parameters of two different abstraction levels. Both horizontal and vertical configuration
knowledge are used for automatic configuration.

• Eliminating overhead and performing domain-specific optimizations: By generating
components statically (at compile time), much of the overhead due to unused code, run-
time checks, and unnecessary levels of indirection may be eliminated. Complicated domain-
specific optimizations may also be performed (for example, loop transformations for
scientific codes).

1.5 Generative Programming and Related Paradigms
There are three other programming paradigms which have similar goals to Generative
Programming:

• Generic programming,

• Domain-Specific Languages (DSLs), and

• Aspect-Oriented Programming (AOP).

Generative Programming is broader in scope than these approaches, but uses important ideas
from each [CEG+98]:

Generic Programming may be summarized as “reuse through parameterization.” Generic
programming allows components which are extensively customizable, yet retain the efficiency of
statically configured code. This technique can eliminate dependencies between types and
algorithms that are conceptually not necessary. For example, iterators allow generic algorithms
which work efficiently on both dense and sparse matrices [SL98a]. However, generic
programming limits code generation to substituting concrete types for generic type parameters
and welding together pre-existing fragments of code in a fixed pattern. Generative programming
is more general since it provides automatic configuration of generic components from abstract
specifications and for a more powerful parameterization.

Domain-Specific Languages (DSLs) provide specialized language features that increase the
abstraction level for a particular problem domain; they allow users to work closely with domain
concepts (i.e. they are higly intentional), but at the cost of language generality. Domain-specific
languages range from widely-used languages for numerical and symbolic computation (e.g.,
Mathematica) to less well-known languages for telephone switches and financial calculations
(to name just a few). DSLs are able to perform domain-specific optimizations and error checking.
On the other hand, DSLs typically lack support for generic programming.
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Aspect-Oriented Programming Most current programming methods and notations concentrate
on finding and composing functional units, which are usually expressed as objects, modules,
and procedures. However, several properties such as error handling and synchronization
cannot be expressed using current (e.g. OO) notations  and languages in a cleanly localized
way. Instead, they are expressed by small code fragments scattered throughout several
functional components. Aspect-Oriented Programming (AOP) [KLM+97] decomposes problems
into functional units and aspects (such as error handling and synchronization). In an AOP
system, components and aspects are woven together to obtain a system implementation that
contains an intertwined mixture of aspects and components (i.e. tangled code). Weaving can be
performed at compile time (e.g. using a compiler or a preprocessor) or at runtime (e.g. using
dynamic reflection). In any case, weaving requires some form of metaprogramming6 (see
Section 7.6.2). Generative programming has a larger scope since it includes automatic
configuration and generic techniques, and provides new ways of interacting with the compiler
and development environment.

Putting It All Together: Generative Programming The concept of generative programming
encompasses the techniques of the previous three approaches, as well as some additional
techniques to achieve the goals listed in Section 1.4:

• DSL techniques are used to improve intentionality of program code, and to enable domain-
specific optimizations and error checking. Metaprogramming allows us to implement the
necessary language extensions.7

• AOP techniques are used to achieve separation of concerns by isolating aspects from
functional components. Metaprogramming allows us to weave aspects and components
together.

• Generic Programming techniques are used to parameterize over types, and iterators are
used to separate out data storage and traversal aspects.

• Configuration knowledge is used to map between the problem space and solution space.
Different parts of the configuration knowledge can be used at different times in different
contexts (e.g. compile time or runtime or both). The implementation of automatic
configuration often requires metaprogramming.

1.6 Generative Analysis and Design
Generative Programming focuses on designing and implementing reusable software for
generating specific systems rather than developing each of the specific systems from scratch.
Therefore, the scope of generative analysis and design are families of systems and not single
systems. This requirement is satisfied by Domain Engineering. Part of Domain Engineering is
Domain Analysis, which represents a systematic approach to identifying the scope, the
features, and the variation points of the reusable software based on the analysis of existing
applications, stakeholders, and other sources. Domain Analysis allows us to identify not only
the immediately relevant features, but also the potentially relevant ones as early as possible.
The knowledge of the planned and potential features is a prerequisite for arriving at a robust
design capable to scale up.

                                                                

6 Metaprogramming involves writing programs whose parts are related by the “about”
relationship, i.e. some parts are about some other parts. An example of a metaprogram is a
program which manipulates other programs as data, e.g. a template metaprogram, a compiler, or
a preprocessor (see Section 8.1). Another example are programs implementing the abstractions
of a programming language in a reflective way, e.g. metaclasses in Smalltalk (the latter implement
the behavior of classes). An example of metaprogramming in Smalltalk is given in Section 7.4.7.

7 By a language extension we mean capabilities extending the expressive power of a
programming language which are traditionally not being packaged in conventional libraries, e.g.
domain-specific optimizations, domain-specific error checking, syntax extensions, etc. (see
Section 9.4.1).
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Furthermore, Domain Analysis helps us to identify the dependencies between variation points.
For example, selecting a multi-threaded execution mode will require activating synchronization
code in various components of a system or selecting some storage format may require selecting
specialized processing algorithms. This kind of explicit configuration knowledge allows us to
implement automatic configuration and to design easy-to-use and scalable configuration
interfaces, e.g. interfaces based on specialized languages (so-called domain-specific
languages) or application builders (e.g. GUI builders).

None of the current OOA/D methods address the above-mentioned issues of multi-system-
scope development. On the other hand, they provide effective system modeling techniques.
Thus, the integration of Domain Engineering and OOA/D methods is a logical next step.

From the viewpoint of OOA/D methods, the most important contribution of Domain Engineering
is feature modeling, a technique for analyzing and capturing the common and the variable
features of systems in a system family and their interdependencies. The results of feature
modeling are captured in a feature model, which is an important extension of the usual set of
models used in OOA/D.

We propose methods which

• combine aspects of Domain Engineering, OOA/D, and AOP and

• are specialized for different categories of domains

to be most appropriate for Generative Programming. As an example of such a method, we
develop a Domain Engineering Method for Reusable Algorithmic Libraries (DEMRAL), which is
appropriate for building algorithmic libraries, e.g. libraries of numerical codes, image processing
libraries, and container libraries.

1.7 Generative Implementation Technologies
As noted in the previous section, Generative Programming requires metaprogramming for
weaving and automatic configuration. Supporting domain-specific notations may require
syntactic extensions. Libraries of domain abstraction based on Generative Programming ideas
thus need both implementation code and metacode which can implement syntax extensions,
perform code generation, and apply domain-specific optimizations. We refer to such libraries as
active libraries [CEG+98]:

Active libraries  are not passive collections of routines or objects, as are traditional
libraries, but take an active role in generating code. Active libraries provide
abstractions and can optimize those abstractions themselves. They may generate
components, specialize algorithms, optimize code, automatically configure and tune
themselves for a target machine, and check source code for correctness. They may also
describe themselves to and extend tools such as compilers, profilers, debuggers, domain-
specific editors, etc.

This perspective forces us to redefine the conventional interaction between compilers, libraries,
and applications. Active Libraries may be viewed as knowledgeable agents, which interact with
each other to produce concrete components. Such agents need infrastructure supporting
communication between them, code generation and transformation, and interaction with the
programmer.

Active Libraries require languages and techniques which open up the programming
environment. Implementation technologies for active libraries include the following [CEG+98]:

Extensible compilation and metalevel processing systems  In metalevel processing systems,
library writers are given the ability to directly manipulate language constructs. They can analyze
and transform syntax trees, and generate new source code at compile time. The MPC++
metalevel architecture system [IHS+96] provides this capability for the C++ language. MPC++
even allows library developers to extend the syntax of the language in certain ways (for



What Is this Thesis About? 11

example, adding new keywords). Other examples of metalevel processing systems are Open C++
[Chi95], Magik [Eng97], and Xroma [CEG+98]. An important differentiating factor is whether the
metalevel processing system is implemented as a pre-processor, an open compiler, or an
extensible programming environment (e.g. Intentional Programming; see Section 6.4.3).

Program Specialization Researchers in Partial Evaluation have developed an extensive theory
and literature of code generation. An important discovery was that the concept of generating
extensions [Ers78] unifies a very wide class of apparently different program generators. This
has the big advantage that program generators can be implemented with uniform techniques,
including diverse applications such as parsing, translation, theorem proving, and pattern
matching. Through partial evaluation, components which handle variability at run-time can be
automatically transformed into component generators (or generating extensions in the
terminology of the field, e.g. [DGT96]) which handle variability at compile-time. This has the
potential to avoid the need for library developers to work with complex meta-level processing
systems in some cases. Automatic tools for turning a general component into a component
generator (i.e. generating extension) now exist for various programming languages such as
Prolog, Scheme, and C (see [JGS93]).

Multi-level languages Another important concept from partial evaluation is that of two-level (or
more generally, multi-level) languages. Two-level languages contain static code (which is
evaluated at compile-time) and dynamic code (which is compiled, and later executed at run-time).
Multi-level languages [GJ97] can provide a simpler approach to writing program generators
(e.g., the Catacomb system [SG97]).

The C++ language includes some compile-time processing abilities quite by accident, as a
byproduct of template instantiation. Nested templates allow compile-time data structures to be
created and manipulated, encoded as types; this is the basis of the expression templates
technique [Vel95a]. The template metaprogram technique [Vel95b] exploits the template
mechanism to perform arbitrary computations at compile time; these “metaprograms” can
perform code generation by selectively inlining code as the “metaprogram” is executed. This
technique has proven a powerful way to write code generators for C++. In this context, we can
view C++ as a two-level language.

Runtime code generation (RTCG) RTCG systems allow libraries to generate customized code at
run-time. This makes it possible to perform optimizations which depend on information not
available until run-time, for example, the structure of a sparse matrix or the number of processors
in a parallel application. Examples of such systems which generate native code are `C (Tick-C)
[EHK96, PEK97] and Fabius [LL95]. Runtime code modification can also be achieved using
dynamic reflection facilities available in languages such as Smalltalk and CLOS. The latter
languages also provide their own definitions in the form of extendible libraries to programmers.

1.8 Outline
The thesis consists of several chapters surveying areas related to Generative Programming, a
chapter describing the newly proposed Domain Engineering Method for Reusable Algorithmic
Libraries (DEMRAL) and a chapter featuring a comprehensive case study which involves the
application of DEMRAL to matrix computations. The chapters are organized into four parts:
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In the following, we provide a brief summary of each chapter.

Part I   Setting the Stage

Chapter 1 What is this Thesis About? (The chapter you are just reading)

Chapter 1 introduces Generative Programming and gives an overview of this work.

Problems of current software development technologies. Definition of Generative
Programming. Relationship of Generative Programming to other paradigms. Analysis and
design methods and implementation technologies for Generative Programming. Outline and
contributions.

Chapter 2 Conceptual Modeling

The purpose of this chapter is to show the connection between cognitive science and the
modeling of software. It discusses the limitations of the classical modeling and the need to
model variability more adequately. It introduces concepts and features, which are central to
Domain Engineering.

Concepts and features. Theories of concepts: the classical, the probabilistic, and the exemplar
view. Subjectivity of concepts. Generalization and specialization. Abstraction and
concretization.

Part II   Analysis and Design Methods and Techniques

Chapter 3 Domain Engineering

Chapter 3 provides an introduction to Domain Engineering (DE) and a survey of existing DE
methods.

Definition of DE. Basic concepts of DE. Survey of DE methods.

Chapter 4 Domain Engineering and Object-Oriented Analysis and Design

Chapter 4 motivates the integration of DE and OOA/D methods and surveys existing work on
this topic.

Relationship between DE and OOA/D. Approaches to integrating DE and OOA/D methods.
Survey of DE-and-OOA/D integration work.

Part I   Setting the Stage

1 What is this Thesis About?

2 Conceptual Modeling

Part II   Analysis and Design Methods and Techniques

3 Domain Engineering

4 Domain Engineering and Object-Oriented Analysis and Design

5 Feature Modeling

Part III   Implementation Technologies

6 Generators

7 Aspect-Oriented Decomposition and Composition

8 Static Metaprogramming in C++

Part IV   Putting It All Together: DEMRAL and the Matrix Case Study

9 Domain Engineering Method for Reusable Algorithmic Libraries (DEMRAL)

10 Case Study: Generative Matrix Computation Library (GMCL)

11 Conclusions and Outlook
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Chapter 5 Feature Modeling

Chapter 5 provides an in-depth treatment of feature modeling – the key modeling technique in
Generative Programming. The presented approach integrates concepts from OO Programming
and Aspect-Oriented Programming.

Role of feature modeling. Extended feature diagrams notation. Contents of feature models.
Relationship between feature diagrams and UML class diagrams. Process of feature modeling.

Part III   Implementation Technologies

Chapter 6 Generators

Chapter 6 discusses existing approaches to generation, one of the key implementation
technologies for Generative Programming.

Basic concepts of generators. Compositional and transformational approaches.
Transformation systems. Survey of selected approaches to generation (includes C++ idioms
for implementing GenVoca architectures and a description of Intentional Programming).

Chapter 7 Aspect-Oriented Decomposition and Composition

Chapter 7 gives an up-to-date account of Aspect-Oriented Programming (AOP), a paradigm
promoting a better separation of concerns in programming. AOP is covered by Generative
Programming.

Definition of AOP. Survey of AOP work. Relationship to Domain Engineering. Aspect-oriented
composition mechanisms (with C++ examples and a Subject-Oriented Programming
example). Smalltalk implementation of an aspect-oriented library for thread synchronization.
Language extensions and active libraries as implementation technologies for AOP.

Chapter 8 Static Metaprogramming in C++

Chapter 8 discusses template metaprogramming, a C++ programming technique for
implementing program generators. This technique is used in the case study.

Basic concepts of template metaprogramming. Writing template metafunctions and control
structures for metaprograms. List processing using template metaprograms. Techniques for
avoiding partial template specializations. Implementing code generators using template
metaprogramming.

Part IV   Putting It All Together: DEMRAL and the Matrix Case Study

Chapter 9 Domain Engineering Method for Reusable Algorithmic Libraries (DEMRAL)

Chapter 9 describes DEMRAL, a new Domain Engineering method for developing algorithmic
libraries. This method exemplifies the idea of Domain Engineering methods using OO and AOP
techniques and specialized for a particular category of domains.

Applicability of DEMRAL. DEMRAL Domain Analysis (including feature starter sets for
abstract data types and algorithms). DEMRAL Domain Design and Implementation
(including the concepts of configuration and expression domain-specific languages).

Chapter 10 Case Study: Generative Matrix Computation Library (GMCL)

Chapter 10 contains a comprehensive case study involving the application of DEMRAL to the
domain of matrix computations. The result is an implementation of a generative matrix
computation library in C++ and in IP and a comparison of both implementation technologies.

Domain Analysis of the Domain of Matrix Computation Libraries (including the analysis of
existing libraries and application areas and the feature modeling of matrices). Domain
Design (including a full specification of a generative matrix component). Domain
Implementation (including the detailed description of the matrix component implementation
using generative C++ techniques, a summary of the implementation using Intentional
Programming, and a comparison of both approaches).

Chapter 11 Conclusions and Outlook
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1.9 Contributions
The contributions of this work can be summarized as follows:

1. contributions to feature modeling:

1.1. precise formulation of the FODA feature diagram notation (Section 5.4.1);

1.2. extension of the FODA feature diagram notation with or-features (Section 5.4.1.4);

1.3. new feature modeling concepts such as normalized feature diagrams (Section 5.4.1.5),
classification of variation points (Table 8), properties of variation points
(homogeneous vs. inhomogeneous, singular vs. nonsingular, simultaneous vs. non-
simultaneous; see Section 5.4.1.7);

1.4. extended list of information categories contained in feature models (see Sections 5.4.2,
5.4.3, and 5.4.4);

1.5. study of the relationship between feature diagrams and UML class diagrams (Section
5.5);

1.6. the concept of feature starter set (Section 5.8.1);

1.7. feature modeling process including concepts from Aspect-Oriented Programming
(Section 5.8);

2. contributions to generators and static metaprogramming in C++:

2.1. use of configuration repositories for propagating types from upper layers to lower
layers of a GenVoca model (Section 6.4.2.4)8;

2.2. the metacontrol structure IF<> (Section 8.2);

2.3. list processing using template metaprogramming (Section 8.4) and the implementation
of a Lisp interpreter as a template metaprogram (Section 8.12);

2.4. techniques for avoiding partial template specialization in template metaprograms
(Section 8.5);

2.5. the concept of a configuration generator based on template metaprogramming and
configuration repositories (Section 8.7);

2.6. combination of expression generators based on expression templates with
configuration generators (Section 8.8);

3. contributions to Aspect-Oriented Programming:

3.1. extension of the Cool-approach to synchronization with the concept of ports and
reconfiguration and the implementation in Smalltalk (see Section 7.5.2);

3.2. investigation of the relationship between AOP and DE (Section 7.2.4);

3.3. some minor contributions such as kinds of join points (Section 7.4.1.1), requirements
on composition mechanisms (Section 7.4.1), and use of active libraries as an
implementation technology for AOP (Section 7.6.4);

4. contributions of DEMRAL:

                                                                

8 The idea of implementing GenVoca models using parameterized inheritance and nested classes
described in Section 6.4.2.4 was developed independently from [SB98a].
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4.1. new method illustrating the concept of a Domain Engineering method containing OO
and AOP ideas and specialized for a particular category of domains (Chapter 9);

4.2. the concepts of a configuration domain-specific language (configuration DSL),
configuration knowledge, and implementation components configuration language
(ICCL) (Section 9.4.2);

4.3. the interaction between a configuration DSL and an expression DSL (Section 9.4.4);

4.4. feature starter sets for abstract data types (Section 9.3.2.2.1) and for algorithms
(Section 9.3.2.2.2);

5. contributions of the Matrix Case Study:

5.1. to our knowledge, the most comprehensive and best documented publicly-available
case study of Domain Engineering available today (Chapter 10);

5.2. demonstration of the DEMRAL method;

5.3. demonstration (Section 10.3.1) and evaluation (Section 10.3.1.8) of the generative C++
techniques;

5.4. comparison between the generative C++ approach and the Intentional Programming
approach for the development of algorithmic libraries (Section 10.3.2);

Another contribution of this work is a set of comprehensive and up-to-date surveys on DE
(Chapter 3), DE-and-OOA/D integration work (Chapter 4), generator approaches (Chapter 6),
and AOP (Chapter 7). As of writing, no other surveys on the second, and the last topic are
known to the author.
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Chapter 2 Conceptual Modeling

2.1 What Are Concepts?
One fundamental question has occupied psychologists, philosophers, cognitive and other
scientists for long time: What is the language of mind? Do we think using a natural language,
such as Polish or German? Although we have the ability to process natural language, it seems
that there must be some internal mental representation other than natural language. We clearly
sense the distinction between having a thought and putting it into words. Defining even a most
simple concept, such as house or dog, seems to be the more difficult the more precise we try to
be. We find ourselves retrieving more and more facts about the concepts to be defined realizing
how complex they are. This phenomenon also supports the view that there must be some mental
representation other than natural language. Cognitive psychologists refer to this representation
as propositional representation.

There has been numerous experiments providing evidence supporting this theory. A classic
example is the experiment by Sachs [Sac67]. In the experiment subjects listened to paragraphs
on various topics. The reading of the paragraphs was interrupted and subjects were given a
number of sentences. Their task was to choose the sentence which had occurred in the
previous paragraph. In addition to the correct sentence, the candidate sentences included other
sentences which sounded similar to the correct one but had a different meaning as well as
sentences which had the same meaning but used different wording. The finding of the
experiment was that subjects rarely picked a sentence with the wrong meaning but often
thought that they had heard one of the sentences using different wording. A reasonable
explanation of this finding is that subjects translated the text they had listened to into their
propositional representation and then translated it back into natural language in the second part
of the experiment. The fact that the propositional representation can be translated into a number
for equivalent sentences accounts for subject’s confusion.

One of the most important properties of human mind is the fact that people do not store all
information about the objects they encounter. Smith and Medin note that [SM81, p. 1] “If we
perceived each entity as unique, we would be overwhelmed by the sheer diversity of what we
experience and unable to remember more than a minute fraction of what we encounter. And if
each individual entity needed a distinct name, our language would be staggeringly complex and
communication virtually impossible.” Fortunately, we have the ability to recognize new objects
as instances of concepts we already know — whereby a concept stands for the knowledge
about objects having certain properties. The task of recognizing an object as an instance of a
concept is referred to as categorization or classification. For this reason, in the context of
categorization, concepts are often called categories or classes. This chapter focuses on
categorization, but it is important to note that categorization is not the only process involving
concepts: the processes of acquiring and evolving concepts are equally important.

Propositional
representation

Concepts,
categories, and
classes
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Concepts are central to the nature of the propositional representation. By studying concepts we
can certainly learn more about how knowledge is not only represented but also processed in the
mind.

You may ask now what all of this has to do with programming. Well, programming is about
conceptual modeling. We build conceptual models in our heads to solve problems in our
everyday life. In programming, we build models that we can run on a machine. By learning about
how concepts are represented in the mind, we should be able to improve our means to represent
concepts externally, i.e. in software. In this chapter, you will see that the current object-oriented
paradigm is based on a very simplistic view of the world, namely the classical view. In the end,
you will realize that adequate implementations of concepts have to cover enormous amounts of
variability. This observation will provide the motivation for all the following chapters.

2.2 Theories of Concepts
The origins of the study of categorization and concepts date back to Aristotle, the great Greek
philosopher, who is also seen as the father of the so-called classical view of categorization.
According to [SM81], Hull’s 1920 monograph on concept attainment [Hul20] initiates a period
of modern and intensive research on a theory of concepts. Contemporary work on concepts
includes philosophically oriented studies of language (e.g. [Fod75]), linguistic studies (e.g.
[Bol75]), psycholinguistics (e.g. [CC77]), and studies in the area of cognitive psychology (e.g.
[And90]). Thus, concepts have been studied in multiple disciplines: philosophy, linguistics,
psychology, cognitive science and, more recently, also computer science (esp. artificial
intelligence).

In the course of  this research, three major views about the nature of concepts emerged:

• the classical view,

• the probabilistic view (also referred to as the prototype view) and

• the exemplar view.

Before discussing these three views, we first introduce some basic terminology.

2.2.1 Terminology
In our discussion, we will distinguish between

• mathematical and

• natural concepts.

Examples of mathematical concepts are numbers, geometric figures, matrices, etc. The most
important property of a mathematical concept is that it has a precise definition. By natural
concepts we mean concepts used in our everyday communication with natural language, e.g.
dog, table, furniture, etc. Later we will see that in most cases the definition of natural concepts
is problematic.9

We describe concepts by listing their properties. According to Smith and Medin [SM81], there
are three major types of properties of concepts:

• features,

• dimensions, and

                                                                

9 Of course, there are also other categories of concepts e.g. object concepts (e.g. dog , table),
abstract concepts (e.g. love, brilliance), scientific concepts (e.g. gravity, electromagnetic
waves), etc.
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• holistic properties.

We use features to represent qualitative properties of concepts. Table 1 gives some examples of
features. For example, the features of a chicken are animate, feathered, and pecks. Thus, each
concept is described by a list of features.

Dimensions are usually used to express quantitative properties such as size or weight. The
value range of a dimension can be continuous (e.g. a real number) or discrete (e.g. small,
middle-size, and large for the dimension size). Typically, there is the requirement that the
values of a dimension are ordered. If we drop this requirement, we get a “weak notion of
dimensions”, which is sometimes referred to as attributes. In contrast to featural descrriptions,
we use just one set of dimensions to represent a number of concepts: each concept is

represented by a tuple of values (one value for each dimension). An example of a dimensional
description of concepts is given in Table 2.

Features and dimensions are also referred to as component properties since a feature or a
dimension does not constitute a complete description of a concept [Gar78]. The counterpart of
component properties are holistic properties. A holistic description of a concept consists of
only one property, i.e. a holistic property. A holistic property can be thought of as a concept
template.

We will discuss a number of important issues regarding features and dimensions in Section 2.3.
But first, we focus our attention on the three views of concepts.

2.2.2 The Classical View
Until the mid-seventies, the categorization research was dominated by the classical view of
categorization (also called definitional theory). According to the classical view, any concept (or
category) can be defined by listing a number of necessary and sufficient properties which an
object must possess in order to be an instance of the concept. For example, the concept of a
square can be defined using the following four features [SM81]:

1. closed figure

2. four sides

3. sides equal in length, and

4. equal angles.

Features

concept: Robin Chicken Collie Daisy

features: animate
feathered
flies
red breast

animate
feathered
pecks

animate
furry
brown-gray

inanimate
stem
white

Table 1    Examples of features (adapted from [SM81, p. 14])

concept: Robin Chicken Collie

features: animacy: animate
size: SR

ferocity: FR

animacy: animate
size: CCh

ferocity: FCh

animacy: animate
size: SC

ferocity: FC

Table 2    Examples of dimensions (S and F stand for some appropriate
value; adapted from [SM81, p. 63])

Dimensions

Holistic vs.
component
properties

Necessary and
sufficient properties
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All four features are jointly sufficient and each of them is singly necessary in order to define a
square. Thus, the essence of the classical view is that a concept can be precisely defined using
a single summary description (e.g. four features in our example). This summary description is
the result of an abstraction and generalization process (see Section 2.3.7) which takes a number
of concrete concept instances as its input. This summary description is the essence of a
concept and corresponds to what software developers refer to as “the right abstraction”. A
precise summary description can be given for mathematical concepts since they are defined
precisely. Unfortunately, this is usually not the case for natural concepts. For example, how
would you define the concept of a game? This classic example by Wittgenstein [Wit53]
illustrates the problems of defining natural concepts  [SM81, p. 30]:

“What is a necessary feature of the concept of games? It cannot be competition between
teams, or even the stipulation that there must be at least two individuals involved, for
solitaire is a game that has neither feature. Similarly, a game cannot be defined as
something that must have a winner, for the child’s game of ring-around-a-rosy has no
such feature. Or let us try a more abstract  feature – say that anything is a game if it
provides amusement or diversion. Football is clearly a game, but it is doubtful that
professional football players consider their Sunday endeavors as amusing or diverting.
And even if they do, and if amusement is a necessary feature of a game, that alone cannot
be sufficient, for whistling can also be an amusement and no one would consider it a
game.”10

During the seventies and the eighties, the criticism of the classical view intensified. Some of the
then-identified problems of this view include [SM81]:

• Failure to specify defining features: Natural concepts for which – as in the case of a game
– no defining (i.e. necessary and sufficient) features have been found are abundant.

• Existence of disjunctive concepts: If the feature sets of any two instances of a concept are
disjunctive, the concept is referred to as a totally disjunctive concept. If a concept is not
totally disjunctive and if the feature sets of any two of its instances are only partially
overlapping, the concept is called partially disjunctive (see Figure 2). Both partially and
totally disjunctive concepts violate the requirement of the classical view that a concept is
defined by a single set of sufficient and necessary features. According to Rosch et al.
[RMG+76], superordinate concepts (i.e. very general concepts such as furniture) are often
disjunctive.

                                                                

10 As an exercise, try to define the concept of a table. You will quickly realize that it is as
hopeless as defining the concept of a game.

Summary
description

Criticism of the
classical view

Totally and
partially disjunctive
concepts

c. another example of a totally
disjunctive concept

b.  partially disjunctive
concept

a. totally disjunctive
concept

f5
f4

f3

f1 f2
f5

f4
f3

f1
f2

f7
f8f5

f6
f9

f4

f3

f1
f2

Figure 2    Disjunctive concepts (f stands for a
feature; each circle represents a set of features
describing some instances of a concept)
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• Simple typicality effects: Smith and Medin note that [SM81, p. 33]: “People find it a natural
task to rate the various subsets or members of a concept with respect to how typical or
representative each one is of a concept.” This finding cannot be reconciled with the
classical view.

• Use of non-necessary features in categorization: As documented by Hampton [Ham79],
people often use non-necessary features (i.e. features which only some instances of a
concept have) in the categorization of objects. This suggests that nonnecessary features
play an important role in defining concepts.

In addition to the single summary description consisting of sufficient and necessary properties,
the classical view has one more assumption which is as follows [SM81, p. 24]:

“If concept X is a subset of a concept Y, the defining features of Y are nested in those
of X.”

For example, consider the concept of rectangles and squares. All instances of the concept of
squares are clearly instances of the concept of rectangles. Also, the defining features of
rectangles are nested in those of squares (note that this requires the notion of nesting to
include logical subsumption).

This assumption also turns out to be problematic. It is – in many cases – too strong and it has
to be weakened in order to reflect reality more adequately. As Smith and Medin note [SM81, p.
29], many people, when asked: “Is tomato a fruit?”, are unsure of whether this particular subset
relation holds. People often even change their mind over time about whether a particular subset
relation holds or not and there always seem to be exceptions violating assumed subset
relations. The classical view is unable to account for these effects.

The criticism of the classical view discussed in this section eventually lead to the development
of the probabilistic and exemplar views. Some of the most influential work supporting this
criticism is that by Rosch and Mervis (e.g. [Ros73, Ros75, Ros77, RM75, RMG+76]).

2.2.3 The Probabilistic View
In the probabilistic view, each concept is described – just as in the classical view – by a list of
properties, i.e. we also have a single summary description of a concept. The main difference
between the classical view and the probabilistic view is that in the probabilistic view each
feature has a likelihood associated with it. For example, one could associate the likelihood of 0.9
with the feature flies of the concept of a bird  in order to indicate that most (but not all) birds fly.

At odds with the term “probabilistic view”, the number associated with each feature is usually
not a probability value. It is rather a weight whose value could be calculated depending on
many factors, e.g. the probability that the feature is true of an instance of a concept,  the degree
to which the feature distinguishes the concept from other concepts, and the past usefulness or
frequency of the feature in perception and reasoning [SM81].

An example of a probabilistic representation of the concepts vegetable and green bean is
shown in Figure 3. This kind of network representation is also referred to as a propositional or
semantic network (please note that, in general, a semantic network need not be probabilistic). A
possible classification procedure based on this representation is so-called spreading activation
(proposed by [CL75]). For example, in order to check if green bean is a vegetable, the
corresponding nodes in Figure 3 are activated (imagine that the net in Figure 3 is just a part of a
larger network). The activation spreads along all the paths starting from each of the two nodes.
The amount of activation depends on the weights. Some of the activated paths will intersect
forming a pathway connecting the two nodes. The amount of activation in the pathways will be
used to decide if green bean is a vegetable.

Non-necessary
features

Nesting of concept’s
defining features in
subsets

Semantic networks

Semantic networks

Spreading
activation
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2.2.4 The Exemplar View
In the exemplar view, a concept is defined by its exemplars (i.e. representative instances) rather
than by an abstract summary. Exemplars can be specific concept instances as well as subsets.
For example, the representation of the concept bird  could include the subset concept robin and
the specific instance “Fluffy” (see Figure 4). The exemplar representation is especially well
suited for representing disjunctive concepts (see Section 2.2.2).

In the case of an exemplar representation, new objects are categorized based on their similarity
to the stored exemplars. One problem in this context is how to efficiently store and process a
large number of exemplars. A possible approach is to deploy a connectionist architecture, i.e. a
massively parallel architecture consisting of a large number of simple, networked processing
units, such as a neural network  (see [Kru92]). In a neural network, for example, a new exemplar
is stored by adjusting the weights associated with the connections between neurons. This
adjustment can be accomplished using the back-propagation algorithm (see e.g. [HN90]).

2.2.5 Summary of the Three Views
All three views have been summarized in Figure 5. Both the probabilistic and the exemplar view
do not suffer from the specific problems of the classical view listed in Section 2.2.2. This state of
affairs does not invalidate the classical view, however. Certain problems can be adequately
represented and solved using the classical view. Since concepts capture some relevant
properties of objects in a given context, a classical representation might be feasible in some

green beanvegetable

3-9 inches

long/thin

green

fibrous

edible
0.9

part-of

plant

0.9
is

0.7is

0.6is

0.9
part-of0.9

is
0.8 is

0.9 is

0.9
is

0.8
is

Figure 3    A small part of a probabilistic semantic network (adapted from
[SWC+95, p. 91])
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feathered
winged
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animate
feathered
winged
grayish

sparrow -
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animate
feathered
winged
brownish

robin

animate
feathered
winged
red-breast

bird

sparrow

Figure 4    An exemplar representation (adapted
from [SM81, p. 145])
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specific context at hand. In such cases, there is no need to use the more complicated
probabilistic or exemplar views. As Winston notes [Win92]: “Once a problem is described using
appropriate representation, the problem is almost solved.” Thus, for each view there are
problems which are best solved using that view. Some newer knowledge-based models seek to
combine the different representations (e.g. multi-paradigm expert systems [Flo95]). There is also
evidence that human mind deploys both abstract and exemplar representations and all three
views will have to be reflected in a comprehensive theory of concepts.

One important lesson follows from this presentation, however: Natural concepts, which we deal
with on daily basis and try to model in software, are inherently complex. The classical view
works best for mathematical concepts. It might also be adequate for creating simplified models
of natural concepts. However, it usually breaks if we try to cover the diversity of natural
concepts more adequately. This finding is particularly relevant to software reuse whose goal is
to provide generic solutions that work in many contexts.

2.3 Important Issues Concerning Concepts
So far we have covered some basic terminology as well as the three major views of concepts. In
the following seven sections we will focus on some important issues concerning concepts.
These issues are concept stability, concept core, information contents of features, relationships
between features, quality of features, the relationship between features and dimensions and
between abstraction and generalization.

2.3.1 Stability of Concepts
Any natural concept, even the simplest, involves an enormous amount of knowledge. Stillings
et al. note [SWC+95, p. 95]:

“Your knowledge about cucumbers, for example, might include tactile information
(‘those tiny bumps with little spines growing out of them’), the picking size for several
varieties, when and how to plant, type of machinery and labor needed for farm harvest,
how to test for bitterness, smell when rotting, use in several of the world’s cuisines, next-
door neighbors hate them, waxy grocery store surface an unnatural phenomenon, and so
on.”

It is clear that one person’s knowledge about a concept evolves over time. Thus, we talk about
temporal concept stability within the mind of a person or intra-personal concept stability. If we
further consider the fact that the knowledge which different persons associate with a concept
varies, we can also speak about inter-personal concept stability.11

                                                                

11 In [SM81, p. 10], intra-personal concept stability is referred to as “within-individual stability”
and inter-personal concept stability as “across-individual stability”.

Properties True of All Members?Exemplar View

Probabilistic View Classical View

Unitary Representation?

yesno

yesno

Figure 5    Three views of concepts (from [SM81, p. 4])
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The knowledge associated with a concept also depends on the context. Before explaining this
idea, we first need to consider some aspects of the basic architecture of the human mind.
Roughly speaking, the human mind has two kinds of storage: the long-term memory and the
working (or short-term) memory (see [New90] for a thorough presentation of various theories
of cognition).12  The long-term memory is where all the knowledge which we maintain over long
periods of time (minutes to years) is stored. The knowledge in the long-term memory is not
directly accessible to thought processes. The working memory, on the other hand, contains the
knowledge which is directly accessible. However, the working memory is limited both in terms
of time and space. Knowledge in the working memory needs to be “refreshed” every few
seconds to in order to stay there. The space limitation is described by the famous “rule of
seven, plus or minus two” by Miller [Mil56], which states that a person can only remember
about seven, plus or minus two, items at a time. Because of this limitation of the working
memory, only these aspects of a concept will be brought into the working memory, which are
considered relevant to solving the problem at hand. A possible characterization of this idea is to
think of concepts as actually being assembled “on-the-fly” as they are needed. This effect tells
us that the content of a concept depends on the context in which the concept is currently used.
We will refer to this effect as cognitive subjectivity.

2.3.2 Concept Core
For a graphical figure to be an instance of a square, it must have the following four defining
properties: closed figure, four sides, sides equal in length, and  equal angles. These properties
are common to all instances of the concept square. They are not only common to all squares –
they are essential for a square to be a square. Squares have other properties, e.g. certain  size,
which are non-essential. The essential properties of a concept constitute its core.

Concepts are used in the inference process during problem solving. Once we assume, for
example, that a certain object is a square, we can infer the four essential properties of
squareness from this assumption.

Concepts are used to solve different problems in different contexts. Not all properties are
relevant in all contexts, but the more contexts a property is relevant in the more essential the
property is. Necessary properties which, by definition, hold for all instances of an object are
very likely to be essential since one can relay on the fact that they hold and they are usually
used in many contexts. Therefore, we assert that defining properties are essential. But this
statement describes essentiality only in the context of the classical view, which assumes that
concepts have their defining properties. In general, this view is too restrictive.

If we subscribe to the probabilistic view, from the fact that an object is an instance of a concept,
we can infer that it has some property only with a certain probability. Such inference is still
useful and used by people. And the more situations the non-necessary property can be used in,
the more essential it is. Thus, an essential property does not need to be common to all instances
of a concept. For example, the property flies is an essential property of birds, but it does not
hold for all its instances.

2.3.3 Informational Contents of Features
The simplest and natural way of describing a concept is by listing its properties. For example,
for the concept daisy we listed inanimate, stem, and white (see Table 1). By listing stem as its
feature, we mean more specifically that a daisy has a stem as its part. We can represent this fact
by drawing an arrow from daisy to stem and annotating this arrow with part-of. This is exactly
how we produced the semantic net in Figure 3. Thus, a feature can be represented as another
concept plus its relationship to the concept which is being described. But a feature can also be
represented using more than one concept (and more than one relationship) as in the case of red

                                                                

12 In [New90, p. 30] Newell notes that the current understanding of these two kinds of storage is
that the working memory is a part of the long-term memory rather than a separate memory
requiring transfer. This view aligns well with the idea of spreading activation discussed in
Section 2.2.3.
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subjectivity

Essential properties
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essential properties
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breast (see Table 1), i.e. robin p a r t - o f  breast i s  red. If we would like to reveal more
semantics of red and breast, we would have to grow this graph bigger and bigger by adding
new concepts and relationships. Relationships are themselves concepts. For example, the
properties of part-of can be modeled by another semantic network.

We can view concepts as chunks of knowledge. Features are also chunks of knowledge used to
build up a larger chunk of knowledge, i.e. the concept they describe. It becomes immediately
clear that the distinction between a concept and a feature is a relative one and determined by
the focus of the description. If we would like to know the contents of a feature, we would move
our focus on that feature and break it down piece by piece, as we did it with the initial concept.

Why seem features so natural for describing concepts?

Features allow as to describe concepts by using few items or chunks. As we remember, the
working memory of the human mind can store only a limited number of chunks at a time —
seven or so (see Section 2.3.1). Therefore it is convenient to list inanimate, stem, and white for
a daisy and not to instantly think of all the detail that these features imply. These details can be
retrieved from the long-term memory as needed. Chunking, i.e. organizing information in units
and doing this in a recursive way, is believed to be the basic property of human memory (see
[New90]). It tells us that the human mind internally employs modularity and that any models we
build have to be modular in order to be understandable.

2.3.4 Feature Composition and Relationships Between Features
Relationships between features are particularly interesting in the context of feature composition.
Feature composition can be regarded as a means of creating concepts or concept instances. In
this context, relationships between features are manifested through constraints on feature
combinations and translations between features:

• Constraints on feature combinations: In general, features cannot be freely combined since
certain feature combinations may lead to a contradiction. For example, a matrix cannot be
non-square and diagonal at the same time since diagonal implies square.

• Translations between features: Certain features (or feature combinations) may imply some
other features. In our matrix example, if a matrix is diagonal then it is also square.

2.3.5 Quality of Features
The quality of features has to be judged in the context of the tasks they are used for. However,
three general feature qualities can be given here:

• Primitiveness: Features make apparent relationships (e.g. differences and similarities)
between concepts. A feature is primitive if it does not have to be decomposed in order to
show some relevant differences among concept instances.

• Generality: A feature is more general if it applies to a larger number of concepts. A set of
features is general, if it describes a large number of concepts with a minimal number of
features.

• Independency: The fewer constraints on feature combinations apply to a set of features the
larger number of concepts can be described by combining the features.

These are structural qualities which tell us how “economical” a set of features is in describing
relevant concepts.

2.3.6 Features versus Dimensions
Featural descriptions use different numbers of features per concept. Therefore it is easy to
introduce new features and add them to a description of a concept. In the dimensional
approach, each concept is represented using all dimensions. This requirement makes the

Concepts vs.
features



Generative Programming, K. Czarnecki26

dimensional approach slightly less flexible: adding new dimensions to a description model
requires all concept descriptions to be updated and adding a value to the description of one
concept requires a new dimension for this value. Sometimes the special pseudo-value not
applicable has to be used in order to indicate that a dimension makes no sense for certain
concepts. The featural approach does not suffer from these problems.

In a featural description, two concepts may be described using incomparable sets of features.
On the other hand, the dimensional approach makes the similarities and differences between
concepts more explicit than the featural approach since each dimension corresponds to a
comparison criterion. Dimensions can also be seen as an organization mechanism for their
values. This makes the dimensional approach easier to use than a flat feature set. Finally, the
dimensional approach guides the concept description (or synthesis) process by requiring to
choose a value for each dimension.

Clearly some kind of combination of both description styles would be useful. Indeed, feature
diagrams described later in Chapter 5 combine both styles.

2.3.7 Abstraction and Generalization
Both in the classical and the probabilistic view, a concept is defined through an abstract
summary description. This abstract description is usually the result of an abstraction and
generalization process, which takes a number of sample objects (i.e. exemplars) as its input.

Abstraction involves the extraction of properties of an object according to some focus: only
those properties are selected which are relevant with respect to the focus (e.g. a certain class of
problems). Thus, abstraction is an information filtration process which reduces the initial
amount of information to be used in problem solving.

Generalization is an inductive process of collecting information about a number of objects and
presenting this information in a single description. Generalization usually results in the increase
of information. The construction of a generalized description of a number of instances can also
lead to a larger description than each individual object description. For example, in the first step,
a number of object descriptions could be lumped together (which corresponds to the exemplar
view). In the second step, the compound description could be restated in a more declarative
form and, as a result, become more concise (no information is lost in this process, i.e. all original
objects could be reproduced from this description). However, in most cases, generalization and
abstractions are combined when describing a set of objects. This combination produces an
abstract and generalized description which is even more concise since the information not
relevant to the abstraction focus is removed.

Abstraction, concretization, generalization, and specialization are operations on concepts:

• An existing description of a set of objects can be further generalized by adding new
objects to the set and modifying the description to take account of these new objects.

• An existing description of a set of objects can be further abstracted using a new focus and
filtering away all parts of the description which are not relevant with respect to the new
focus.

• The inverse operation to abstraction is concretization (also called refinement).
Concretization results in the increase of detail per object.

• The inverse operation to generalization is specialization. Specializing the description of a
set of objects involves the reduction of the set to a subset.

The relationship between the input and the output concepts of each operation gives rise to the
abstraction, concretization, generalization, and specialization relationships.

Abstraction

Generalization

Concretization
(refinement) and
specialization
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Generalization and abstraction are often confused, even in popular software engineering
textbooks ([Nav96] mentions some of them). The confusion can be contributed to the fact that a
typical hierarchy of data concepts, such as the one in Figure 6, can be interpreted as an
abstraction hierarchy or a generalization hierarchy or both. Indeed, the relationships in Figure 6
represent both abstraction and generalization relationships. For example, collection is a
generalization of unstructured collection since the set of all unstructured collections is a
subset of the set of all collections (in a given universe of collections). At the same time,
collection is an abstraction of unstructured collection since collection abstracts away the
property unstructured of unstructured collection.  Furthermore, the abstraction relationships in
Figure 6 use multiple abstraction criteria (e.g. structuring and element type). An example of a
hierarchy of sets using one abstraction criterion, specifically the type of representation,  is
shown in Figure 7. In any case, the hierarchies in Figure 6 and Figure 7 involve both abstraction
and generalization.

A thorough treatment of the topic of generalization and abstraction in the context of computer
science can be found in [Nav96].

2.4 Conceptual Modeling, Object-Orientation, and Software
Reuse
Concepts can be regarded as natural modeling elements since they represent a theory about
knowledge organization in the human mind. The relationship between concepts and object-
orientation (specifically the classical object model) is apparent: concepts correspond to classes.
The major difference is that object-orientation makes more specific assumptions about objects:
they have state and behavior and collaborate through interactions.

number
collection

number
sequence

sequencequeuedictionary

linear
structure

typed
collection

structured
collection

unstructured
collection

treebagset

collection

Figure 6    Partial hierarchy of data concepts (adapted from [Nav96, p. 38])
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Figure 7    Partial abstraction hierarchy of data concept set (adapted from
[Nav96, p.39])
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Based on the presentation of the three views of concepts we can draw the following
conclusions:

• The classical view of concepts is well-suited for representing well-defined concepts which
are defined by a set of necessary and sufficient properties. In the classical object model,
this view is adequately modeled by classes. A class represents a unitary and exact
description of all its instances.

• Natural concepts are modeled more adequately using probabilistic and exemplar
representations. In software engineering, concepts such as customer and bank account are
examples of natural concepts. The probabilistic and the exemplar views allow us to
represent the great structural variety of instances of natural concepts. This structural
variety is related to the fact that natural concepts are used in a large number of different
contexts – each requiring different structures. In the classical object model, the structural
variety of a concept can be expressed only in indirect ways, e.g. encoded in the state space
of an object or as an often large and complicated inheritance hierarchy. It would be clearly
desirable to have a means of explicitly and concisely representing concepts including a
convenient mechanism for expressing their variants. This critique aligns well with the
famous “critique of pure objects” by Harrison and Ossher [HO93], which points out the
inadequate handling of subjectivity and context dependency of objects by the classical
object model. The need for an adequate support for modeling concept variations is
particularly important in the context of reusable software.

• Featural and dimensional descriptions represent a convenient model for representing the
variability of concepts. In this context, the issues concerning concepts, features, and
dimensions discussed in Section 2.3 (e.g. essentiality of features, relationships between
features, features vs. dimensions) become relevant.

• The probabilistic and the exemplar representation models are well suited for implementing
component retrieval mechanisms since they allow us to capture the relationships between
natural language terms (i.e. words used to index reusable components).

2.5 Suggested Readings
The book by Stillings et al. [SWC+95] represents a modern and comprehensive treatment of
cognitive science. For an excellent treatment of the three views and a comprehensive survey of
theories of concepts see [SM81]. The book by Newell [New90] – one of the AI classics –
provides a survey of theories of cognition. The topic of abstraction and generalization in the
context of computer science is discussed in [Nav96].
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Chapter 3 Domain Engineering

3.1 What Is Domain Engineering?
Most software systems can be classified according to the business area and the kind of tasks
they support, e.g. airline reservation systems, medical record systems, portfolio management
systems, order processing systems, inventory management systems, etc. Similarly, we can also
classify parts of software systems according to their functionality, e.g. database systems,
synchronization packages, workflow systems, GUI libraries, numerical code libraries, etc. We
refer to areas organized around classes of systems or parts of systems as domains.13

Obviously, specific systems or components within a domain share many characteristics since
they also share many requirements. Therefore, an organization which has built a number of
systems or components in a particular domain can take advantage of the acquired knowledge
when building subsequent systems or components in the same domain. By capturing the
acquired domain knowledge in the form of reusable assets and by reusing these assets in the
development of new products, the organization will be able to deliver the new products in a
shorter time and at a lower cost. Domain Engineering is a systematic approach to achieving
this goal.

Domain Engineering is the activity of collecting, organizing, and storing past
experience in building systems or parts of systems in a particular domain in the form
of reusable assets (i.e. reusable workproducts), as well as providing an adequate
means for reusing these assets (i.e. retrieval, qualification, dissemination,
adaptation, assembly, etc.) when building new systems.

Domain Engineering encompasses three main process components14 Domain Analysis, Domain
Design, and Domain Implementation. The main purpose of each of these components is given
in Table 3.

                                                                

13 We give a precise definition of a domain in Section 3.6.1.

14 Most of the current Domain Engineering methods still refer to the process components as
phases. Following a recent trend in the software development methods field, we do not refer to
analysis, design, and implementation as phases since the term phase implies a rigid, waterfall-
style succession of engineering steps. Modern process models, such as the Rational Objectory
Process, consider analysis, design, and implementation as process components. These are
independent of the time dimension, which is itself divided into phases (see Section 4.5.1). In this
newer terminology, however, phases indicate the maturity of the project over time. Important
note: In order to be consistent with the original literature, the descriptions of the Domain
Engineering methods in Section 3.7 use the term phase in its older meaning (i.e. to denote
process components).

Domain
Engineering

Domain Analysis,
Domain Design,
and Domain
Implementation
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The results of Domain Engineering are reused during Application Engineering, i.e. the process
of building a particular system in the domain (see Figure 8).

Table 3 makes the distinction between the conventional software engineering and Domain
Engineering clear: while the conventional software engineering concentrates on satisfying the
requirements for a single system, Domain Engineering concentrates on providing reusable
solutions for families of systems. By putting the qualifier “domain” in front of analysis, design,
and implementation, we emphasize exactly this family orientation of the Domain Engineering
process components.

Indeed, if you take a look at the intentions of most of the current software engineering methods
(including object-oriented analysis and design methods), you will realize that these methods aim
at the development of “this specific system for this specific customer and for this specific
context.” We refer to such methods software system engineering methods.

Domain Engineering, on the other hand, aims at the development of reusable software, e.g. a
generic system from which you can instantiate concrete systems or components to be reused in
different systems. Thus, Domain Engineering has to take into account different sets of
customers (including potential ones) and usage contexts. We say that Domain Engineering
addresses multi-system scope development.

Domain Engineering can be applied to a variety of problems, such as development of domain-
specific frameworks, component libraries, domain-specific languages, and generators. The
Domain Analysis process subcomponent of Domain Engineering, in particular, can also be
applied to non-software-system-specific domains. For example, it has been used to prepare
surveys, e.g. a survey of Architecture Description Languages [Cle96, CK95].

At the beginning of this section, we said that there are domains of systems and domains of
parts of systems (i.e. subsystems). The first kind of domains is referred to as vertical domains
(e.g. domain of medical record systems, domain of portfolio management systems, etc.) and the
second kind is referred to as horizontal domains (e.g. database systems, numerical code
libraries, financial components library, etc.). The product of Domain Engineering applied to a
vertical domain is reusable software which we can instantiate to yield any concrete system in
the domain. For example, we could produce a system framework  (i.e. reusable system
architecture plus components) covering the scope of a entire vertical domain. On the other
hand, applying Domain Engineering to a horizontal domain yields reusable subsystems, i.e.
components. We will come back to the notion of vertical and horizontal domains in Section
3.6.2.

In our terminology, a component is a reusable piece of software which is used to build more
complex software. However, as already indicated, components are not the only workproducts of
Domain Engineering. Other workproducts include reusable requirements, analysis and design
models, architectures, patterns, generators, domain-specific languages, frameworks, etc. In
general, we refer to any reusable workproduct as a reusable asset.

Application
Engineering

Domain Engineering
process component

Main purpose

Domain Analysis defining a set of reusable requirements for the systems in the
domain

Domain Design establishing a common architecture for the systems in the domain

Domain Implementation implementing the reusable assets, e.g. reusable components,
domain-specific languages, generators, and a reuse infrastructure

Table 3    Three Main Process Components of Domain Engineering

Software system
engineering
methods

Multi-system scope
development

Components and
other reusable
assets
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3.2 Domain Engineering and Related Approaches
Domain Engineering addresses the following two aspects:

• Engineering of reusable software: Domain Engineering is used to produce reusable
software.

• Knowledge management: Domain Engineering should not be a “one-shot” activity.
Instead, it should be a continuous process whose main goal is to maintain and update the
knowledge in the domain of interest based on experience, scope broadening, and new
trends and insights (see [Sim91] and [Ara89]).

Current Domain Engineering methods concentrate on the first aspect and do not support
knowledge evolution. The knowledge management aspect is addressed more adequately in the
work on Organizational Memory [Con97, Buc97], Design Rationale [MC96], and Experience
Factory [BCR94]. These three approaches have much in common with Domain Engineering,
although they all come from different directions and each of them has a different focus:

• Domain Engineering concentrates on delivering reusable software assets.

• Organizational Memory concentrates on providing a common medium and an organized
storage for the informal communication among a group of designers.

• Design Rationale research is concerned with developing effective methods and
representations for capturing, maintaining and reusing records of the issues and trade-offs
considered by designers during design and the ultimate reasons for the design decisions
they make.

• Experience Factory provides a means for documenting the experience collected during past
projects. It primarily concentrates on conducting mostly quantitative measurements and
the analysis of the results.

As the research in these four areas advances, the overlap between them becomes larger. We
expect that future work on Domain Engineering will address the knowledge management aspect
to a larger degree (e.g. [Bai97]). In this chapter, however, we exclusively focus on the
“engineering reusable software” aspect of Domain Engineering.

3.3 Domain Analysis
The purpose of Domain Analysis is to

• select and define the domain of focus and

• collect relevant domain information and integrate it into a coherent domain model.

The sources of domain information include existing systems in the domain, domain experts,
system handbooks, textbooks, prototyping, experiments, already known requirements on future
systems, etc.

It is important to note that Domain Analysis does not only involve recording the existing
domain knowledge. The systematic organization of the existing knowledge enables and
encourages us to actually extend it in creative ways. Thus, Domain Analysis is a creative
activity.

A domain model is an explicit representation of the common and the variable properties of the
systems in a domain and the dependencies between the variable properties. In general, a
domain model consists of the following components:

Organizational
Memory, Design
Rationale, and
Experience Factory

Domain model:
commonalities,
variabilities, and
dependencies



Generative Programming, K. Czarnecki36

• Domain definition: A domain definition defines the scope of a domain and characterizes its
contents by giving examples of systems in a domain, counterexamples (i.e. systems outside
the domain), and generic rules of inclusion or exclusion (e.g. “Any system having the
capability X belongs to the domain.”).

• Domain lexicon: A domain lexicon defines the domain vocabulary.

• Concept models: Concept models describe the concepts in a domain expressed in some
appropriate modeling formalism (e.g. object diagrams, interaction and state-transition
diagrams, or entity-relationship and data-flow diagrams).

• Feature models: Feature models define a set of reusable and configurable requirements for
specifying the systems in a domain. Such requirements are generally referred to as features.
A feature model prescribes which feature combinations are meaningful: It represents the
configuration aspect of the reusable software. We discuss feature models in Chapter 5.4 in
great detail.

Domain Analysis generally involves the following activities:

• Domain planning, identification, and scoping: planning of the resources for performing
domain analysis, identifying the domain of interest, and defining the scope of the domain;

• Domain modeling: developing the domain model.

Table 4 gives you a more detailed list of Domain Analysis activities. This list was compiled by
Arango [Ara94] based on the study of eight different Domain Analysis methods.

Domain Definition

Domain Lexicon

Concept model

Feature model

Domain
Analysis
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Analysis Domain DesignDomain Design
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Figure 8    Software development based on Domain Engineering (adapted from
[MBSE97])
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Domain Analysis major
process components

Domain Analysis activities

Domain characterization

(domain planning and
scoping)

Select domain

Perform business analysis and risk analysis in order to determine
which domain meets the business objectives of the organization.

Domain description

Define the boundary and the contents of the domain.

Data source identification

Identify the sources of domain knowledge.

Inventory preparation

Create inventory of data sources.

Data collection Abstract recovery

Recover abstractions

(domain modeling) Knowledge elicitation

Elicit knowledge from experts

Literature review

Analysis of context and scenarios

Data analysis Identification of entities, operations, and relationships

(domain modeling) Modularization

Use some appropriate modeling technique, e.g. object-oriented
analysis or function and data decomposition. Identify design
decisions.

Analysis of similarity

Analyze similarities between entities, activities, events,
relationships, structures, etc.

Analysis of variations

Analyze variations between entities, activities, events,
relationships, structures, etc.

Analysis of combinations

Analyze combinations suggesting typical structural or behavioral
patterns.

Trade-off analysis

Analyze trade-offs that suggest possible decompositions of
modules and architectures to satisfy incompatible sets of
requirements found in the domain.

Taxonomic classification Clustering

Cluster descriptions.

(domain modeling) Abstraction

Abstract descriptions.

Classification

Classify descriptions.

Generalization

Generalize descriptions.

Vocabulary construction

Evaluation Evaluate the domain model.

Table 4    Common Domain Analysis process  by Arango [Ara94]
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3.4 Domain Design and Domain Implementation
The purpose of Domain Design is to develop an architecture for the systems in the domain.
Shaw and Garlan define software architecture as follows [SG96]:

“Abstractly, software architecture involves the description of elements from which
systems are built, interactions among those elements, patterns that guide their
composition, and constraints on these patterns. In general, a particular system is defined
in terms of a collection of components and interactions among these components. Such a
system may in turn be used as a (composite) element in a larger system design.”

Buschmann et al. offer another definition of software architecture [BMR+96]:

A software architecture is a description of the subsystems and components of a software
system and the relationships between them. Subsystems and components are typically
specified in different views to show the relevant functional and nonfunctional properties
of a software system. The software architecture of a system is an artifact. It is the result of
the software development activity.

Just as the architecture of a building is usually represented using different views (e.g. static
view, dynamic view, specification of materials, etc.), the adequate description of a software
architecture also requires multiple views. For example, the 4+1 View Model of software
architecture popularized by the Rational methodologist Philippe Kruchten consists of a logical
view (class, interaction, collaboration, and state diagrams), a process view (process diagrams), a
physical view (package diagrams), a deployment view (deployment diagrams), plus a use case
model (see Figure 17).

The elements and their connection patterns in a software architecture are selected to satisfy the
requirements on the system (or the systems) described by the architecture. When developing a
software architecture, we have to consider not only functional requirements, but also
nonfuctional requirements such as performance, robustness, failure tolerance, throughput,
adaptability, extendibility, reusability, etc. Indeed, one of the purposes of software architecture
is to be able to quickly tell how the software satisfies the requirements. Eriksson and Penker
[EP98] say that “architecture should serve as a map for the developers, revealing how the
system is constructed and where specific functions or concepts are located.”

Certain recurring arrangements of elements have proven to be particularly useful in many
designs. We refer to these arrangements as architectural patterns. Each architectural pattern
aims at satisfying a different set of requirements. Buschman et al. have compiled a (partial) list
of architectural patterns (see [BMR+96] for a detailed description of these patterns):

• Layers pattern : An arrangement into groups of subtasks in which each group of subtasks
is at a particular level of abstraction.

• Pipes and filters pattern : An arrangement that processes a stream of data, where a number
of processing steps are encapsulated in filter components. Data is passed through pipes
between adjacent filters, and the filters can be recombined to build related systems or
system behavior.

• Blackboard pattern : An arrangement where several specialized subsystems assemble their
knowledge to build a partial or approximate solution to a problem for which no deterministic
solution strategy is known.

• Broker pattern : An arrangement where decoupled components interact by remote service
invocations. A broker component is responsible for coordinating communication and for
transmitting results and exceptions.

• Model-view-controller pattern : A decomposition of an interactive system into three
components: A model containing the core functionality and data, one or more views

Software
architecture

Architectural
patterns
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displaying information to the user, and one or more controllers that handle user input. A
change-propagation mechanism ensures consistency between user interface and model.

• Microkernel pattern : An arrangement that separates a minimal functional core from
extended functionality and customer-specific parts. The microkernel also serves as a socket
for plugging in these extensions and coordinating their collaboration.

It is important to note that real architectures are usually based on more than one of these and
other patterns at the same time. Different patterns may be applied in different parts, views, and
at different levels of an architecture.

The architectural design of a system is a high-level design: it aims at coming up with a flexible
structure which satisfies all important requirements and still leaves a large degree of freedom for
the implementation. The architecture of a family of systems has to be even more flexible since it
must cover different sets of requirements. In particular, it has to include an explicit
representation of the variability (i.e. configurability) it covers so that concrete architectures can
be configured based on specific sets of requirements. One way to capture this variability is to
provide configuration languages for the configurable parts of the architecture. We will see a
concrete example of a configuration language in Chapter 10.

A flexible architecture is the prerequisite for enabling the evolution of a system. As a rule, we
use the most stable parts to form the “skeleton” and keep the rest flexible and easy to evolve.
But even the skeleton has to be sometimes modified. Depending on the amount of flexibility an
architecture provides, we distinguish between generic and highly flexible architectures
[SCK+96]:

• Generic architecture: A system architecture which generally has a fixed topology but
supports component plug-and-play relative to a fixed or perhaps somewhat variable set of
interfaces. We can think of a generic architecture as a frame with a number of sockets
where we can plug in some alternative or extension components. The components have to
clearly specify their interfaces, i.e. what they expect and what they provide.

• Highly flexible architecture: An architecture which supports structural variation in its
topology, i.e. it can be configured to yield a particular generic architecture. The notion of a
highly flexible architecture is necessary since a generic architecture might not be able to
capture the structural variability in a domain of highly diverse systems. In other words, a
flexible architecture componentizes even the “skeleton” and allows us to configure it and to
evolve it over time.

Software architecture is a relatively young field with a very active research. You will find more
information on this topic in [SG96, BMR+96, Arch, BCK98].

Domain Design is followed by Domain Implementation. During Domain Implementation we
apply appropriate technologies to implement components, generators for automatic component
assembly, reuse infrastructure (i.e. component retrieval, qualification, dissemination, etc.), and
application production process.15

3.5 Application Engineering
Application Engineering is the process of building systems based on the results of Domain
Engineering (see Figure 8). During the requirements analysis for a new systems, we take
advantage of the existing domain model and select the requirements (features) from the domain
model which match customer needs. Of course, new customer requirements not found in the
domain model require custom development. Finally, we assemble the application from the

                                                                

15 Some authors (e.g. [FPF96, p. 2]) divide Domain Engineering into only two parts, Domain
Analysis and Domain Implementation, and regard the development of an architecture merely as
an activity in the Domain Implementation.

Generic vs. highly
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existing reusable components and the custom-developed components according to the reusable
architecture, or, ideally, let a generator do this work.

3.6 Selected Domain Engineering Concepts
In the following sections, we discuss a number of basic concepts related to Domain
Engineering: domain, domain scope, relationships between domains, problem space and
solution space, and specialized Domain Engineering methods.

3.6.1 Domain
The American Heritage Dictionary of the English Language gives us a very general definition of
a domain [Dict]:

“Domain: A sphere of activity, concern, or function; a field, e.g. the domain of history.”

According to this definition, we can view a domain as a body of knowledge organized around
some focus, such as a certain professional activity.

Simos et al. note that the term domain is used in different disciplines and communities, such as
linguistics, cultural research, artificial intelligence (AI), object-oriented technology (OO), and
software reuse, in somewhat different meanings [SCK+96, p. 20]. They distinguish two general
usage categories of this term:

1. domain as the “real world”;

2. domain as a set of system.

The notion of domain as the “real world” is used in the AI and knowledge-engineering
communities. For example, the guidebook on Knowledge-Based Systems Analysis and Design
Support (KADS), which is a prominent method for developing knowledge-based systems, gives
the following definition [TH93, p. 495]:

“Domain: An area of or field of specialization where human expertise is used, and a
Knowledge-Based System application is proposed to be used within it.”

Domain as the “real world” encapsulates the knowledge about the problem area (e.g. accounts,
customers, deposits and withdrawals, etc., in a bank accounting domain), but not about the
software from this problem area. This notion of domain as the “real world” is also used in
object-oriented technology. For example, the UML (Unified Modeling Language) glossary
defines domain as follows [UML97a]:

“Domain: An area of knowledge or activity characterized by a set of concepts and
terminology understood by practitioners in that area.”

In the context of software reuse and particularly in Domain Engineering, the term domain
encompasses not only the “real world” knowledge but also the knowledge about how to build
software systems in the domain of interest. Some early definitions even equate domain to a set
of systems, e.g. [KCH+90, p. 2]:

“Domain: A set of current and future applications which share a set of common
capabilities and data.”

or [Bai92, p. 1]:

“Domains are families of similar systems.”

This domain as a set of systems view is more appropriately interpreted as the assertion that a
domain encompasses the knowledge used to build a family of software systems.
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It is essential to realize that a domain is defined by the consensus of its stakeholders, i.e.
people having an interest in the domain, e.g. marketing and technical managers, programmers,
end-users, and customers, and therefore it is subject to both politics and legacies.

Srinivas makes the key observation that the significance of a domain is externally attributed
[Sri91]:

Nothing in the individual parts of a domain either indicates or determines the cohesion
of the parts as a domain. The cohesion is external and arbitrary—a collection of entities
is a domain only to an extent that it is perceived by a community as being useful for
modeling some aspect of reality.

Shapere explains this community-based notion of a domain as follows [Sha77] (paraphrase from
[Sri91]):

In a given community, items of real-world information come to be associated as bodies of
information or problem domains having the following characteristics:

• deep or comprehensive relationships among the items of information are
suspected or postulated with respect to some class of problems;

• the problems are perceived to be significant by the members of the community.

Finally, it is also important noting that the kinds of knowledge contained in a domain include
both

• formal models, which can often be inconsistent among each other, e.g. different domain
theories, and

• informal expertise, which is difficult or impossible to formalize (as exemplified by the
problems in the area of expert systems [DD87]).

As a conclusion, we will adopt the following definition of a domain:

Domain: An area of knowledge

• scoped to maximize the satisfaction of the requirements of its stakeholders,

• including a set of concepts and terminology understood by practitioners in that
area, and

• including knowledge of how to build software systems (or parts of software
systems) in that area.

3.6.2 Domain Scope
There are two kinds of domain scope with respect to the software systems in a domain (see
Figure 1, p. 7):

• Horizontal scope or system category scope: How many different systems are in the
domain? For example, the domain of containers (e.g. sets, vectors, lists, maps, etc.) has a
larger horizontal scope than the domain of matrices since more application need containers
than matrices.

• Vertical scope or per-system scope: Which parts of these systems are in the domain? The
vertical scope is the larger the larger parts of the systems are in the domain. For example,
the vertical scope of the domain of containers is smaller than the vertical scope of the
domain of portfolio management systems since containers capture only a small slice of the
functionality of a portfolio management system.

Horizontal and
vertical scope
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Based on the per-system scope, we distinguish between the following kinds of domains
[SCK+96]:

• vertical vs. horizontal domains;

• encapsulated vs. diffused domains.

Vertical domains contain complete systems (see Figure 9). Horizontal domains contain only
parts of the systems in the domain scope. Encapsulated domains are horizontal domains where
the system parts in the domain are well-localized with respect to their systems. Diffused
domains are also horizontal domains, but they contain several, different parts of each system in
the domain scope.16

The scope of a domain can be determined using different strategies [SCK+96]:

1. choose a domain from the existing “native” domains (i.e. a domain which is already
recognized in an organization);

2. define an innovative domain based on

• a set of existing software systems sharing some commonalities (i.e. a family of systems)
and/or

• some marketing strategy.

The last two strategies are closely related to the following two concepts:

                                                                

16 Please note that, in Domain Engineering, the terms horizontal and vertical are used in a
different sense than in the Object Management Architecture (OMA) defined by the Object
Management Group (OMG, see www.omg.org). The OMG uses the term vertical domain
interfaces to denote component interfaces specific to a specialized market (e.g. manufacturing,
finance, telecom, transportation, etc.) and the term horizontal facilities (or common facilities) to
denote generic facilities such as printing, database facilities, electronic mail facilities, etc. Thus,
the OMG distinguishes between horizontal and vertical components, whereas in Domain
Engineering we say that components have a horizontal nature in general since their scope does
not cover whole systems but rather parts of systems. In Domain Engineering terms (see Section
6.4.1), OMG horizontal components are referred as modeling components (i.e. they model some
general aspect such as persistency or printing) and the OMG vertical components are referred
to as application-specific components. On the other hand, it is correct to say that modeling
components have a larger horizontal scope than application-specific components.
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System C

System B
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Figure 9    Vertical, horizontal, encapsulated, and diffused domains. (Each rectangle represents
a system. The shaded areas depict system parts belonging to the domain.)
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• Product family: “A product family is a group of products that can be built from a common
set of assets.” [Wit96, p. 16] A product family is defined on the basis of similarities
between the structure of its member products. A product family shares at least a common
generic architecture. Product families are scoped based on commonalities between the
products.

• Product line: “A product line is a group of products sharing a common, managed set of
features that satisfy the specific needs of a selected market.” [Wit96, p. 15] Thus, the
definition of a product line is based on a marketing strategy rather than similarities between
its member products. The features defined for a product line might require totally different
solutions for different member products. A product line might be well served with one
product family; however, it might also require more than one product family. On the other
hand, a product family could be reused in more then one product line. Product lines are
scoped based on a marketing strategy.

Unfortunately, the terms product family and product line are often used interchangeably in the
literature.

We determine the scope of a domain during the domain scoping activity of Domain Analysis.
The scope of a domain is influenced by several factors, such as the stability and the maturity of
the candidate areas to become parts of the domain, available resources for performing Domain
Engineering, and the potential for reuse of the Domain Engineering results within and outside
an organization. In order to ensure a business success, we have to select a domain that strikes a
healthy balance among these factors. An organization which does not have any experience with
Domain Engineering should choose a small but important domain, e.g. some important aspect of
most systems it builds. The resulting components and models can be reused on internal
projects or sold outside the organization. After succeeding with the first domain, the
organization should consider adding more and more domains to cover its product lines.

3.6.3 Relationships Between Domains
We recognize three major types of relationships between domains:

• A is contained in B: All knowledge in domain A also belongs to domain B, i.e. A is a
subdomain of B.17 For example, the domain of matrix packages is a subdomain of the
domain of matrix computation packages since matrix computations cover both matrices and
matrix computation algorithms.

• A uses B: Knowledge in A references knowledge in B in a significant way, i.e. it is
worthwhile to represent aspects of A in terms of B. We say that B is a support domain of
A. For example, the storage aspect of a matrix package implemented using different
containers from a container package. In other words, the domain of container packages is a
support domain of the domain of matrix packages.

• A is analogous to B [SCK+96]: There is a considerable amount of similarity between A and
B; however, it is not necessarily worthwhile to express one domain in terms of the other.
We say that A is an analogy domain of B. For example, the domain of numerical array
packages is an analogy domain of the domain of matrix packages. They are both at a similar
level of abstraction (in contrast to the more fundamental domain of containers, which could
be a support domain for the domain of numerical array and the domain matrix packages) and
clearly have different focuses (see Section 10.1.1.2.6). Yet still there is a considerable
amount of similarity between them and studying one domain may provide useful insights
into the other one.

                                                                

17 In [SCK+96] B is referred to as generalization of A and A as specialization of B.
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3.6.4 Problem and Solution Space
The set of all valid system specifications in a domain (e.g. valid feature combinations) is referred
to as the problem space and the set of all concrete systems in the domain is referred as to as the
solution space (see Figure 10). One of the goals of Domain Engineering is to produce
components, generators, production processes, etc., which automate the mapping between the
system specifications and the concrete systems.

A problem space contains the domain concepts that application programmers wold like to
interact with when specifying systems, whereas the solution space contains the implementation
concepts. There is natural a tension between these two spaces because of their different goals:
The domain concepts have a structure that allows direct and intentional expression of problems.
On the other hand, when we design the implementation concepts, we strive for small, atomic
components that can be combined in as many ways as possible. We want to avoid any code
duplication by factoring out similar code sections into small, (parameterized) components. This
is potentially at odds with the structure of the problem space since not all of these small
components should be visible to the application programmer. There is a number of other issues
to consider when we design both spaces. We discuss them in Section 9.4.3.

The overall structure of the solution space is referred to as the target architecture. For example,
the target architecture of the generative matrix computation library described in Chapter 10 is a
special form of a layered architecture referred to as the GenVoca architecture (see Section 6.4.2).
The target architecture defines the framework for the integration of the implementation
components.

The system specifications in the problem space are usually expressed using a number of
domain-specific languages (DSLs), i.e. languages specialized for the direct and declarative
expression of system requirements in a given domain. These languages define the domain
concepts. We discuss the advantages of DSLs in Section 7.6.1 and the issues concerning their
design and implementation in Section 9.4.1.

3.6.5 Specialized Methods
Different kinds of systems require different modeling techniques. For example, most important
aspects of interactive systems are captured by use cases and scenarios. On the other hand,
large data-centric applications are sometimes more appropriately organized around entity-
relationship diagrams or object diagrams. Additional, special properties such as real-time
support, distribution, and high availability and fault tolerance require specialized modeling
techniques. Thus, different categories of domains will require different specialized domain
engineering methods, i.e. methods deploying specialized notations and processes. We will
discuss this issue in Chapter 4. In Chapter 9, we present DEMRAL, a specialized Domain
Engineering method for developing reusable algorithmic libraries.
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specification

system A
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problem
space
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implementation

system C
implementation

system A
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Figure 10    Problem and solution space
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3.7 Survey of Domain Analysis and Domain Engineering
Methods
There is a large number of Domain Analysis and Domain Engineering methods. Two of them
deserve special attention since they belong to the most mature and best documented (including
case studies) methods currently available: Feature-Oriented Domain Analysis and
Organization Domain Modeling. We describe them in Sections 3.7.1 and 3.7.2. Sections 3.7.3
through 3.7.8 contain short descriptions of twelve other Domain Engineering methods or
approaches. Each of them has made important contributions to some aspects of Domain
Engineering (such as conceptual clustering, rationale capture, formal approaches, etc.).

Two surveys of Domain Analysis methods have been published to date: [WP92] and the more
comprehensive [Ara94]. Compared to these surveys, the following sections also reflect the
newest development in the field of Domain Engineering.

Please note that, in order to be consistent with the original descriptions of the Domain
Engineering methods in the literature, the survey uses the term phase in its older meaning, i.e. to
denote process components (cf. footnote on page 33).

3.7.1 Feature-Oriented Domain Analysis (FODA)
FODA is a Domain Analysis method developed at the Software Engineering Institute (SEI). The
method is described in [KCH+90]. Tool support for FODA is outlined in [Kru93] and a
comprehensive example of applying FODA to the Army Movement Control Domain is
described in [CSJ+92, PC91]. A number of other military projects to use FODA are listed in
[CARDS94, p. F.2]. FODA has also been applied in the area of telecommunication systems, e.g.
[Zal96, VAM+98].

Figure 11   Example of a FODA structure diagram: The structure diagram of the Army
Movement Control Domain (from [PC91])
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3.7.1.1 FODA Process
The FODA process consists of two phases [MBSE97]:18

1. Context Analysis: The purpose of Context Analysis is to define the boundaries of the
domain to be analyzed.

2. Domain Modeling: The purpose of Domain Modeling is to produce a domain model.

We describe these phases in the following two subsections.

3.7.1.1.1 Context Analysis

The FODA Context Analysis defines the scope of a domain that is likely to yield useful domain
products.19 In this phase, the relationships between the domain of focus and other domains or
entities are also established and analyzed for variability. The results of the context analysis
along with factors such as availability of domain expertise and project constraints are used to
limit the scope of the domain [MBSE97]. The results of the Context Analysis are the context
model which includes a structure diagram (see Figure 11) and a context diagram (see Figure
12).

                                                                

18 Originally, FODA contained a third phase called Architectural Modeling (see [KCH+90]).
This phase is no longer part of FODA, but instead it was converted into the Domain Design
phase, which follows FODA in the overall framework of Model-Based Software Engineering
(see Section 3.7.1.3).

19 The FODA Context Analysis corresponds to the domain planning and domain scoping
activities defined in Section 3.3.

Figure 12   Example of a FODA context diagram: The context diagram of the
Army Movement Control Domain (from [PC91]). A FODA context diagram is
a typical data-flow diagram: "The arrows represent the information received
or generated by the movement control domain. The closed boxes represent
the set of sources and sinks of information. The open-ended boxes represent
the databases that the movement control domain must interact with."
[MBSE97]
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3.7.1.1.2 Domain Modeling

During the FODA Domain Modeling phase the main commonalities and variabilities between
the applications in the domain are identified and modeled. This phase involves the following
steps [MBSE97]:

1. Information Analysis: The main purpose of Information Analysis is to capture domain
knowledge in the form of domain entities and the relationships between them. The
particular modeling technique used in this phase could be semantic networks, entity-
relationship modeling, or object-oriented modeling. The result of Information Analysis is
the information model, which corresponds to the concept model mentioned in Section 3.3.

2. Features Analysis: “Features Analysis captures a customer’s or end-user’s understanding
of the general capabilities of applications in a domain. For a domain, the commonalities and
differences among related systems of interest are designated as features and are depicted
in the features model.”20 [MBSE97]

3. Operational Analysis: Operational Analysis yields the operational model which
represents how the application works by capturing the relationships between the objects in
the information model and the features in the features model.

Another important product of this phase is a domain dictionary which defines all the
terminology used in the domain (including textual definitions of the features and entities in the
domain).

3.7.1.2 The Concept of Features
In FODA, features are the properties of a system which directly affect end-users 21:

“Feature: A prominent and user-visible aspect, quality, or characteristic of a software system
or systems.” [KCH+90, p. 3]

For example, “when a person buys an automobile a decision must be made about which
transmission feature (e.g. automatic or manual) the car will have.” [KCH+90, p. 35] Thus,
FODA features can be viewed as features in the sense of Conceptual Modeling (see Section
2.2) with the additional requirement of directly affecting the end-user.

In general there are two definitions of features found in Domain Engineering literature:

1. a end-user-visible characteristic of a system, i.e. the FODA definition, or

2. a distinguishable characteristic of a concept (e.g. system, component, etc.) that is relevant
to some stakeholder of the concept. The latter definition is used in the context of ODM (see
Section 3.7.2) and Capture (see Section 3.7.4) and is fully compatible with the
understanding of features in Conceptual Modeling.

We prefer the latter definition since it is more general and covers the important case of software
components.

The features of a software system are documented in a features model. An important part of this
model is the features diagram. An example of a simple features diagram of an automobile is
shown in Figure 13. This example also illustrates three types of features22:

                                                                

20 The FODA term “features model” is equivalent to the term “feature model” defined in Section
3.3.

21 A user may be a human user or another system with which applications in a domain typically
interact.

Two definitions of
feature

Mandatory,
alternative, and
optional features
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1. mandatory features, which each application in the domain must have, e.g. all cars have a
transmission;

2. alternative features, of which an application can posses only one at a time, e.g. manual or
automatic transmission;

3. optional features, which an application may or may not have, e.g. air conditioning.

The features diagram has the form of a tree in which the root represents the concept being
described and the remaining nodes denote features. The relationships are consists-of
relationships denoting, for example, that the description of a transmission consists of the
descriptions of manual and automatic transmissions.

The FODA-style of featural description subsumes both the featural and the dimensional
descriptions from the classical conceptual modeling, which we discussed in Sections 2.2.1 and
2.3.6. This is illustrated in Figure 14.

                                                                                                                                                                          

22 Strictly speaking, we have to distinguish between direct features of a concept and subfeatues
of features. Direct features of an application may be  mandatory, alternative, or optional with
respect to all applications within the domain. A subfeature may be mandatory, alternative, or
optional with respect to only the applications which also have its parent feature. We explain
this idea in Chapter 5.4.1.
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transmission
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Figure 13    Example showing features of a car (from [KCH+90, p. 36]).
Alternative features are indicated by an arc and optional features by an
empty circle.
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Feature interdependencies are captured using composition rules (see Figure 13). FODA utilizes

two types of composition rules:

1. requires rules: Requires rules capture implications between features, e.g. “air conditioning
requires horsepower greater than 100” (see Figure 13).

2. mutually-exclusive-with rules: These rules model constraints on feature combinations. An
example of such a rule is “manual mutually exclusive with automatic”. However, this rule is
not needed in our example since manual and automatic are alternative features. In general,
mutually-exclusive-with rules allow us to exclude combinations of features where each
feature may be seated in quite different locations in the feature hierarchy.

We can also annotate features with rationales. A rationale documents the reasons or trade-offs
for choosing or not choosing a particular feature. For example, manual transmission is more fuel
efficient than automatic one. Rationales are necessary since, in practice, not all issues
pertaining to the feature model can be represented formally as composition rules (due to the
complexity involved or limited representation means). Theoretically, fuel efficient in Figure 13
could be modeled as a feature. In this case, the dependency between manual and fuel efficient
could be represented as the following composition rule: fuel efficient requires manual.
However, one quickly recognizes that the dependency between fuel efficient and manual is far
more complex. First, we would need some measure of fuel efficiency and, second, fuel efficiency
is influenced by many more factors than just the type of car transmission. The problem becomes
similar to the problem of representing human expertise in expert systems [DD87]. Thus, stating
the rationale informally allows us to avoid dealing with this complexity. In general, rationale
refers to factors that are outside of the considered model.

The usage of the term rationale in the Domain Engineering literature is inconsistent. There are
roughly two definitions of this term:

1. the trade-offs for choosing or not choosing a particular feature, i.e. the FODA definition
(this notion is similar to the forces section in the description of a design pattern [GHJV95]);

2. the particular reason for choosing a specific feature after considering a number of trade-
offs (this would correspond to recording the information about which forces were directly
responsible for arriving at the decision made). The latter definition is used in Capture
(Section 3.7.4) and in ODM (Section 3.7.2). This definition is motivated by the work on
design rationale capture [Shu91, Bai97], the goal of which is to record the reason for
selecting a particular design alternative by a (not necessarily software) designer during the
design of a specific system.

a concept

feature 3feature 2feature 1

b. dimensional descriptiona. featural description

a concept

dimension 2

value 1.1 value 1.2

dimension 1

value 2.1 value 2.2

Figure 14   Representation of featural and dimensional descriptions using FODA feature
notation
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Based on the purpose of a feature, the FODA features model distinguishes between context,
representation, and operational features [MBSE97]:23

1. Context features “are those which describe the overall mission or usage patterns of an
application. Context features would also represent such issues as performance
requirements, accuracy, and time synchronization that would affect the operations.”
[MBSE97]

2. Representation features “are those features that describe how information is viewed by a
user or produced for another application (i.e., what sort of input and output capabilities are
available).” [MBSE97]

3. Operational features “are those features that describe the active functions carried out (i.e.,
what the application does).” [MBSE97]

Of course, other types of features are also possible. For example, Bailin proposes the following
feature types: operational, interface, functional, performance, development methodology,
design, and implementation features [Bai92].

Finally, FODA features are classified according to their binding time into compile-time ,
activation-time , and runtime features [KCH+90]:

1. Compile-time features are “features that result in different packaging of the software and,
therefore, should be processed at compile time. Examples of this class of features are those
that result in different applications (of the same family), or those that are not expected to
change once decided. It is better to process this class of features at compile time for
efficiency reasons (time and space).”

2. Activation-time features (or load-time features) are those “features that are selected at the
beginning of execution but remain stable during the execution. [...] Software is  generalized
(e.g. table-driven software) for these features, and instantiation is done by providing
values at the start of each execution.”

3. Runtime features are those “features that can be changed interactively or automatically
during execution. Menu-driven software is an example of implementing runtime features.”

The FODA classification of features according to binding time is incomplete. There are also
other times, e.g. linking time, or first-call time (e.g. when a method is called the first time; this
time is relevant for just-in-time compilation [Kic97]). In general, feature binding time  can be
classified according to the specific times in the life cycle of a software system. Some specific
products could have their specific times (e.g. debugging time, customization time, testing time,
or, for example, the time when something relevant takes place during the use of the system, e.g.
emergency time, etc.). Also, when a component is used in more than one location in a system,
the allowed component features could depend on this location. Furthermore, binding could
depend on the context or setting in which the system is used. For this reason, Simos et al.
introduced the term binding site ([SCK+96]) which covers all these cases (i.e. binding time and
context). We will discuss this concept in Section 5.4.4.3 in more detail.

The features model describes the problem space in a concise way: “The features model is the
chief means of communication between the customers and the developers of new applications.
The features are meaningful to the end-users and can assist the requirements analysts in the
derivation of a system specification that will provide the desired capabilities. The features
model provides them with a complete and consistent view of the domain.” [MBSE97]

To summarize, a FODA features model consists of the following four key elements:

                                                                

23 The original FODA description in [KCH+90] uses a slightly different categorization; it
distinguishes between functional, operational, and presentation features.

Binding time,
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and binding site
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1. features diagram, i.e. a representation of a hierarchical decomposition of  features
including the indication whether or not each feature is mandatory, alternative, or optional;

2. feature definitions for all features including the indication of whether each feature is bound
at compile time, activation time, or at runtime (or other times);

3. composition rules for features;

4. rationale for features indicating the trade-offs.

We will come back to this topic in Chapter 5, where we define a more comprehensive
representation of feature models.

3.7.1.3 FODA and Model-Based Software Engineering
FODA is a part of Model-Based Software Engineering (MBSE) , a comprehensive approach to
family-oriented software engineering based on Domain Engineering, being developed by SEI
(see [MBSE97] and [Wit94]).24 MBSE deploys a typical family-oriented process architecture
consisting of two processes: Domain Engineering and Application Engineering (see Figure 8).
The Domain Engineering process, in turn, consists of Domain Analysis, Domain Design, and
Domain Implementation, where FODA takes the place of Domain Analysis.

3.7.2 Organization Domain Modeling (ODM)
ODM is a domain engineering method developed by Mark Simos of Synquiry Ltd. (formerly
Organon Motives Inc.). The origins of ODM date back to Simos’s work on the knowledge-
based reuse support environment Reuse Library Framework (RLF)  [Uni88]. Since then ODM
has been used and refined on a number projects, most notably the STARS project (see Section
3.8), and other projects involving organizations such as Hewlett-Packard Company, Lockheed
Martin (formerly Loral Defense Systems-East and Unisys Government Systems Group), Rolls-
Royce, and Logicon [SCK+96]. During its evolution, ODM assimilated many ideas from other
domain engineering approaches as well as work in non-software disciplines such as
organization redesign and workplace ethnography [SCK+96]. The current version 2.0 of ODM is
described in [SCK+96], a comprehensive guidebook comprising almost five hundred pages.
This guidebook replaces the original ODM description in [SC93].

Some of the unique aspects of ODM include

• Focus on stakeholders and settings: Any domain concepts and features defined during
ODM have explicit traceability links to their stakeholders and relevant contexts (i.e.
settings). In addition, ODM introduces the notion of a grounded abstraction, i.e.
abstraction based on stakeholder analysis and setting analysis, as opposed to the “right”
abstraction (a term used in numerous textbooks on software design), which is based on
intuition.

• Types of domains: ODM distinguishes between horizontal vs. vertical, encapsulated vs.
diffused, and native vs. innovative domains (see Sections 3.6.1 and 3.6.2).

• More general notion of feature: ODM uses a more general notion of feature than FODA
(see Section 3.7.1.2). An ODM feature does not  have to be end-user visible; instead, it is
defined as a difference between two concepts (or variants of a concept) that “makes a
significant difference” to some stakeholder. ODM features directly correspond to the
notion of features discussed in Chapter 2.

• Binding site: In FODA, a feature can be bound at compile, start, or runtime (see Section
3.7.1.2). ODM goes beyond that and introduces the notion of binding site, which allows for

                                                                

24 FODA was conceived before the work on MBSE started.

Unique aspects  of
ODM
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a broader and finer classification of binding times and contexts depending on domain-
specific needs. We discuss this idea in Section 5.4.4.3

• Analysis of feature combinations: ODM includes explicit activities aimed towards
improving the quality of features, such as feature clustering (i.e. co-occurrence of features),
as well as the building of a closure of feature combinations (i.e. enumerating all valid
feature combinations). The latter can lead to the discovery of innovative system
configurations which have not been considered before.

• Conceptual modeling: ODM uses a very general modeling terminology similar to that
introduced in Chapter 2. Therefore, ODM can be specialized for use with any specific
system modeling techniques and notations, such as object-oriented analysis and design
(OOA/D) methods and notations or structured methods. We discuss this topic in Chapter
4. Also, in Chapter 9, we present a specialization of ODM for developing algorithmic
libraries.

• Concept starter sets: ODM does not prescribe any particular concept categories to look for
during modeling. While other methods specifically concentrate on some concept categories
such as objects, functions, algorithms, data structures, etc., ODM uses concept starter sets
consisting of different combinations of concept categories to jumpstart modeling in
different domains.

• Scoping of the asset base: ODM does not require the implementation of the full domain
model. There is an explicit ODM task, the goal of which is to determine the part of the
domain model to be implemented based on project and stakeholder priorities.

• Flexible architecture: ODM postulates the need for a flexible architecture since a generic
architecture is not sufficient for domains with a very high degree of variability (see Section
3.4).

• Tailorable process: ODM does not commit itself to any particular system modeling and
engineering method, or any market analysis, or any stakeholder analysis method. For the
same reason, the user of ODM has to provide these methods, select appropriate notations
and tools (e.g. feature notation, object-oriented modeling, etc.), and also invest the effort of
integrating them into ODM.

The following section gives a brief overview of the ODM process.

3.7.2.1 The ODM Process
The ODM process—as described in [SCK+96]—is an extremely elaborate and detailed process.
It consists of three main phases:

1. Plan Domain: This is the domain scoping and planning phase (Section 3.3) corresponding
to Context Analysis in FODA (Section 3.7.1.1.1).

2. Model Domain: In this phase the domain model is produced. It corresponds to Domain
Modeling in FODA (3.7.1.1.2).

3. Engineer Asset Base: The main activities of this phase are to produce the architecture for
the systems in the domain and to implement the reusable assets.

Plan Domain and Model Domain clearly correspond to a typical Domain Analysis. Engineer
Asset Base corresponds to Domain Design and Domain Implementation.

Each of the three ODM phases consists of three sub-phases and each sub-phase is further
divided into three tasks. The complete ODM process is shown in Figure 15.
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The ODM phases and sub-phases are described in Table 5.

Figure 15    Phases of the ODM process (from [SCK+96, p. 40])
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ODM
Phase

ODM
Sub-Phase

Performed Tasks25

Plan
Domain

Set
objectives

• determine the stakeholders (i.e. any parties related to the project),
e.g. end-users, customers, managers, third-party suppliers,
domain experts, programmers, subcontractors

• analyze stakeholders’ objectives and project objectives

• select stakeholders and objectives from the candidates

Scope
domain

• scope the domain based on the objectives (issues include
choosing between vertical vs. horizontal, encapsulated vs.
diffused, native vs. innovative domains)

Define
domain

• define the domain boundary by giving examples of systems in the
domain, counterexamples (i.e. systems outside the domain), as well
as generic rules defining what is in the domain and what not

• identify the main features of systems in the domain and the usage
settings (e.g. development, maintenance, customization contexts)
for the systems

• analyze the relationships between the domain of focus and other
domains

Model
Domain

Acquire
domain
information

• plan the domain information acquisition task

• collect domain information from domain experts, by reverse-
engineering existing systems, literature studies, prototyping, etc.

• integrate the collected data, e.g. by pre-sorting the key domain
terms, identifying the most important system features

Describe
domain

• develop a lexicon of domain terms

• model the semantics of the key domain concepts

• model the variability of concepts by identifying and representing
their features

Refine
domain

• integrate the models produced so far into an overall consistent
model

• model the rationale for variability, i.e. the trade-offs for using or
not using certain features

• improve the quality of features by clustering and experimenting
with innovative feature combinations

Scope asset
base

• correlate identified features and customers

• prioritize features and customers

• based on the priorities, select the portion of the modeled
functionality for implementation

Engineer
Asset
Base

Architect
asset base

• determine external architecture constraints (e.g. external interfaces
and the allocation of features to the external interfaces)

• determine internal architecture constraints (e.g. internal interfaces,
allocation of groups of related features to internal interfaces)

• define asset base architecture based on these constraints

Implement
asset base

• plan asset base implementation (e.g. selection of tools, languages,
and other implementation strategies)

• implement assets

• implement infrastructure (e.g. domain-specific extensions to
general infrastructures, asset retrieval mechanisms, asset
qualification mechanisms)

Table 5    Description of ODM phases and sub-phases
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3.7.3 Draco
Draco is an approach to Domain Engineering as well as an environment based on
transformation technology. Draco was developed by James Neighbors in his Ph.D. work [Nei80]
to be the first Domain Engineering approach. Furthermore, the main ideas introduced by Draco
include domain-specific languages and components as sets of transformations. This section
gives a brief overview of Draco. A more detailed discussion is given in Section 6.4.1.

The main idea of Draco is to organize software construction knowledge into a number of related
domains. Each Draco domain encapsulates the needs and requirements and different
implementations of a collection of similar systems. Specifically, a Draco domain contains the
following elements ([Nei84, Nei89]):

• Formal domain language (also referred to as “surface” language): The domain language
is used to describe certain aspects of a system. The domain language is implemented by a
parser and a pretty printer. The internal form of parsed code is a parse tree. The term
domain language is equivalent to the term domain-specific language introduced in
Section 3.6.4.

• Set of optimization transformations: These transformations represent rules of exchange of
equivalent program fragments in the domain language and are useful for performing
optimizations on the parse tree.

• Set of transformational components: Each component consists of one or more refinement
transformations capable of translating the objects and operations of the source domain
language into one or more target domain languages of other, underlying domains. There is
one component for each object and operation in the domain. Thus, components implement
a program in the source domain language in terms of the target domains. Draco refers to the
underlying target domains as refinements of the source domain. As a result, the
construction knowledge in Draco is organized into domains connected by refinement
relationships.

• Domain-specific procedures: Domain-specific procedures are used whenever a set of
transformations can be performed algorithmically. They are usually applied to perform tasks
such as generating new code in the source domain language or analyzing programs in the
source language.

• Transformation tactics and strategies (also called optimization application scripts) :
Tactics are domain-independent and strategies are domain-dependent rules helping to
determine when to apply which refinement. Optimizations, refinements, procedures, tactics,
and strategies are organized into metaprograms (i.e. programs generating other programs).

It is important to note that, in Draco, a system is represented by many domain languages
simultaneously.

The results of applying Draco to the domain of real-time applications and the domain of
processing standardized tests are described in [Sun83] and [Gon81], respectively.

3.7.4 Capture
Capture, formerly known as KAPTUR (see [Bai92, Bai93]), is an approach and a commercial tool
for capturing, organizing, maintaining, and representing domain knowledge. Capture was
developed by Sidney Bailin of CTA Inc. (currently with Knowledge Evolution Inc.).

The Capture tool is a hypertext-based tool allowing the user to navigate among assets (e.g.
architectures and components). The assets are documented using informal text and various
diagrams, such as entity-relationship diagrams. The assets are annotated by their distinctive
features, which document important design and implementation decisions. Features are
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themselves annotated with trade-offs that were considered and rationale for the particular
decision made.26 [Bai92]

3.7.5 Domain Analysis and Reuse Environment (DARE)
DARE is both a Domain Analysis method and a tool suite supporting the method [FPF96].
DARE was developed by William Frakes (Software Engineering Guild) and Rubén Prieto-Díaz
(Reuse Inc.) and represents a commercial product.

The DARE tool suite includes lexical analysis tools for extracting domain vocabulary from
system descriptions, program code, and other sources of domain knowledge. One of the most
important tools is the conceptual clustering tool, which clusters words according to their
conceptual similarity. The clusters are further manually refined into facets, which are main
categories of words and phrases that fall in the domain [FPF96]. The idea of using facets to
describe and organize systems and components in a domain has its roots in the application of
library science techniques, such as faceted classification, to component retrieval [Pri85, Pri87,
PF87, Pri91a, Pri91b, OPB92].

The main workproducts of DARE include a facet table, feature table, system architecture, and
domain lexicon and are organized into a domain book . The DARE tool suite includes
appropriate tools for creating and viewing these workproducts.

3.7.6 Domain-Specific Software Architecture (DSSA) Approach
The DSSA approach to Domain Engineering was developed under the Advanced Research
Project Agency’s (ARPA) DSSA Program (see [Hay94, TTC95]). The DSSA approach
emphasizes the central role of the concept of software architecture in Domain Engineering. The
overall structure of the DSSA process is compatible with the generic process structure
described in Sections 3.3 through 3.5 (see [CT93, TC92] for descriptions of the DSSA process).
The main workproducts of the DSSA process include the following [Tra95]:

1. Domain Model: The DSSA Domain Model corresponds to the concept model in Section 3.3
(i.e. concept model in ODM or information model in FODA) rather than a full domain model.

2. Reference Requirements: The DSSA Reference Requirements are equivalent to the feature
model in Section 3.3. Each reference requirement (or feature in the terminology of Section
3.3) is either mandatory, optional, or alternative. The DSSA Reference Requirements
include both functional and non-functional requirements.27

3. Reference Architecture: A DSSA Reference Architecture is an architecture for a family of
systems consisting mainly of an architecture model, configuration decision tree (which is
similar to the FODA features diagram in Section 3.7.1.2), design record  (i.e. description of
the components), and constraints and rationale (the latter two correspond to
configuration rules and rationale in FODA in Section 3.7.1.2).

The need to formally represent the components of an architecture and their interrelationships
led to the development of so-called Architecture Description Languages or ADLs. The concept
of ADLs is described in [Cle96, Arch, SG96].

The DSSA approach has been applied to the avionics domain under the Avionics Domain
Application Generation Environment (ADAGE)  project involving Loral Federal Systems and
other contractors (see [ADAGE]). As a result of this effort, a set of tools and other products
supporting the DSSA process have been developed, including the following [HT94]:

• DOMAIN: a hypermedia-based Domain Analysis and requirements capture environment;

• MEGEN: an application generator based on module expressions;

• LILEANA: an ADL based on the ADA annotation language ANNA [LHK87] and the
module interconnection language LIL [Gog83] (LILEANA is described in [Tra93, GT96]).

Clusters and facets
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Other DSSA program efforts resulted in the development of other Domain Engineering tools
and products (see [HT94] for more details), most notably the ADLs ArTek  (developed by
Teknowledge [THE+94]), ControlH and MetaH (developed by Honeywell [BEJV93]), and
Rapide (developed at Stanford University [LKA+95]).

3.7.7 Algebraic Approach
The algebraic approach to Domain Engineering was proposed by Yellamraju Srinivas in [Sri91]
(see [Smi96, SJ95] for more recent work). This section gives a brief overview of this approach. A
more detailed description follows in Section 6.4.4.

The main idea of this approach is to formalize domain knowledge in the form of a network of
related algebraic specifications (also referred to as theories). An algebraic specification defines
a language and constrains its possible meanings through axioms and inference rules.
Algebraic specifications can be related using specification morphisms. Specification morphisms
define translations between specification languages that preserve the theorems (i.e. all
statements which can be derived from the axioms using the inference rules). Thus, in the
algebraic approach, the domain model is represented as a number of formal languages including
translations between them. From this description, it is apparent that the algebraic approach and
the Draco approach (Section 3.7.3) are closely related.28 In fact, the only difference is that the
algebraic approach is based on the algebraic specification theory (e.g. [LEW96]) and the
category theory (e.g. [BW85]). Similarly to Draco, the algebraic approach lends itself well to
implementation based on transformations. The inference rules of a specification correspond to
the optimization transformations of Draco, and the specification morphisms correspond to
refinement transformations.

First success reports on the practical use of the algebraic approach include the application of
the transformation-based system KIDS (Kestrel Interactive Development System,  see [Smi90])
in the domain of transportation scheduling by the Kestrel Institute. According to [SPW95], the
scheduler generated from a formal domain model using KIDS is over 20 times faster than the
standard, hand-coded system deployed by the customer. This proves the viability of the
algebraic approach in narrow, well-defined domains. A successor system to KIDS is
SPECWARE [SJ95], which is explicitly based on category theory (i.e. it uses category theory
concepts both in its design and user interface).

3.7.8 Other Approaches
Other approaches to Domain Engineering include the following:

• SYNTHESIS: SYNTHESIS [SPC93] is a Domain Engineering method developed by the
Software Productivity Consortium in the early nineties. The structure of the SYNTHESIS
process is principally consistent with the generic process structure described in Sections
3.3 through 3.5  (although it uses a slightly different terminology). A unique aspect of
SYNTHESIS is the tailorability of its process according to the levels of the Reuse
Capability Model [SPC92]. This tailorability allows an organization to control the impact of
the reuse process installation on its own structures and processes.

• Family-Oriented Abstraction, Specification, and Translation (FASST) : FASST is a
Domain Engineering method developed by David Weiss et al. at Lucent Technologies Bell
Laboratories [Wei96]. FASST has been greatly influenced by the work on SYNTHESIS
(Weiss was one of the developers of SYNTHESIS).

• Defense Information Systems Agency’s Domain Analysis and Design Process (DISA
DA/DP): DISA DA/DP [DISA93] is similar to MBSE (Section 3.7.1.3) and ODM (Section
3.7.2). However, it only includes Domain Analysis and Domain Design. DISA DA/DP uses
the object-oriented Coad-Yourdon notation [CY90].

• Joint Integrated Avionics Working Group (JIAWG) Object-Oriented Domain Analysis
Method (JODA) : JODA [Hol93] is a Domain Analysis method similar to FODA (see Section
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3.7.1; however, JODA does not include a feature model) and is based on the object-
oriented Coad-Yourdon notation and analysis method [CY90].

• Gomaa: [Gom92] describes an early object-oriented Domain Engineering method developed
by Hassan Gomaa. An environment supporting the method is set out in [GKS+94].

• Reusable Ada Products for Information Systems Development (RAPID) : RAPID is a
Domain Analysis approach developed by Vitaletti and Guerrieri [VG90], utilizing a similar
process to the afore-presented Domain Engineering methods.

• Intelligent Design Aid (IDeA) : IDeA is a design environment supporting Domain Analysis
and Domain Design [Lub91]. IDeA was developed by Mitchell Lubars. The unique aspect
of IDeA is its iterative approach to Domain Analysis, whereby specific problems are
analyzed one at a time and each analysis potentially leads to an update of the domain
model.29

Since the main concepts and ideas of Domain Engineering have already been illustrated based
on the methods presented in previous sections, we refrain from describing the approaches
mentioned in this section in more detail.

3.8 Historical Notes
The idea of Domain Engineering can be traced back to the work on program families by Dijkstra
[Dij70] and Parnas [Par76]. Parnas defines program family as follows [Par76, p. 1]:

“We consider a set of programs to constitute a family, whenever it is worthwhile to study
programs from the set by first studying the common properties of the set and then
determining the special properties of the individual family members.”

The term Domain Analysis was first defined by Neighbors in his Ph.D. work on Draco [Nei80,
pp. xv-xvi] as

“the activity of identifying objects and operations of a class of similar systems in a
particular problem domain.”

Major efforts aimed at developing Domain Analysis methods (including SEI’s FODA and the
work by Prieto-Diaz et al. at the Software Productivity Consortium) followed in the late eighties.
A comprehensive bibliography of work related to Domain Engineering from the period 1983-
1990 can be found in [HNC+90].

A large share of the work on Domain Engineering was sponsored by the U.S. Department of
Defense research programs related to software reuse including Software Technology for
Adaptable, Reliable Systems (STARS) [STARS94], Comprehensive Approach to Reusable
Defense Software (CARDS) [CARDS], and DSSA (Section 3.7.6).

Domain Engineering methods such as MBSE, ODM 2.0, and FASST (Sections 3.7.1.3, 3.7.2,
3.7.8) can be classified as second generation methods. The most recent trend in the field is to
integrate Domain Engineering and OOA/D methods (see Chapter 4).
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A partial genealogy of Domain Engineering methods is shown in Figure 16.

3.9 Discussion
Domain Engineering represents a valuable approach to software reuse and multi-system-scope
engineering. Table 6 compares conventional software engineering and Domain Engineering
based on their workproducts. Another important difference is the split of software engineering
into engineering for reuse (Domain Engineering) and engineering with reuse (Application
Engineering).

Domain Engineering moves the focus from code reuse to reuse of analysis and design models.
It also provides us with a useful terminology for talking about reuse-based software
engineering.
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Figure 16    Partial genealogy of Domain Engineering (based on [FP96])
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Based on the discussion of the various Domain Engineering methods, we arrive at the following
conclusions:

1. The described methods and approaches are quite similar regarding the process. They use
slightly different terminology and different groupings of activities, but they are, to a large
degree, compatible with the generic process described in Sections 3.3 through 3.5. This
process is also well exemplified by MBSE and ODM (Sections 3.7.1 and 3.7.2).

2. However, as the overall process framework remains quite stable, significant variations
regarding the concrete modeling techniques and notations, approaches to software
architecture, and component implementation techniques are possible. In particular,
questions regarding the relationship between Domain Engineering and object-oriented
technology are interesting. How do OOA/D and Domain Engineering fit together? We will
address this topic in Chapter 4. Furthermore, we need to look for adequate technologies for
implementing domain models. We will discuss some implementation technologies in
Chapter 6 and Chapter 7.

3. Some of the presented Domain Engineering approaches make specific contributions with
respect to the issue of concrete modeling techniques and implementation technologies:

• As exemplified by Draco and the algebraic approach (Sections 3.7.3 and 3.7.7), formal
methods, formal domain-specific languages, and transformation systems are well suited
for mature and narrow domains. More work is needed in order to investigate a broader
scope of applicability of these techniques.

• The importance of informal techniques has also been recognized, e.g. the application of
hypermedia systems for recording requirements, rationale, and informal expertise
(Capture, Section 3.7.4), and the utilization of lexical analysis for domain vocabulary
extraction (DARE, Section 3.7.5).

4. Which modeling techniques are most appropriate depends on the kind of the domain. For
example, important aspects of GUI-based applications are captured by use cases and
scenarios, whereas in scientific computing, algorithms are best captured using
pseudocode. Furthermore, if the applications have some special properties, such as real-
time aspects or distribution aspects, we need to apply additional, specialized modeling
techniques. The organization of the Domain Engineering process itself depends on the
organization and its business objectives. Thus, there will not be one Domain Engineering
method appropriate for all possible domains and organizations. We will rather have
specialized methods for different kinds of domains with tailorable processes for different
organizational needs.

Software Engineering Domain Engineering

Requirements Analysis

 requirements for one
system

Domain Analysis

 reusable requirements for a class of systems

System Design

 design of one system

Domain Design

 reusable design for a class of systems

System Implementation

 implemented system

Domain Implementation

 reusable components, infrastructure, and production
process

Table 6    Comparison between conventional software engineering and Domain Engineering
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5. A major problem of all the existing Domain Engineering methods is that they do not
address the evolution aspect of Domain Engineering. In [Ara89], Arango emphasized that
Domain Engineering is a continuous learning process, in which each new experience in
building new applications based on the reusable models produced in the Domain
Engineering process is fed back into the process, resulting in the adjustment of the
reusable models. None of the existing methods properly addresses these issues. They
rather address only one full Domain-Engineering cycle and do not explain how to organize
an efficient iterative process. The aspect of learning is usually treated as part of the reuse
infrastructure, i.e. the results of using an asset should be fed back into the asset base. But
since the reuse infrastructure is a product of Domain Engineering, its feed-back aspect is
detached from the Domain Engineering process itself.

6. The methods also do not address how and when the infrastructure and the application
production process are planned, designed, and implemented (only to include an
infrastructure implementation activity in Domain Implementation is clearly insufficient).
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Chapter 4 Domain Engineering and Object-
Oriented Analysis and Design

4.1 OO Technology and Reuse
In the early days of OO, there used to be the believe that objects are reusable by their very
nature and that reusable OO software simply “falls out” as a byproduct of application
development (see e.g. [HC91]). Today, the OO community widely recognizes that nothing could
be further from the truth. Reusable OO software has to be carefully engineered and engineering
for reuse requires a substantial investment (see e.g. [GR95]).

So how does today’s OO technology address reuse? As Cohen and Northrop [CN98] suggest,
we should answer this question from two perspectives: the problem space and the solution
space perspective.

4.1.1 Solution Space
Two important areas of OO technology connected to the solution space and addressing multi-
system-scope development are frameworks and design patterns. A framework embodies an
abstract design for a family of related systems in the form of collaborating classes. Similarly,
design patterns provide reusable solutions to recurring design problems across different
systems. Patterns, as a documentation form, also proved useful in capturing reusable solutions
in other areas such as analysis [Fow97], architecture [BMR+96], and organizational issues
[Cop95].

Unfortunately, two main problem areas still remain:

• Only very few OO Analysis and Design (OOA/D) methods provide any support for the
development of frameworks. Similarly, there is little systematic support in both finding and
applying patterns. Since these issues are related to the analysis of the problem space, we
will discuss them in the following section.

• A major problem of the current framework technology is the excessive complexity explosion
and performance degradation as the generality of a framework increases. For example, by
applying  the classic design patterns collected in [GHJV95], we are able to add new
variation points to a framework. However, this causes an excessive fragmentation of the
design resulting in “many little methods and classes.” Also, framework technology heavily
relies on dynamic binding, even for implementing variability between applications, in which
case static binding and partial evaluation are more appropriate. This causes unnecessary
performance penalties and unused code to remain in the delivered applications.
Furthermore, current OO languages do not allow us to adequately separate and capture
important aspects such as synchronization, remote communication, memory management,
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etc. All these problems also apply to strictly hierarchically composable components such
as ActiveX or JavaBeans (see Section 6.4.2.8). Addressing these problems requires a
combination of techniques such as new linguistic constructs, new composition
mechanisms, metaprogramming capabilities, etc. We will discuss these issues in Chapter 6
and Chapter 7.

4.1.2 Problem Space
Traditional OOA/D methods such as OOSE [JCJO92], Booch [Boo94], OMT [RBP91], or even
the current version 4.1 of the Rational Objectory Process [Rat98a, Rat98b], focus on developing
single systems rather than families of systems.30 Given this goal, the methods are inadequate for
developing reusable software, which requires focusing on classes of systems rather than single
systems.

In this context, traditional OOA/D methods have the following deficiencies (in terms of process
and modeling notation):

• No distinction between engineering for reuse and engineering with reuse: Taking reuse
into account requires splitting the OO software engineering process into engineering for
reuse (i.e. Domain Engineering) and engineering with reuse (i.e. Application Engineering).
OOA/D methods come closest to Application Engineering, with the important difference
that Application Engineering focuses on reusing available reusable assets produced during
Domain Engineering.

• No domain scoping phase: Since OOA/D methods focus on engineering single systems,
they lack a domain scoping phase, where the target class of systems is selected. Also,
OOA/D focuses on satisfying “the customer” of a single system rather than analyzing and
satisfying stakeholders (including potential customers) of a class of systems.

• Inadequate modeling of variability: The only kind of variability modeled in current OOA/D
is intra-application variability, e.g. variability of certain objects over time and the use of
different variants of an object at different locations within an application. Domain
Engineering, on the other hand, focuses on variability across different systems in a domain
for different users and usage contexts. Since modeling variability is fundamental to Domain
Engineering, Domain Engineering methods provide specialized notations for expressing
variability.

In contrast to the traditional OOA/D methods, there are few newer methods, such as OOram
[Ree96] and Catalysis [DW97], which explicitly support modeling of frameworks and the
application of design patterns. The contribution of OOram to framework modeling is the
recognition that the fundamental abstractions of object-oriented designs are not classes but
collaborations. A collaboration consists of a number of roles communicating according to a
certain pattern. Concrete object may play more than one role in one or more collaborations.
Thus, classes are merely synthesized by composing collaborations. Modeling a framework as a
composition of collaborations is more adequate than modeling it as a composition of classes
since extending a framework usually requires the coordinated extension of more than one class.

As of writing, OOram is the only OOA/D method which truly recognizes the need for a
specialized engineering process for reuse. The method includes a domain scoping activity
based on the analysis of different classes of consumers. It also includes an analysis of existing
systems. We will discuss OOram in Section 4.5.2.

A general problem of all OOA/D methods is inadequate modeling of variability. Although the
various modeling techniques used in OOA/D methods support variability mechanisms (e.g.
inheritance and parameterization in object diagrams, composition of collaboration diagrams,
etc.), OOA/D methods do not include an abstract and concise model of commonality, variability,
and dependencies. There are several reasons for providing such a model:

Collaborations and
roles
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• Since the same variability may be implemented using different variability mechanisms in
different models, we need a more abstract representation of variability (cf. Sections 4.5.3
and 5.4.1.7).

• The reuser of reusable software needs an explicit and concise representation of available
features and variability.

• The developer of reusable software needs to be able to answer the question: why is a
certain feature or variation point included in the reusable software?

The lack of domain scoping and explicit variability modeling may cause two serious problems:

• relevant features and variation points are missing;

• many features and variation points are included but never used; this causes unnecessary
complexity and cost (both development and maintenance cost).

Covering the right features and variation points requires a careful balancing between current
and future needs. Thus, we need an explicit model that summarizes the features and the
variation points and includes the rationale and the stakeholders for each of them. In Domain
Engineering, this role is played by a feature model (see Sections 3.3 and 5.4). A feature model
captures the reusability and configurability aspect of reusable software.

4.2 Relationship Between Domain Engineering and Object-
Oriented Analysis and Design (OOA/D) Methods
As we discussed in Chapter 3, Domain Engineering focuses on engineering solutions for
classes of software systems. On the other hand, current OOA/D methods focus on engineering
single systems. Because of this different focus, we concluded in the previous section that
current OOA/D methods are inappropriate for developing reusable software.

While Domain Engineering supports a multi-system-scope engineering process and adequate
variability modeling techniques, OOA/D methods provide us with very effective system
modeling techniques. Thus, Domain Engineering Methods and OOA/D methods are good
candidates for integration. Indeed, this integration represents a recent focus of the Domain
Engineering community [CN98].

4.3 Aspects of Integrating Domain Engineering and OOA/D
Methods
When integrating development methods, we have to consider a number of specific areas that
need to be integrated:

• method goals, e.g. Domain Engineering methods aim at supporting the development of
models for classes of systems, whereas OOA/D concentrate on single systems;

• principles, e.g. Domain Analysis also investigates alternative implementation strategies (in
order to provide the terminology and scope for further phases), whereas OOA avoids
dealing with implementation issues;

• processes, e.g. Domain Engineering covers engineering for reuse and Application
Engineering covers engineering with reuse; the distinction between engineering for reuse
and with reuse is not present in most OOA/D methods;

• models and notations, e.g. Domain Engineering introduces new kinds of models such as
feature models, whereas OOA/D provides the necessary system modeling techniques.

Integration of methods is usually a very complex task since today’s methods are also complex.
Additionally, it is a long and costly process since the integrated methods can only be tested
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and improved while being applied on real projects. A formal treatment of method integration
issues can be found in [Son97].

Since OOA/D methods are currently more widely used than Domain Engineering, we first take a
look at the required changes to OOA/D methods:

• Process changes: The required process changes include introducing separate processes
for engineering for reuse (Domain Engineering) and engineering with reuse (Application
Engineering). The Domain Engineering process may have a complex structure including an
Application Family Engineering process and multiple horizontal Domain Engineering
processes (see Section 4.4). The Application Engineering process is often quite similar to a
conventional OOA/D process with the main difference that it concentrates on developing
solutions in terms of the available reusable assets. The Domain Engineering processes, on
the other hand, have to additionally include domain scoping and feature modeling
activities.

• Variability and dependency modeling: Variability and dependency modeling lies at the
heart of Domain Engineering. Variability is represented in different models at different
stages in the development process. Variability modeling usually starts at the taxonomic
level by developing the vocabulary to describe different instances of concepts. For
example, we usually first talk about different kinds of banking accounts (e.g. savings
account or checking account) before we build the object model of banking accounts.
Feature models allow us to capture this taxonomic level and to provide a roadmap to
variability in other models (e.g. object models, use case models, collaboration and
interaction models, etc.). They are a necessary extension of the set of models currently
used in OO software engineering. Capturing dependencies between features is also
essential. It allows us to perform automatic configuration (e.g. constraint-based
configuration), which relieves the reuser of some of the manual configuration work.

• Development of a reuse infrastructure: In addition to developing the reusable assets, we
also have to develop and install a reuse infrastructure for packaging, storing, distributing,
retrieving, evaluating, and integrating these assets.

In Chapter 7, we will also discuss the need of extending reuse-oriented software engineering
methods with approaches for developing and using language extensions for different system
aspects.

As already stated, the integration between Domain Engineering and OOA/D methods
represents a recent focus of the Domain Engineering community. We can classify the
integration efforts into three categories:

• Upgrading older Domain Engineering methods: Older Domain Engineering methods, such
as FODA (see Section 3.7.1), used techniques of structured analysis and design as their
system engineering method. Recent work concentrates on replacing these older techniques
with newer OOA/D techniques, e.g. work on FODAcom [VAM+98], an OO upgrade of
FODA specialized for the telecom domain.

• Specializing customizable Domain Engineering methods: Newer Domain Engineering
methods such as ODM (see Section 3.7.2) treat system engineering methods as their
parameters. Thus, before applying a parameterized Domain Engineering method, it needs to
be specialized for some concrete system engineering method. However, such specialization
may represent a substantial effort. As noted in [Sim97], ODM has been specialized for the
use with the OOA/D method Fusion [CAB+94]. Another example of such an effort is
Domain Engineering Method for Reusable Algorithmic Libraries (DEMRAL), which is
described in Chapter 9.31

• Extending existing OOA/D methods: The third approach is to extend one of the existing
OOA/D methods with the concepts of Domain Engineering. An example of such effort is
Reuse-driven Software Engineering Business (RSEB) [JGJ97], which is based on the OO
modeling notation UML [Rat98c], and the OO Software Engineering (OOSE) method
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[JCJO92]. Also, the version 4.1 of Rational Objectory Process [Rat98a, Rat98b] (the de facto
standard UML-based OO engineering process) includes some Domain Engineering
concepts. However, these minor extensions in version 4.1 do not remove the inadequacy of
this version for engineering reusable software. As stated, upgrading an OO system
engineering method for Domain Engineering requires substantial changes in its process
architecture. Additionally, the modeling notations have to be extended for modeling
variability (e.g. feature diagrams and variation points).

• Second generation integration: Finally, FeatuRSEB [GFA98] is an example of the
integration of two methods which already combine Domain Engineering and OOA/D
concepts: FODAcom and the RSEB method, which we mentioned in the previous bullets.
One of the weaknesses in the original description of RSEB was the lack of variability
modeling using feature models. The integration with FODAcom concepts addresses this
problem. On the other hand RSEB has a stronger OO focus than FODAcom. Thus, both
methods profit from this integration.

We describe these integration efforts in the rest of this chapter.

4.4 Horizontal vs. Vertical Methods
In Section 3.6.2, we introduced the notions of vertical and horizontal domains. Horizontal
domains encompass only one system part, e.g. GUIs, database systems, middleware, matrix
computation libraries, container libraries, frameworks of financial objects, etc. Vertical domains,
on the other hand, cover complete systems, e.g. flight reservation systems, medical information
systems, CAD systems, etc. Obviously, different kinds of domains require different Domain
Engineering methods. Organizations specializing in one or more horizontal domains would use
specialized methods for these domains. We refer to such Domain Engineering methods as
horizontal. An example of a horizontal Domain Engineering method is DEMRAL (see Section
4.5.5). In the case of vertical domains, we have to develop and maintain the overall reusable
architecture for the entire system scope and apply the specialized horizontal methods in order to
develop reusable models of the subsystems. We refer to a Domain Engineering method
covering a vertical domain as a vertical Domain Engineering method. An example of a vertical
engineering method is RSEB, which we discuss in Section 4.5.3. In general, we want to develop
modular Domain Engineering methods, so that they can be configured to suit the specific needs
of different organizations. One way to achieving this goal is to have a vertical method to call
different specialized horizontal methods for different subsystems.

There may be significant differences between domains and thus between Domain Engineering
methods. One of the major methodical differences is the modeling style:

• Interaction style: The main aspect of the interaction style is the interaction between
entities, e.g. interaction between components, call graphs, message flows, event flows.
Interaction can be modeled using use cases, collaborations, and interaction diagrams.

• Algorithmic style: The main aspect of the algorithmic style are algorithms performing
complex computations on abstract data types.32 Algorithms can be specified using
pseudocode or some specialized specification notations.

• Data-centric style: The main aspect of the data-centric style is the structure of the data e.g.
in database modeling. The structure of the data can be modeled using entity-relationship or
object diagrams.

• Data-flow style: The main aspect of the data-flow style is data flow, e.g. in pipes-and-filters
architectures in signal processing. Data flow can be specified using data-flow diagrams.

Of course, we often need to capture all of these fundamental aspects, namely interaction,
algorithms, data structures, and data flow, for a single system part. However, it is also often the
case that one of these aspects plays a dominant, unifying role. For example, most business
applications have the interactive nature since they usually have an interactive GUI and are
organized as interacting components in a distributed and open environment. Furthermore, the
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interaction aspect is also dominant in large technical systems (e.g. CAD systems). Indeed, the
interaction aspect plays an important role in all large systems since the subsystems of large
systems are glued by interaction implemented using procedure call, message passing, event
notification, etc. This is also the reason why most of the modern OOA/D methods are use case
and scenario centric, e.g. Rational Objectory Process (see Section 4.5.1). Similarly, the vertical
Domain Engineering method RSEB (see Section 4.5.3) aimed at developing large systems is also
use case centric. On the other hand, some specialized horizontal Domain Engineering methods
may not be use case centric, e.g. DEMRAL, which is specialized for algorithmic libraries. As
noted above, a vertical Domain Engineering method calls specialized horizontal Domain
Engineering methods. Thus, it is possible that use cases are applied at the system level, but not
at each subsystem level.

Moreover, each domain may have some special properties requiring special modeling
techniques, e.g. real-time support, distribution, concurrency, etc. Thus, Domain Engineering
methods have to support a variety of specialized modeling techniques for these different
aspects.

4.5 Selected Methods

4.5.1 Rational Objectory Process 4.1
Rational Objectory Process 4.1 is a de facto standard UML-based OO software system
engineering process marketed by Rational Software Corporation [Rat98a, Rat98b]. The process
originated from the OO Software Engineering method by Jacobson et al. [JCJO92]. Objectory’s
goal is “to ensure the production of high-quality software, meeting the needs of its end-users,
within a predictable schedule and budget.” Objectory is an iterative and use-case-centric
process, which is a prerequisite for the successful development of large software systems. Use
cases are used as the integrating elements of the whole system under construction and across
all development phases and models.33 This view has been propagated in the 4+1 View Model of
software architecture by Kruchten (see Figure 17).

The Objectory process is organized along two dimensions:

• time dimension representing the life-cycle aspect of the process over time;

• process components dimension grouping activities logically by nature.

The time dimension is organized into cycles, phases, and iterations separated by milestones. A
cycle is one complete pass through all phases. Process components are described in terms of
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Figure 17    The 4+1 View Model of the architecture of a software-intensive system
(adapted from [Kru95])
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activities, workflows organizing the activities, produced artifacts, and workers. The overview of
the process is shown in Figure 18.

By its definition, Objectory focuses on the development of a single system. Thus, it is
inadequate for engineering reusable software due to the deficiencies we discussed in previous
sections:

• no distinction between engineering for reuse and engineering with reuse;

• no domain scoping and multi-system-scope stakeholder analysis;

• no feature analysis activities;

• no feature models.

In the description of the activity Capture a Common Vocabulary (which is part of the
Requirements Capture process component [Rat98b]), the authors of Objectory acknowledge
the value of variability modeling by merely noting that “you can capture the vocabulary in a
domain model.” However, the documentation does not state what techniques should be used
and how the domain model is to be integrated with the other artifacts produced in the process.
Furthermore, Appendix A in the method description discusses the rationale for variant modeling
and some variant modeling concepts on a few pages. However, the authors note that currently
variant modeling is not part of the process. They further state that “developing variants, or
families of systems, affects all process components” and that “modeling variants and variability
is an area in which the Rational Objectory Process will improve and expand in the future.”

4.5.2 OOram
OOram [Ree96] is a generic framework for creating a variety of OO methodologies based on role
modeling. OOram has been developed by Trygve Reenskaug from Norway and it traces its
history back to the 1970ies. For example, the early OOram ideas were applied in the Smalltalk
Model-View-Controller paradigm, which was developed by Goldberg and Reenskaug at Xerox
Palo Alto Research Center in 1997 [Ree96].

The central idea behind OOram is role modeling. Role modeling concentrates on
collaborations of objects and the roles the objects play in collaborations rather than the
classes of objects. Classes are merely synthesized by composing the roles their instances play
in different collaborations. The role model is represented by a number of views, most notably
the collaboration view showing the relationships between roles and the scenario view
concentrating on the interactions. Although the original description in [Ree98] introduces its
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own notation, we can also use the UML notation for representing these views. In particular,
collaboration diagrams can be used for the collaboration view and interaction diagrams for the
scenario view.

While other OO methods, e.g. Objectory, also embrace the idea of scenario analysis, they
concentrate on deriving concrete object classes from scenarios (e.g. start with use cases, derive
collaboration and interaction diagrams, and finally the classes).  In OOram, on the other hand,
there is a focus on the composition of collaborations. New collaborations can be added to
existing compositions as needed and the participating classes are updated accordingly. Thus, in
OOram, collaborations are the primary building blocks, not classes.

Frameworks represent one possible target technology for OOram since framework designs are
naturally represented as compositions of collaborations. Role modeling also has a strong
relationship to design patterns since some collaborations are instances of design patterns. The
relationship between role modeling, frameworks, and design patterns is currently an area of
active research (e.g. [Rie97]). We will revisit this topic in Section 6.4.2.7.

OOram refrains from prescribing a comprehensive and elaborate process. Since a specific
process has to be optimized to a specific combination of product, people, and work
environments, OOram rather provides a framework of guidelines backed with a set of
comprehensive case studies. In [Ree96], Reenskaug et al. note: “Many managers dream of the
ultimate work process that will ensure satisfactory solutions from every project. We believe that
this dream is not only futile: it can even be harmful.”

OOram distinguishes between three kinds of processes [Ree96]:

1. “The model creation process focuses on how to create a model or some other manifestation
of thoughts for a certain phenomenon. Examples include creating a role model, performing
role model synthesis, and creating object specifications.”

2. “The system development process covers the typical software life cycle, from specifying
users needs, to the installation and maintenance of the system that meets these needs.”

3. “The reusable assets building process is the least mature software engineering process,
but we expect it will be an essential contributor to future productivity and quality. Our
focus is on the continuous production of several, closely related systems, in which we
build on a continuously evolving set of reusable components. Creating a system mainly
involves configuring and reusing robust and proven components, and possibly adding a
few new components to complete the system.”

Thus, the need for a dedicated engineering-for-reuse process is one of the fundamental
principles of OOram.

Reenskaug et al. also make the very important observation that the creation of reusable objects
shares a lot properties with product development whose life cycle can be divided into five
phases [Ree96]:

1. Market analysis: “The developer must understand the needs of the potential users, and
balance these needs against the costs of alternative solutions. The developer must also
understand the potential users’ working conditions to make the reusable component
practically applicable.”

2. Product development: “The reusable component must be designed, implemented, and
tested in one or more prototype applications.”

3. Product packaging: “Documentation is an important part of a packaged reusable
component. The documentation includes work processes for the application of the
component, installation procedures, and technical information.”
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4. Marketing: “The users of the reusable component must be informed and  persuaded to
apply it.”

5. Application: “The reusable component must be applied, and must help its users to increase
the quality of their products and reduce their expenditure of time and money.”

One of the four case studies in [Ree96] describes the process of developing an OO framework.
The outline of this process is as follows:

• Step 1: Identify Consumers and Consumer Needs

• Step 2: Perform a Cost-benefit Analysis

• Step 3: Reverse Engineering of Existing Programs

• Step 4: Specify the New Framework

• Step 5: Document the Framework as Patterns Describing how to Solve Problems

• Step 6: Describe the Framework’s Design and Implementation

• Step 7: Inform the Consumer Community

Steps 1-3 represent some form of Domain Analysis with domain scoping, stakeholder analysis,
and analysis of existing applications. Unfortunately, OOram does not include feature analysis
and feature models. We will discuss the importance of the latter two in Chapter 5. In Step 5, the
approach advocates the standard technique of documenting frameworks using patterns (see
[Joh92, MCK97]).

4.5.3 Reuse-driven Software Engineering Business (RSEB)
RSEB [JGJ97] is a reuse- and object-oriented software engineering method based on the UML
notation, the OO Software Engineering (OOSE) method by Jacobson et al. [JCJO92] (which is an
early version of the Rational Objectory Process), and the OO Business Process Reengineering
[JEJ94]. The method has been developed based on the experience from Hewlett-Packard Inc. (M.
Griss) and Rational Software Corporation (I. Jacobson and P. Jonsson, formerly Objectory AB).
It has been designed to facilitate both the development of reusable object-oriented software
and software reuse. Similarly as Objectory, RSEB is an iterative and use-case-centric method.

Let us first introduce some RSEB terminology [JGJ97]:

• Application system: An application system in RSEB corresponds to a software system as
we use it throughout this text. RSEB authors note that “we use the term application system
instead of the looser term application because we want to stress that application systems
are software system products and are defined by system models.”

• Component: “A component is a type, class, or any other workproduct (e.g. use case,
analysis, design, or implementation model element) that has been specifically engineered to
be reusable.” Thus, the RSEB definition of component corresponds to the term reusable
asset, which we use throughout this text.

• Component system: A component system is a system product that offers a set of reusable
features. Component systems are more generic, reusable, and specializable than application
systems, but on the other hand require more effort to engineer. Examples of component
systems are reusable GUI frameworks, reusable mathematical libraries, or more
sophisticated component systems from which complete application systems can be
generated. If we analyze a class of application systems and decompose it into generic
subsystems, component systems provide reusable solutions for the subsystems.
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RSEB has separate processes for engineering for reuse (i.e. Domain Engineering) and
engineering with reuse (i.e. Application Engineering). Domain Engineering in RSEB consists of
two processes [JGJ97]:

• Application Family Engineering process develops and maintains the overall layered
system architecture.

• Component System Engineering process develops component systems for the different
parts of the application system with focus on building and packaging robust, extendible,
and flexible components.

The role of Application Engineering (i.e. the process of building concrete systems based on
reusable assets) in RSEB plays Application System Engineering.

The split of Domain Engineering into Application Family Engineering and Component System
Engineering is based on a clear separation of foci: engineering the overall architecture versus
engineering reusable solutions for the subsystems. The RSEB book describes a generic
Component System Engineering process based on the general OOSE process components. This
is a good start. However, as we noted in Section 4.4, there will be rather different specialized
horizontal Domain Engineering methods since different subsystems may require different
modeling styles and modeling techniques. Thus, the Application Family Engineering process
may call different specialized horizontal Domain Engineering methods, e.g. DEMRAL (Section
4.5.5), as its Component System Engineering methods for different subsystems (see Figure 19).

RSEB explicitly focuses on modeling variability. At the abstract level, the notion of variation
points is introduced as an extension of the UML notation. A variation point “identifies one or
more locations at which the variation will occur.” [JGJ97] A variation point is shown as a solid
dot on a modeling element, e.g. a use case or a component (see Figure 20). For example, the
component Account has the variation point {Account Overdrawn} and two variant
components Deduct Fee and Overdraft Not Allowed are associated with this point using
simple UML associations. Similarly, the use case Withdraw Money has also the variation point
{Account Overdrawn}. Two variant use cases Deduct Fee and Overdraft Not Allowed are
associated with this point using the <<extends>> relationship. Each variant use case
describes what should happen if an account is overdrawn. We will extend the notion of
variation points with different categories of variation in Section 5.4.1.7.

application
systems

Component System
Engineering n

Application Family
Engineering

Component System
Engineering 3

Component System
Engineering 2

Component System
Engineering 1

Application System
Engineering

family
architecture

component
systems

concrete
requirements

Figure 19    Flow of artifacts in RSEB with specialized Component System Engineering
processes

Variation points
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Variation points are implemented in more concrete models using different variability
mechanisms. Indeed, any model used in the process should support some kind of variability
mechanism. Examples of variability mechanisms are summarized in Table 7.

An important contribution of RSEB is variability modeling in use cases. The RSEB book lists a
number of important reasons for variability in use case models:

• varying user or system interfaces;

• different entity types referenced, e.g. account in withdrawal may be a checking or a join
account;

• alternative and optional functionality;

• varying constraints and business rules;

• error detection;

• performance and scalability differences.

The variability mechanisms available in use case modeling include use case templates, macros
and parameters, use case inheritance (i.e. uses relationship), and use case extensions [JGJ97].

Withdraw Money

{Account Overdrawn}

Deduct Fee
Overdraft
Not Allowed

Account

{Account Overdrawn}

Deduct Fee
Overdraft
Not Allowed

<<extends>> <<extends>>

Figure 20    Variation points in components and use cases (adapted from [JGJ97])

Variability
mechanisms
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A key idea in RSEB is to maintain explicit traceability links connecting representations of
variability throughout all models, i.e. variability present in use cases can be traced to variability
in the analysis, design and implementation object models. In UML, the traceability links are
modeled using the <<trace>> dependency relationship.

As stated, RSEB is based on the OOSE method and thus each of the three processes
Application Family Engineering, Component System Engineering, and Application System
Engineering have the five main OOSE process components:

• requirements capture

• robustness analysis

• design

• implementation

• testing

Additionally, Component System Engineering and Application System Engineering have a sixth
process component, namly packaging, whose purpose is packaging the component system
(documenting, archiving for later retrieval, etc.) or packaging the application system
(documenting, developing installation scripts, etc.), respectively.

Mechanism Type of variation point Type of variant Use particularly when

inheritance virtual operation subclass or subtype specializing and adding
selected operations, while
keeping others

extensions extension point extension it must be possible to attach
several variants at each
variation point at the same
time

uses use point use case reusing abstract use case to
create a specialized use case

configuration configuration item slot configuration item choosing alternative
functions and
implementations

parameters parameter bound parameter there are several small
variation points for each
variable feature

template
instantiation

template parameter template instance doing type adaptation or
selecting alternative pieces
of code

generation parameter or language
script

bound parameter or
expression

doing large-scale creation of
one or more types or classes
from a problem-specific
language

Table 7    Some variability mechanisms (from [JGJ97])
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Unfortunately, despite the RSEB focus on variability, the process components of Application
Family Engineering and Component System Engineering do not include Domain-Analysis-like
activities of domain scoping and feature modeling.

The purpose of domain scoping in Application Family Engineering would be to scope the
application family or the product line with respect to classes of current and potential
stakeholders. This kind of scoping is referred to as application family scoping. We already
discussed issues concerning application family scoping in the context of product lines and
families in Section 3.6.2.

The kind of scoping required for Component System Engineering is component-oriented one.
The issues here include the following:

• reusability of the component system across multiple product lines or families within an
organization;

• marketing opportunities of a component system outside an organization;

• technical issues such as the nature of the domain and the required modeling techniques;

• organizational issues such as staffing and concurrent engineering.

Component-oriented scoping corresponds to the decomposition of the applications in an
application family into generic subsystems and thus represents an important aspect of the
application family architecture development.

Another shortcoming of RSEB is the lack of feature models. In RSEB, variability is expressed at
the highest level in the form of variation points (especially in use cases), which are then
implemented in other models using various variability mechanisms. However, Griss, et al. report
in [GFA98] that these modeling techniques turned out to be insufficient in practice. They
summarize their experience in applying a purely use case driven approach in the telecom domain
as follows:

“In the telecom sector, lack of explicit feature representation can be especially
problematic, even in the presence of use case modeling. First, use case models do not
explicitly reveal many of the implementation or technical features prevalent in telecom
systems, such as ‘switch types.’ Second, telecom services can require very large numbers
of use cases for their descriptions; and when the use cases are parameterized with RSEB
variation points describing many extensions, alternatives, and options, the domain
engineer can easily lose his way when architecting new systems. Reusers can easily get
confused about which features and use cases to use for which application systems.”

This experience prompted them to devise FeatuRSEB [GFA98], which addresses all these
problems by extending RSEB with explicit domain scoping and feature modeling activities and
with feature models. We describe this new method in the following section.

4.5.4 FeatuRSEB
FeatuRSEB [GFA98] is a result of integrating FODAcom [VAM+98], an object-oriented
adaptation of FODA for the telecom domain, into RSEB in a cooperation between Hewlett-
Packard Inc. and Intecs Sistemi.

FeatuRSEB extends RSEB in two important ways:

• Application Family Engineering and Component System Engineering are extended with
explicit domain scoping, domain planning, and feature modeling activities.

• Feature models are used as the primary representation of commonalities, variabilities, and
dependencies.

Application family
vs. component-
oriented scoping
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Both Objectory and RSEB subscribe to the 4+1 Model View of architecture by Kruchten (see
Figure 17) of developing several models, plus one that ties them all together. While, in
Objectory and in RSEB, the role of this unifying “+1” model plays the use case model, the “+1”
model in FeatuRSEB is the feature model. Griss et al. note that the feature model serves “as a
concise synthesis of the variability and commonality represented in the other RSEB models,
especially the use case model.” [GFA98]  In other words, FeatuRSEB is feature model centric.
They further state that, as a FeatuRSEB principle, “not everything that could be a feature
should be a feature. Feature descriptions need to be robust and expressive. Features are used
primarily to discriminate between choices, not to describe functionality in great detail; such
detail is left to the use case or object models.”

Griss et al. also describe the important relationship between use case models and feature
models: A use case model captures the system requirements from the user perspective (i.e.
“operational requirements”), whereas the feature model organizes requirements from the reuser
perspective based on commonality, variability, and dependency analysis.

The feature models in FeatuRSEB consist, like their FODA counterparts, of feature diagrams
annotated with constraints, binding time, category, rationale, etc.

The feature modeling steps in FeatuRSEB are the following [GFA98]:

1. Merge individual exemplar use case models into a domain use case model (known as the
Family Use case Model in the RSEB). Using variation points capture and express the
differences. Keep track of the originating exemplars using «trace».

2. Create an initial feature model with functional features derived from the domain use case
model (typically using use case names as a starting point for feature names).

3. Create the RSEB analysis object model, augmenting the feature model with architectural
features. These features relate to system structure and configuration rather than to specific
function.

4. Create the RSEB design model, augmenting the feature model with implementation
features.

Thus, FeatuRSEB distinguishes between functional, architectural, and implementation features.

Griss et al. also propose an implementation of the feature diagram notation in UML and give
some requirements on tool support for feature models. We will discuss both topics later in
Sections 5.5 and 5.7.

4.5.5 Domain Engineering Method for Reusable Algorithmic Libraries (DEMRAL)
DEMRAL is a Domain Engineering method for developing algorithmic libraries, e.g. numerical
libraries, container libraries, image processing libraries, image recognition libraries, speech
recognition libraries, graph computation libraries, etc. Thus, it is a horizontal method. The main
abstractions in algorithmic domains are abstract data types (ADTs) and algorithms. Excellent
performance, effective representation of a myriad of ADT and algorithm variants, achieving
high adaptability and reusability, and providing an abstract interface are the main design goals
in DEMRAL. The method has been created as a specialization of ODM (Section 3.7.2).

A fundamental aspect of DEMRAL is feature modeling. Indeed, feature modeling is the driving
force in DEMRAL. DEMRAL involves creating a high-level feature model of the domain of
focus and feature models of each concept in the domain. DEMRAL also integrates concepts
from Aspect-Oriented Programming such as aspectual decomposition and the application of
domain-specific languages (DSLs) for expressing different aspects (see Chapter 7).

An important concept in DEMRAL are configuration DSLs. A configuration DSL is used to
configure a component. It allows different levels of control, so that clients may specify their
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needs at the appropriate level of detail. DEMRAL provides an approach for deriving
configuration DSLs from feature models.

DEMRAL also gives advise on implementing domain models using OO techniques and
metaprogramming (e.g. generators, transformation systems, or built-in metaprogramming
capabilities of programming languages).

DEMRAL is described in Chapter 9.
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Chapter 5 Feature Modeling

5.1 Motivation
The conclusion of the previous chapter was that feature modeling constitutes the major
contribution of Domain Engineering with respect to the conventional software system
engineering. Thus, we shall discuss feature modeling in more detail in this chapter.

Feature modeling is particularly important if we engineer for reuse. The reason is that reusable
software contains inherently more variability than concrete applications and feature modeling is
the key technique for identifying and capturing variability.

As discussed in Section 4.1.2, feature modeling helps us to avoid two serious problems:

• relevant features and variation points are not included in the reusable software;

• many features and variation points are included but never used and thus cause
unnecessary complexity, development cost, and maintenance cost.

Finally, the feature models produced during feature modeling provide us with an abstract (since
implementation independent), concise, and explicit representation of the variability present in
the software.

5.2 Features Revisited
We discussed the notion of features in the last three chapters. We saw that different methods
and approaches used slightly different interpretations of features. Before we move our attention
to feature modeling, we first summarize what we have said about features so far.

Following the conceptual modeling perspective (Chapter 2) and the ODM perspective (Section
3.7.2), a feature is an important property of a concept. Features allow us to express the
commonalities and differences between concept instances. They are fundamental to formulating
concise descriptions of concepts with large degrees of variation among their instances.
Organized in feature diagrams (Section 3.7.1.2), they express the configurability aspect of
concepts.

A feature should have a concise and descriptive name — much as in the case of a design
pattern. The name enriches the vocabulary for describing concepts and instances in a domain.
By organizing features into feature diagrams, we actually build taxonomies.

Features are primarily used in order to discriminate between instances (and thus between
choices). In this context, the quality of a feature is related to properties such as its
primitiveness, generality, and independency. We discussed these concepts in Section 2.3.5.
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In the context of Domain Engineering, features represent reusable, configurable requirements
and each feature has to make a difference to someone, e.g. a stakeholder or a client program. For
example, when we build an order processing system, one of the features of the pricing
component could be aging pricing strategy, i.e. you pay less for older merchandise. This
pricing strategy might be particularly interesting to stores selling perishable goods.

Features may occur at any level, e.g. high-level system requirements, architectural level,
subsystem and component level, implementation-construct level (e.g. object or procedure level).

Modeling the semantic content of features usually requires some additional modeling formalism,
e.g. object diagrams, interaction diagrams, state diagrams, synchronization constraints, etc.
Thus, feature models are usually just one out of many other kinds of models describing a piece
of reusable software.

5.3 Feature Modeling
Feature modeling is the activity of modeling the common and the variable properties of
concepts and their interdependencies and organizing them into a coherent model referred to as
a feature model.

By concepts, we mean any elements and structures in the domain of interest. We already
discussed the notion of concepts and conceptual modeling in Chapter 2 in detail. But let us
make a few remarks about concepts.

Many OO enthusiasts do not distinguish between concepts and OO classes. For them,
“everything is an object”. Of course, this is a quite naive or even profane view of the world.

There is an obvious similarity between OO classes and concepts: OO classes represent a
generic description of a set of objects. Similarly, concepts represent a generic description of a
set of concept instances. So what is the difference between concepts and OO classes? In order
to answer this question, we have to move to the instance level. Objects, i.e. the instances of OO
classes, have some predefined semantic properties: they have state, exhibit some well-defined
behavior, and have a unique identity (see [Boo94]). Instances of concepts, on the other hand,
do not have any predefined semantics. They could be anything. This difference is shown in
Figure 21.

We can think of concepts as “reference points” in the brain for classifying phenomena. A
concepts stands for a class of phenomena. Of course, it is important to give names to relevant
concepts, so that we can talk about them without having to list all their properties (which, in
most cases, as we have seen in Chapter 2, is impossible anyway). The conclusion of Chapter 2
also was that concepts are inherently subjective: their information contents depends not only
on the person, but also on time, context, and other factors.

So why do we define feature modeling around concepts and not classes of objects? The reason
is that we may want to model features of any elements and structures of a domain, not just
objects. It should be possible to describe variability of use cases, OO classes, functions,
procedures, etc., not just OO classes. This way, we can use feature modeling together with
various other modeling techniques, e.g. use case modeling, class modeling, specifications of
functions, procedures, etc.

Feature modeling may play different roles in different Domain Engineering methods. e.g.:

• producing a feature model representing the configurability aspect of reusable software as
in, e.g., FeatuRSEB (Section 4.5.4);

• the driving modeling activity, e.g., all modeling in DEMRAL (Chapter 9) starts as feature
modeling and other modeling techniques are “called” out of feature modeling.

Feature modeling
and feature model
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We refer to the latter as feature-driven modeling. Feature-driven modeling is useful whenever
variability constitutes the main aspect of the modeled software.

There are three important aspects of feature modeling:

• “Micro-cycle” of feature modeling: What are the basic steps in feature modeling? How do
we identify features? We investigate these questions in Section 5.8.1.

• Integration in the overall software engineering process: The micro-cycle of feature
modeling may be integrated into the overall software engineering process in different ways.
For example, in FeatuRSEB, it accompanies all other modeling activities (see feature
modeling steps in FeatuRSEB in Section 3.7.1.1). In DEMRAL, as noted above, it
constitutes the main modeling activity. Another aspect is the relation between feature
models and other models produced during development. As already discussed, we need to
maintain traceability links showing the connections between variability representations in
different models.

• Content aspect of feature modeling: Features have some semantic content and feature
modeling may focus on different kinds of content at a time, e.g. functional aspects, data-
flow aspects, interaction aspect, synchronization aspects, etc. Different model
representations are used for different contents. This issue is connected to decomposition
techniques, which we discuss in Section 5.8.2.

It is important to note that feature modeling is a creative activity. It is much more than just a
simple rehash of the features of existing systems and the available domain knowledge. New
features and new knowledge is created during feature modeling. For example, one technique
used in feature modeling is the analysis of combinations of variable features, which may lead to
the discovery of innovative feature combinations and new features. The systematic
organization of existing knowledge allows us to invent new, useful features and feature
combinations more easily.

In some Domain Engineering methods, feature modeling is referred to as feature analysis.
However, we prefer the term feature modeling since it emphasizes the creative aspect of this
activity.

Before we answer the question of how to perform feature modeling in Section 5.8, we first
describe the elements of feature models.

concept
(no predefined

semantics)

OO class
(instances have

identity, behavior,
and state)

specialization

Figure 21    Difference between a concept and an OO
class
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5.4 Feature Models
A feature model represents the common and the variable features of concept instances and the
dependencies between the variable features. Feature models are created during feature
modeling.

A feature model represents the intention of a concept, whereas the set of instances it describes
is referred to as the extension of the concept.

A feature model consists of a feature diagram and some additional information such as short
semantic description of each feature, rationale for each feature, stakeholders and client
programs interested in each feature, examples of systems with a given feature, constraints,
default dependency rules, availability sites (i.e. where, when, and to whom a feature is
available), binding sites (i.e. where, when, and who is able to bind a feature), binding modes
(e.g. dynamic or static binding), open/closed attributes (i.e. whether new subfeatures are
expected), and priorities (i.e. how important is a feature). We discuss all these items in Section
5.4.2.

From a feature diagram of a concept, we can derive featural descriptions of the individual
instances of the concept. A featural description of an instance is a set of features.34 Two feature
diagrams are equivalent, if the set of all instance descriptions derivable from the first diagram is
equal to the set of all instance description derivable from the other diagram.

We describe feature diagrams in the following sections. All the additional information contained
in a feature model is described in Section 5.4.2.

5.4.1 Feature Diagrams
In this section, we introduce a slightly modified and extended version of the FODA feature
diagram notation (cf. Section 3.7.1.2) as well as some useful vocabulary for talking about feature
diagrams.

A feature diagram consists of a set of nodes, a set of directed edges, and a set of edge
decorations. The nodes and the edges form a tree.35 The edge decorations are drawn as arcs
connecting subsets or all of edges originating from the same node (see e.g. Figure 25).
Effectively, edge decorations define a partitioning of the subnodes of a node (i.e. they divide
the subnodes in a number of disjoint subsets).

The root of a feature diagram represents a concept. We refer to it as the concept node.36 The
remaining nodes in a feature diagram represent features and we refer to them as  feature nodes.
Throughout the text, we usually leave out the word “node” and simply say “feature” instead of
“feature node” and “concept” instead of “concept node”.

The parent node of a feature node is either the concept node, or another feature node. Consider
Figure 22, which shows a feature diagram with the three features f1, f2 and f3 of the concept C,
where the parent of f1 is C, the parent of f2 is f1, and the parent of f3 is f2. Given these
relationships, we say that (i) f1 is a direct feature of C, (ii) f2 and f3 are indirect features of C,
(iii) f2 is a direct subfeature of f1, and (iv) f3 is an indirect subfeature of f1.

As in FODA, we distinguish between mandatory, alternative, and optional features. In
addition to these feature types, we also introduce or-features. Furthermore, optionality can be
combined with alternative features and with or-features resulting in the two additional feature
types optional alternative features and optional or-features. However, as we see later, the
optional or-feature type is equivalent to the optional feature type and thus it is redundant.
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A description of an instance of a concept is a set of nodes which always includes the concept
node and some or all of the feature nodes. A valid description of an instance is derived from a
feature diagram by adding the concept node to the feature set and by traversing the diagram
starting at the root and, depending on the type of the visited node, including it in the set or not.
The node types and the criteria for the inclusion of a feature in an instance description are
defined in the following sections.

5.4.1.1 Mandatory Features
A mandatory feature is included in the description of a concept instance if and only if its parent
is included in the description of the instance. Thus, for example, if the parent of a mandatory
feature is optional and not included in the instance description, the mandatory feature cannot
be part of the description. Please remember that the concept node of a feature diagram is always
included in any instance description derived from the diagram.

A mandatory feature node is pointed to by a simple edge (as opposed to an arc-decorated
edge) ending with a filled circle as in Figure 23. Features f1, f2, f3, and f4 are mandatory features of
concept C. According to Figure 23, every instance of concept C has features f1 and f2, and every
instance of C which has f1 also has f3 and f4. Thus, effectively, every instance of C has f3 and f4.
Finally, we conclude that every instance of C can be described by the feature set {C, f1, f2, f3, f4}.

5.4.1.2 Optional Features
An optional feature may be included in the description of a concept instance if and only if its
parent is included in the description. In other words, if the parent is included, the optional
feature may be included or not, and if the parent is not included, the optional feature cannot be
included.

f2

f1

C

f3

Figure 22    Feature diagram with
three features

f2

f3 f4

f1

C

Figure 23    Example of a feature
diagram with mandatory features
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An optional feature node is pointed to by a simple edge ending with an empty circle as in Figure
24. Features f1, f2, and f3 are optional features of concept C. According to Figure 24, an instance
of C might have one of the following descriptions: {C}, {C, f1}, {C, f1, f3}, {C, f2}, {C, f1, f2}, or {C,
f1, f3, f2}.

5.4.1.3 Alternative Features
A concept may have one or more sets of direct alternative features. Similarly, a feature may
have one or more sets of direct alternative subfeatures. If the parent of a set of alternative
features is included in the description of a concept instance, then exactly one feature from this
set of alternative features is included in the description, otherwise none.

The nodes of a set of alternative features are pointed to by edges connected by an arc. For
example, in Figure 25, C has two sets of alternative features: one set with f1 and f2 and another
set with f3, f4, and f5. From this diagram, we can derive the following instance descriptions: {C, f1,
f3}, {C, f1, f4}, {C, f1, f5}, {C, f2, f3}, {C, f2, f4}, or {C, f2, f5}.

A feature (or concept) with a single set of direct alternative subfeatures (or features) and no
other direct subfeatures (or features) is referred to as a dimension (e.g. f1 in Figure 26). We also
found it useful to broaden the notion of dimensions to include features (concepts) with a single
set of direct alternative subfeatures (features) and one or more direct mandatory subfeatures
(features). According to this broader definition, f2 in Figure 26 is also a dimension, but f3 is not.37

f2

f3

f1

C

Figure 24    Example of a feature
diagram with optional features

f2 f3 f5f4f1

C

Figure 25    Example of a feature
diagram with two sets of
alternative features
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Dimensions can also be alternative, i.e. we have alternative dimensions (see Figure 27).

Similarly, we can have optional dimensions (see Figure 28).

An alternative feature can also be optional, as f1 in Figure 29. However, as we will see in Section
5.4.1.5, during the normalization of a feature diagram, all features of a set of alternative features

C

f3 f5f4 f9 f11f10f6 f8f7

f1 f3f2

Figure 26    Example of a feature diagram with two
dimensions

f3 f5f4 f6 f8f7

C

f1 f2

Figure 27    Example of a feature
diagram with two alternative
dimensions

C

f3 f5f4 f6 f8f7

f1 f2

Figure 28    Example of a feature
diagram with two optional
dimensions
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containing one or more optional alternative features are replaced by optional alternative
features (see Figure 32).

5.4.1.4 Or-Features
A concept may have one or more sets of direct or-features. Similarly, a feature may have one or
more sets of direct or-subfeatures. If the parent of a set of or-features is included in the
description of a concept instance, then any non-empty subset from the set of or-features is
included in the description, otherwise none.

The nodes of a set of or-features are pointed to by edges connected by a filled arc. For example,
in Figure 30, C has two sets of or-features: one set with f1 and f2 and another set with f3, f4, and f5.
A total of (22-1)*(23-1), i.e. 21, different instance descriptions may be derived from this diagram.

An or-feature can also be optional, e.g. f1 in Figure 31. However, as we will see in Section 5.4.1.5,
during the normalization of a feature diagram, all or-features of a set of or-features containing
one or more optional or-features are replaced by optional features (see Figure 33).

f1 f3f2

C

Figure 29    Example of a feature diagram
with one optional alternative feature

f2 f3 f5f4f1

C

Figure 30    Example of a feature
diagram with two sets of or-
features

f1 f3f2

C

Figure 31    Example of a feature
diagram with an optional or-feature
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5.4.1.5 Normalized Feature Diagrams
A node in a feature diagram can have mandatory feature subnodes (e.g. f1 in Figure 23), optional
feature subnodes (e.g. f1 in Figure 24), alternative feature subnodes (e.g. f1 in Figure 25),
optional alternative feature subnodes (e.g. f1 in Figure 29), or-feature subnodes (e.g. f1 in Figure
30), and optional or-feature subnodes (e.g. f1 in Figure 31). Thus, in addition to the mandatory,
alternative, optional, and or-feature nodes, we also have optional alternative feature nodes and
optional or-feature nodes. Now we take a closer look at the latter two kinds of features.

If one or more of the features in a set of alternative features is optional, this has the same effect
as if all the alternative features in this set were optional. This is illustrated in Figure 32.

Similarly, if one or more of the features in a set of or-features is optional, this has the same effect
as if all the features in this set were optional or-features. Furthermore, all of the optional or-
features can be replaced by optional features. Therefore, if one or more features in a set of or-
features is optional, we can replace all these features by optional features. This is illustrated in
Figure 33. We conclude that the category of optional or-features is redundant since it is
equivalent to optional features.

Any feature diagram can be transformed into a feature diagram which does not have any
optional or-features and whose sets of alternative features may contain either only alternative
features or only alternative optional features. The transformation can be accomplished by
replacing the non-optional alternative features of a set of alternative features containing one or
more optional alternative features by optional alternative features and by replacing all optional
or-features by optional features. The resulting feature diagram is referred to as a normalized
feature diagram and is equivalent to the original feature diagram.

A feature node in a normalized feature diagram can be classified according to its subnode
category as either mandatory, or optional, or alternative, or optional alternative, or or-feature
node.

f1 f3f2

C

f1 f3f2

C

Figure 32    Feature diagram with one
optional alternative feature is normalized
into a diagram with three optional
alternative features

Normalized feature
diagrams

f1 f3f2

C

f1 f3f2

C

Figure 33    Feature diagram with one
optional or-feature is normalized into a
diagram with three optional features

Subnode
categories:
mandatory,
optional,
alternative,
optional
alternative, and or-
feature nodes
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Furthermore, the set of subnodes of any node of a normalized feature diagram can be
partitioned into the following disjoint (possibly empty) sets: one set of mandatory feature
nodes, one set of optional feature nodes, one or more sets of alternative feature nodes, one or
more sets of optional alternative feature nodes, and one or more sets of or-feature nodes. This
partitioning is referred to as subnode partitioning and each of the resulting sets is called a
subnode partition of the parent node.

5.4.1.6 Expressing Commonality in  Feature Diagrams
Feature diagrams allow us to represent concepts in a way that makes the commonalities and
variabilities among their instances explicit. We first take a look at representing commonality.

Depending on the focus, there are two types of commonalities. If we focus on the concept
node, we might ask the question: What features are common to all instances of the concept? On
the other hand, if we focus on a particular feature node, we might ask: What features are
common to all instances of the concept that have that particular feature? In order to answer
these questions, we introduce the notions of common features and common subfeatures.

A common feature of a concept is a feature present in all instances of a concept. All mandatory
features whose parent is the concept are common features. Also, all mandatory features whose
parents are common are themselves common features. Thus, a feature is a common feature of a
concept if the feature is mandatory and there is a path of mandatory features connecting the
feature and the concept. For example, in Figure 23,  f1, f2, f3, and f4 are common features.

A common subfeature of the feature f is a (direct or indirect) subfeature of f which is present in
all instances of a concept which also have f. Thus, all direct mandatory subfeatures of f are
common subfeatures of f. Also, a subfeature of  f is common if it is mandatory and there is a
path of mandatory features connecting the subfeature and f.

5.4.1.7 Expressing Variability in Feature Diagrams
Variability in feature diagrams is expressed using optional, alternative, optional alternative, and
or-features. We refer to these features as variable features.

The nodes to which variable features are attached are referred to as variation points.38 More
formally, a variation point is a feature (or concept) which has at least one direct variable
subfeature (or feature).

Different important types of variation points such as dimensions and extension points are
defined in Table 8.

Moreover, we distinguish between homogeneous vs. inhomogeneous variation points.  A
variation point is homogeneous if all its direct subfeatures (or features) belong to the same
node subcategory (i.e. they are all optional, or all alternative, etc.), otherwise it is
inhomogeneous.

We can further categorize variation points according to whether they allow us to include at
most one direct subfeature (or feature) in the description of an instance, or more than one direct
subfeature (or feature). The first category is referred to as singular variation points and it
includes dimensions, dimensions with optional features, and extension points with exactly one
optional feature. The second category is referred to as nonsingular variation points and it
includes extension points with more than one optional feature and extension points with or-
features.

In a similar way as we generalized mandatory features to common features, we can also
generalize alternative features to mutually exclusive features: Two features in a feature diagram
of a concept are mutually exclusive, if none of the instances of the concept have both features
at the same time. Given a tree-shaped feature diagram, two features are mutually exclusive if the
direct parent or any of the indirect parents of the first feature is in the same set of alternative
features as the direct parent or any of the indirect parents of the other feature.

Subnode
partitioning

Common features

Common
subfeatures

Variable features

Variation points

Dimensions and
extension points

Homogeneous vs.
inhomogeneous
variation points

Singular vs.
nonsingular
variation points

Mutually exclusive
features
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Finally, we also distinguish between simultaneous and non-simultaneous variation points. Two
variation points of a feature diagram without edge decorations are simultaneous if and only if
they are both not mutually exclusive and not related by the (direct or indirect) parentship
relation. Analogously, two variation points are non-simultaneous if and only if they are either
mutually exclusive or related by the direct or indirect parentship relation (i.e. one is a parent of
the other one).

5.4.1.8 Feature Diagrams Without Edge Decorations 39

In this section, we present feature diagrams without edge decorations, a feature diagram
notation, which does not have any edge decorations (i.e. empty arcs and filled arcs). Feature
diagrams without edge decorations do not contain inhomogeneous variation points. Any
feature diagram in the notation introduced previously can be converted into an equivalent
feature diagram without edge decorations.

Simultaneous vs.
non-simultaneous
variation points

Type of variation point Definition Example

dimension feature (or concept) whose all direct
subfeatures (or features) are alternative
features

f1 f3f2

C

dimension with optional
features

feature (or concept) whose all direct
subfeatures (or features) are alternative
optional features

f1 f3f2

C

extension point feature (or concept) which has at least one
direct optional subfeature (or feature) or at
least one set of direct or-subfeatures (or or-
features).

f1 f3f2

C

extension point with
optional features

feature (or concept) whose all direct
subfeatures (or features) are optional features

f1 f3f2

C

extension point with or-
features

feature (or concept) whose all direct
subfeatures are or-features

f1 f3f2

C

Table 8    Types of variation points
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The feature diagram notation presented so far (i.e. feature diagrams with edge decorations) is
more concise than the notation without edge decorations. Therefore, we will use feature
diagrams with edge decorations in domain analysis. The reason for introducing the equivalent
feature diagrams without edge decorations is that they have a simpler structure. For example,
they do not contain any inhomogeneous variation points. Because of this simpler structure,
they allow an easier analysis.

A feature diagram without edge decorations is a tree (see Figure 35). Each node of the tree
belongs to one of the seven parent node categories listed in Table 9. The root of a diagram
belongs to the category concept and is the only element of this category. Nodes without
outgoing edges (except, if applicable, the root) belong to the category leaf. Nodes with direct
mandatory subfeatures only belong to the category parent of mandatory features. The
remaining four categories are homogeneous variation points.

Now, we give the rules for deriving a valid description of an instance of a concept based on its
feature diagram without edge decorations. We assume that the diagram is a tree and the
descriptions are sets of features. We have the following inclusion rules:

1. The concept node and its direct features are always included in the description.

2. If a node of the category “parent of mandatory features” is included in the description, all
its subnodes are also included in the description.

3. If a node of the category “parent of optional features” is included in the description, any
(possibly empty) subset or all of its subnodes are also included in the description.

4. If a node of the category “parent of alternative features” is included in the description,
exactly one of its subnodes is also included in the description.

5. If a node of the category “parent of optional alternative features” is included in the
description, none or exactly one of its subnodes is also included in the description.

6. If a node of the category “parent of or-features” is included in the description, any non-
empty subset or all of its subnodes are also included in the description.

Given a feature diagram in the notation with edge decorations, we can convert it into an
equivalent feature diagram without edge decorations by performing the following
transformations:

Node Category Icon

concept

parent of mandatory features

leaf

parent of optional features (i.e. extension point with optional
features)

parent of alternative features (i.e. dimension)

parent of optional alternative features (i.e. dimension with optional
features)

parent of or-features (i.e. extension point with or-features)

Table 9    Parent node categories occurring in feature diagrams without edge
decorations and their icons
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1. Normalize the feature diagram (see previous Section 5.4.1.5).

2. Record the subnode partitions for each of the nodes in the normalized feature diagram.

3. Drop the edge decorations, i.e. the arcs and the filled arcs.

4. Insert intermediate feature nodes between the concept node and its subnodes. The
intermediate nodes are inserted one per subnode partition, so that the feature nodes in one
subnode partition have one common intermediate node as their parent. The partitions
recorded in step 2 have to be updated by inserting the newly created nodes into the
appropriate partitions of mandatory feature nodes.

5. Assign the parent node categories based on the subnode categories determined by the
partitioning recorded in steps 2 and 4 as follows: The root is concept, a parent node of
mandatory feature nodes is “parent of mandatory features”, a parent node of optional
feature nodes is “parent of optional features”, a parent node of alternative feature nodes is
“parent of alternative features”, a parent node of optional alternative feature nodes is
“parent of optional alternative features”, a parent node of or-feature nodes is “parent of or-
features”, the leaf nodes are leaf.

This transformation produces a feature diagram without edge decorations which is equivalent
to the original feature diagram with edge decorations. They are equivalent in the sense that the

f7 f8

f5f4f3f1

f9 f10

f2 f6

C

Figure 34    Example of a feature diagram with edge decorations.
This diagram is equivalent to the feature diagram in Figure 35.

f2

f7 f8

C

f5f4f3

new1 new3new2

f1

f9 f10

f6

Figure 35    Example of a feature diagram without edge
decorations. This diagram is equivalent to the feature diagram
in Figure 34.
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set of instance descriptions which can be derived from the latter diagram is equal to the set of
instance descriptions which can be derived from the first diagram after removing the new
intermediate feature nodes from the descriptions in the latter set.

An example of a feature diagram without edge decorations is shown in Figure 35. This diagram
is equivalent to the diagram in Figure 34. The icons representing the nodes of a feature diagram
without edge decorations are explained in Table 9.

It is worth noting that nodes in feature diagrams with edge decorations are classified according
to their subnode categories, whereas nodes in feature diagrams without edge decorations are
classified according to their parent node categories. Furthermore, subnode categories are
determined based on edge decorations and the optionality attribute of a node, whereas parent
node categories may be directly stored as an attribute of a node.

5.4.2 Other Information Associated with Feature Diagrams
A complete feature model consists of a feature diagram and other information associated with it
including the following:

• Semantic description: Each feature should have at least a short description describing its
semantics. It may also be useful to attach some models in appropriate formalisms (e.g. an
interaction diagram, pseudo code, equations, etc.). Eventually, there will be traceability
links to other models implementing this feature. We may also assign categories to features,
e.g. categories indicating the aspect a given feature belongs to.

• Rationale: A feature should have a note explaining why the feature is included in the
model. Also each variable feature should be annotated with conditions and
recommendations when it should be used in an application.

• Stakeholders and client programs: It is useful to annotate each feature with stakeholders
(e.g. users, customers, developers, managers, etc.) who are interested in the feature and, in
the case of a component, with the client programs (or examples of such) which need this
feature.

• Exemplar systems: It is useful to annotate a feature with existing systems (i.e. exemplar
systems) which implement this feature, if known.

• Constraints and default dependency rules: Constraints record required dependencies
between variable features, possibly over multiple feature diagrams. Two important kinds of
constraints are mutual-exclusion constraints (i.e. constraints describing illegal
combinations of variable features) and requires constraints (i.e. constraints describing
which features require the presence of which other features). Default dependency rules
suggest default values for unspecified parameters based on other parameters.40 We
distinguish between horizontal and vertical constraints and default dependency rules.
Horizontal constraints and default dependency rules describe dependencies between
features of a similar level of abstraction (e.g. constraints within one feature diagram are
usually horizontal features), whereas vertical constraints and default dependency rules map
high-level specification features onto implementation features. Constraints and default
dependency rules allow us to provide an automatic (e.g. constraint-based) configuration,
which relieves the user or the reuser of much manual configuration work.

• Availability sites, binding sites, and binding mode: Availability site describes when,
where, and to whom a variable feature is available and binding site describes when, where,
and by whom a feature may be bound. Binding mode determines whether a feature is
statically, changeably, or dynamically bound. We discuss availability site, binding site, and
binding mode in Section 5.4.4.

• Open/closed attribute: It is useful to mark variation points as open if new direct variable
subfeatures (or features) are expected. For example, the element type of a matrix could have
integer, long, float, double, and complex as alternative subfeatures. We would mark it open
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to indicate that, if needed, other number types may be added. By marking a variation point
as closed, we indicate that no other direct variable subfeatures (or features) are expected.

• Priorities: Priorities may be assigned to features in order to record their relevance to the
project. We discuss priorities in the following section.

5.4.3 Assigning Priorities to Variable Features
It is often useful to annotate variable features with priorities. This might be so in the following
situations:

• Domain scoping and definition: Priorities can be used in order to record the typicality rates
of variable features of a system based on the analysis of existing exemplar systems and the
target application areas for the system. The priorities may also be adjusted according to the
goals of the stakeholders to record the relevance of each variable feature for the project.
For example, the definition of the domain of matrix computations libraries involves the
construction of a feature diagram of the concept matrix computations library (see Figure
137). The features of a matrix computations library are determined based on the analysis of
existing matrix computations libraries and the application areas of matrix computations
libraries. Finally, the feature diagram is annotated with priorities reflecting the importance
for a matrix computations library to provide certain features in order to “be a matrix
computations library”. For example, every matrix computations library has to provide dense
matrices or sparse matrices or both; however, dense matrices are more commonly
implemented than sparse matrices. This type of concept definition corresponds to the
probabilistic view of concepts discussed in Section 2.2.3.

• Feature modeling: The variable features of feature diagrams produced during feature
modeling can also be annotated with priorities in order to record their relevance for the
project and to help to decide which features to implement first. For example, one dimension
in the feature diagram of a matrix is its shape, e.g. rectangular, triangular, and Toeplitz.
We could assign a lower priority to Toeplitz than to rectangular or triangular since Toeplitz
is “more exotic” than the other two and it can also be represented using the rectangular
shape.

• Implementation scoping: The first phase of domain design is implementation scoping,
whose purpose is to determine which features will be implemented first. This decision is
based on the priorities assigned to variable features in feature models.

The assigned priorities may change over the course of a project. Thus, we have to update the
feature models accordingly.

We do not prescribe any specific schema for assigning priorities. However, please note that
priorities can potentially conflict with the constraints of a feature model since constraints define
dependencies between features. Thus, for example, given the features f1 and f2, if there is a
constraint requiring the inclusion f2 whenever f1 is included, the priority of f2 has to be at least as
high as the priority of f1.

5.4.4 Availability Sites, Binding Sites, and Binding Modes
Availability site describes when, where, and to whom a variable feature is available. An
available variable feature has to be bound before it can be used. Binding site describes when,
where, and by whom a feature may be bound (and unbound, if applicable). Binding mode
determines whether a feature is statically, changeably, or dynamically bound.

Before describing availability sites, binding sites, and binding modes in more detail, we first
introduce the concept of sites.
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5.4.4.1 Sites
A site defines the when, where, and who for a domain. Each domain may have its own site
model, which may be arbitrarily complex. A simple site model might consist of a number of
predefined times, usage contexts (e.g. different usage contexts of a system and/or usage
locations of a component within a system), and a stakeholder model (e.g. users, customers,
developers, etc.).

Based on a generic product lifecycle, important times include construction time, compile time,
debug time, load time, runtime, and post runtime. However, sometimes we might want to define
sites relative to product-specific workflows, use cases, etc.

5.4.4.2 Availability Sites
The variability available in a system or a component usually depends on its current site. We can
model this by annotating each variable feature with its availability sites, i.e. the sites at which
the feature is available for selection. For example, using availability site annotations, we can
specify which items of a menu will be shown to whom, at what time, and in which context.

Please note that availability sites may potentially conflict with feature constraints. Thus, for
example, given the features f1 and f2, if there is a constraint requiring the inclusion f2 whenever f1
is included, the set of availability sites of f1 has to be a subset of the availability sites of f2.

5.4.4.3 Binding Sites and Binding Modes
An available variable feature has to be first bound before it can be used. Binding corresponds
to selecting a variable feature — just like selecting an item from a menu of options.

We usually control binding by annotating variation points with binding sites, i.e. sites at which
the variable subfeatures of a variation point may be bound; however, if more control is needed,
we can also annotate the variable features themselves.

In addition to annotating a variation point or a variable feature with binding sites, we can also
annotate them with a binding mode. We have the following binding modes.

• Static binding: A statically bound feature cannot be rebound.

• Changeable binding: A changeably bound feature can be rebound.

• Dynamic binding: In this mode, a feature is automatically bound before use and unbound
after use. Dynamic binding is useful in cases where we have to switch features at a high
frequency.

5.4.4.4 Releationship Between Optimizations and Availability Sites,
Binding Sites, and Binding Modes
The knowledge of binding site may be used to reduce the memory footprint of an application.
For example, certain features my be needed only for certain application versions. Obviously, we
do not want to link unused features to an application.41 This can be achieved by applying
technologies such as configuration management, pre-processors, generators, and static
configuration using parameterized classes (e.g. C++ templates). If different features are needed
at different times during runtime, we may want to use dynamic linking. Binding site modeling is
especially relevant for dynamic and distributed architectures supported by Java technology,
where we have to pay a special attention to network bandwidths and the widely differing
resources available to different users.

Binding mode tells us something about the stability of a configuration and we can use this
knowledge to optimize for execution speed. For example, if a feature is bound statically, we
know that the feature cannot be rebound and we can optimize away any dispatching code,
indirection levels, etc. In the case a feature should be bound statically at compile time, we can
use implementation techniques such as static method binding, parameterized classes, static

Binding sites

Binding mode



Feature Modeling 99

metaprogramming, partial evaluation at compile time, etc. In the case of changeable binding, it is
useful to collect statistics such as frequencies of rebounds and average time between rebounds
for different features. Based on these statistics, we can decide whether to apply runtime
optimizations for certain features. Finally, if we need maximum flexibility, we have to use
dynamic binding. Implementation techniques for dynamic feature binding include dynamic
method binding, flags, dispatch tables, interpreters, and dynamic reflection.

5.5 Relationship Between Feature Diagrams and Other
Modeling Notations and Implementation Techniques
Feature diagrams allow us to express variability at an abstract level. As stated, the variability
specified by a feature diagram is implemented in analysis, design, and implementation models
using different variability mechanisms. We already discussed some variability mechanisms in
Table 7. For example, variability mechanisms for use cases include parameters, templates,
extends relationships, and uses relationships. Variability mechanisms for class diagrams include
inheritance, parameterization, dynamic binding, and cardinality ranges.

The following example illustrates the point that feature diagrams express variability at a more
abstract level than class diagrams. Figure 36 shows a feature diagram of a simple car. The car
consists of a car body, transmission, and an engine. The transmission may be either manual or
automatic. Furthermore, the car may have a gasoline engine or an electric engine, or both.
Finally, the car may pull a trailer.

Figure 37 shows one possible implementation of our simple car as a UML class diagram. The car
is represented as the parameterized class Car, where the transmission parameter implements
the transmission dimension. CarBody is connected to Car by a part-of relationship. The
optional Trailer is connected to Car by the association pulls. The cardinality range 0..1
expresses optionality. Finally, cars with different engine combinations are implemented using
inheritance (classes ElectricCar, GasolineCar, and ElectricGasolineCar). If there were
additional constraints between features in the feature model, we could have implement them as
UML constraints (e.g. using the UML Object Constraint Language [Rat98b]).

automatic manual

pulls trailercar body

electric gasoline

car

transmission engine

Figure 36    Feature diagram of a simple car
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Obviously, the implementation in Figure 37 is just one of many possible implementations. For
example, we could use dynamic parameterization (see Section 5.5.5) to parameterize transmission
instead of static parameterization. Another possibility would be to enlarge the inheritance
hierarchy to accommodate different transmission and engine combinations. Thus, we see that
the feature diagram in Figure 36 represents the variability of our car abstractly, i.e. without
committing to any particular variability mechanism.

In the following five section, we investigate a number of important variability mechanisms
available in current OO programming languages, namely single inheritance, multiple inheritance,
parameterized inheritance, static parameterization, and dynamic parameterization. In Chapter 7,
we will see that these variability mechanisms cause unnecessary complexity when used for
parameterizing certain features. In particular, they have a difficult job parameterizing
crosscutting aspects. What this means and what other techniques can be used instead is
discussed in Chapter 7.42

5.5.1 Single Inheritance
Single inheritance may be used as a static, compile time variability mechanism.43 It is well suited
for implementing statically bound, non-simultaneous, singular variation points. For example,
Figure 39 shows the implementation of the dimension from Figure 38. Each subclass may add
some attributes and methods specific to it, e.g. ∆Employee indicates the attributes and methods
specific to Employee.

CarBody

transmission

Car

Trailer
0..1

0..1

0..1

0..1

pullsè

ManualTransmission

AutomaticTransmission

alternative
transmissions

ElectricGasolineCarGasolineCar

GasolineEngine

ElectricCar

ElectricEngine

transmission transmission transmission

1 1
1

1

Figure 37    One possible implementation of the simple car from Figure 36
using a UML class diagram
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We can also implement an nonsingular variation point using single inheritance; however, we
will have to implement some features more than once. For example, Figure 41 shows the
implementation of an extension point with or-features from Figure 40. Please note that
∆Shareholder is implemented in three classes (Shareholder, ShareholderCustomer, and
ShareholderEmployeeCustomer) and ∆Employee in other three classes (Employee,
EmployeeCustomer, and EmployeeShareholder).

Similarly, if we were to implement a feature diagram containing two or more simultaneous
variation points using single inheritance, the resulting inheritance hierarchy will also contain
duplicate feature implementations. This is illustrated in Figure 42 and Figure 43.

employee

person

customer shareholder

Figure 38    Example of a dimension

Person

Employee Customer Shareholder
∆Customer∆Employee ∆Shareholder

Figure 39   Implementation of a dimension as an
inheritance hierarchy

employee

person

customer shareholder

Figure 40    Example of an extension point with or-
features
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Person

Employee Customer Shareholder

ShareholderEmployeeCustomer

ShareholderCustomerEmployeeCustomer

∆Customer∆Employee ∆Shareholder

∆Shareholder∆Employee

∆Shareholder

EmployeeShareholder
∆Employee

Figure 41    Implementation of an extension point with or-features as a single
inheritance hierarchy

automatic manual

car

transmission windows

automatic manual

Figure 42    Feature diagram with two simultaneous
dimensions

Car

∆Automatic
Windows

∆Manual
Windows

∆Automatic
Transmission

∆Manual
Transmission

∆Automatic
Transmission

∆Manual
Transmission

Figure 43    Implementation of two simultaneous dimensions as a
single inheritance hierarchy (the names of the subclasses are not
shown)
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In general, a feature diagram can be implemented as a single inheritance hierarchy without
feature duplication if and only if the diagram contains either (i) no variation points, or (ii) exactly
one variation point which is singular, or (iii) more than one variation point, all of which are
singular and non-simultaneous. A feature diagram cannot be implemented as a single
inheritance hierarchy without feature duplication if and only if the diagram contains at least one
nonsingular variation point or at least two simultaneous singular variation points.

In cases where the use of single inheritance causes feature duplication, we should consider
using other variability mechanisms, such as multiple inheritance, parameterized inheritance,
static parameterization, or dynamic parameterization.

5.5.2 Multiple Inheritance
The extension point with or-features from Figure 40 may also be implemented as a multiple
inheritance hierarchy. This is shown in Figure 44. Please note that we do not have to duplicate
features. The classes ∆Employee, ∆Customer, and ∆Shareholder are referred to as mixins.
Unfortunately, the multiple inheritance hierarchy has more complicated relationships than the
single inheritance hierarchy in Figure 41. A more flexible solution is to use parameterized
inheritance (see the following section).

5.5.3 Parameterized Inheritance
C++ allows us to parameterize the superclass of a class. We refer to this language feature as
parameterized inheritance. Parameterized inheritance represents an attractive alternative to
multiple inheritance for implementing statically bound extension points. We will use
parameterized inheritance in Sections 6.4.2.4, 8.7, and 10.3.1 extensively. An implementation of
the extension point with three or-features from Figure 40 using parameterized inheritance is
shown in Figure 45. The mixin classes are parameterized with their superclasses. We can
compose them to implement any of the six relevant composite classes. In C++, we could
implement Employee as follows:

template<class superclass>
class Employee : public superclass

Person ∆∆Employee ∆∆Customer ∆∆Shareholder

EmployeeCustomerShareholder

CustomerShareholder

EmployeeCustomer

Employee

Customer

Shareholder

EmployeeShareholder

Figure 44    Implementation of an extension point with three or-features as
a multiple inheritance hierarchy
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{
//employee members...

};

We would implement Customer and Shareholder in an analogous way. Given Person and the
mixin classes, ShareholderCustomerEmployee (shown in Figure 45) can be defined as
follows:

Shareholder<Customer<Employee<Person> > >

and ShareholderEmployee:

Shareholder<Employee <Person> >

5.5.4 Static Parameterization
Parameterized classes (e.g. templates in C++) are well suited for implementing statically bound,
simultaneous and non-simultaneous dimensions. Figure 46 shows the implementation of two
simultaneous dimensions from Figure 42 using static parameterization. Since UML does not
provide any notation for associating parameters with candidate parameter value classes, we use
UML notes for this purpose (e.g. alternative transmissions).

5.5.5 Dynamic Parameterization
If we use dynamic method binding, a variable can hold objects of different classes at runtime.
We refer to this mechanism as dynamic parameterization. In C++, the classes of the varying

Person

superclass

∆∆Employee

Employee

<<bind>> (Person)

∆∆Customer

CustomerEmployee

<<bind>> (Employee)

∆∆Shareholder

ShareholderCustomerEmployee

<<bind>> (CustomerEmployee)

superclass superclass

Figure 45    Implementation of an extension point with three or-features using
parameterized inheritance (the classes Customer, Shareholder, and
ShareholderEmployee and ShareholderCustomer are not shown)
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ManualTransmission

AutomaticTransmission

alternative
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ManualWindows

AutomaticWindows

alternative
widows

Figure 46    Implementation of two simultaneous dimensions using static
parameters
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objects must have a common superclass which declares a virtual interface. This is shown in
Figure 47. The class diagram implements the feature diagram with two simultaneous dimensions
from Figure 42. In a Smalltalk implementation, the classes Transmission and Windows are not
needed. In a Java implementation, we would implement Transmission and Windows as
interfaces.

Dynamic parameterization should be used only if dynamic binding is required (or if changeable
binding is required and no other appropriate technology is available).44 Otherwise, we should
use static parameterization since it avoids binding overhead and the inclusion of unused
alternative features in the application.

5.6 Implementing Constraints
Feature models contain not only mandatory and variable features, but also dependencies
between variable features. These dependencies are expressed in the form of constraints and
default dependency rules. Constraints specify valid and invalid feature combinations. Default
dependency rules suggest default values for unspecified parameters based on other parameters.

Constraints and default dependency rules allow us to implement automatic configuration. For
example, in addition to our feature diagram of a car (see Figure 36), we could also have an extra
feature diagram defining the three high-level alternative features of a car: limousine, standard ,
and economy . Furthermore, we could have the following vertical default dependency rules
relating the three high level features and the variable detail features from Figure 36:

• limousine implies automatic transmission and electric and gasoline engines;

• standard implies automatic transmission and gasoline engine;

• economy implies manual transmission and gasoline engine.

Given these default dependency rules, we can specify a car with all extras as follows: limousine
and pulls a trailer.

Thus, just as we need variability mechanisms in order to implement feature diagrams in other
models, we also need means of implementing constraints.

If we use the UML for analysis and design models, we can express constraints using the UML
Object Constraint Language [Rat98b]. For the concrete implementation of constraints, however,
we have several possibilities. Configuration constraints at the file level can be managed by a
configuration management system. Configuration constraints at the class and object level are
best implemented as a part of the reusable software. In the case of dynamic configuration, we

Car

ManualTransmission

AutomaticTransmission

Transmission Windows

ManualWindows

AutomaticWindows

Figure 47    Implementation of two simultaneous dimensions using dynamic
parameterization
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would implement them simply by writing runtime configuration code (e.g. the code configuring
the “hot spots” of an OO framework at runtime). In the case of static configuration (e.g.
configuring statically parameterized classes), we need static metaprogramming. Static
metaprogramming allows us to write metacode which is executed by the compiler. Thus, we
write static configuration code as static metacode. This configuration metacode and the
parameterized classes to be configured constitute one program. When we send this program to
the compiler, the compiler configures the classes by executing the configuration metacode and
then compiles the configured classes, all in one compiler run. We will discuss static
metaprogramming in C++ in Chapter 8. If our programming language does not support static
metaprogramming, we could still use a preprocessor. However, the problem with this approach
is that a preprocessor usually does not have access to the programming language level (e.g. it
cannot read the values of static variables, access class metainformation, etc.). Finally, we could
also implement a dedicated generator.

Simple constraints can be implemented directly as imperative code. However, if we have to
manage a large number of complicated constraints, it may be necessary to use a constraint
solver engine.

5.7 Tool Support for Feature Models
As of writing, feature models are not supported by the commercially available and widely used
CASE tools. In order to adequately support feature modeling, a CASE tool should

• support the feature diagram notation,

• help to manage all the additional information required by feature models, and

• allow us to hyperlink feature models with other models (e.g. linking semantic descriptions
of features with other models, traceability links to other models, etc.).

An additional useful feature would be a constraint management facility (including consistency
checking) for complex feature models. As noted in [GFA98], some kind of integration with
configuration management would also be useful.

Given the growing acceptance of the UML in the software industry, it would be certainly useful
to extend UML with the feature diagram notation.

Griss et al. describe in [GFA98] an approach for implementing the feature diagram notation
using the predefined UML modeling elements. They implement features as classes with the
stereotype <<feature>>. Furthermore, they use an optionality attribute to indicate whether a
feature is optional or not and introduce the special node type called “variation point”, which
corresponds to a dimension in our terminology. Features are related using the composed_of
relationship and, in the case of dimensions, the alternative relationship. Finally, they have a
binding time flag indicating whether a dimension is bound at use time (e.g. runtime) or at reuse
time (e.g. compile or construction time).

Thus, the approach in [GFA98] does not distinguish between different kinds of variation points
(e.g. different kinds of dimensions, extension points, and inhomogeneous variation points; cf.
Section 5.4.1.7). Second, it does not allow inhomogeneous variation points with alternative
subfeatures in the diagram (since there is a special dimension node type). It also does not
support or-features. Furthermore, it does not distinguish between availability sites, binding
sites, and binding mode.

A very nice feature of the approach by Griss et al. is the possibility of expanding and collapsing
features in the diagram. A collapsed feature is represented by an icon. In the expanded version,
on the other hand, some of the additional information (e.g. feature category, semantic
description, etc.) can be directly viewed and edited.

From our experience, we find it useful to be able to draw all kinds of inhomogeneous variation
points in a feature diagram since, in some situations, they allow us to create more concise and
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natural diagrams. One possibility to extend the approach by Griss et al. to handle
inhomogeneous variation points would be to use constraints between relationships. In UML,
we can draw a dashed line connecting a number of associations and annotate it with a
constraint that refers to all these associations. Thus, we could use such dashed lines annotated
with OR or with XOR in order to represent edge decorations. Indeed, the OR-annotated dashed
line connecting associations is already predefined in UML. Associations connected by such a
dashed line are called or-associations. Unfortunately, or-associations have actually XOR-
semantics.

To our taste, the above approach for implementing a feature diagram notation based on
stereotyped classes is an instance of “diagram hacking”. In UML, stereotypes are used to
define new modeling elements based on existing ones such that the properties of the base
elements are inherited. However, as we discussed in Chapter 2 and in Section 5.3, concepts and
features are not classes (although some of them may be implemented as classes). While creating
a stereotype for concepts and features derived from classes allows us to inherit some useful
properties, we also inherit undesired properties, e.g. class properties such as being able to have
attributes and methods. We find this approach quite confusing.

A more adequate approach is to extend the UML metamodel with concepts and features. Of
course, we can make the UML feature diagrams look exactly the way as defined in this chapter.
Unfortunately, as of writing, only very few CASE tools support editing their own metamodels.

Due to this inadequate support for feature modeling by current CASE tools, we maintained our
feature models for the matrix computations library described in Chapter 10 in a word processor.

5.8 Process of Feature Modeling
So far we have discussed how to represent feature models. In the rest of this chapter, we
describe how to perform feature modeling.

5.8.1 How to Find Features?
In this section, we address the following three important questions:

• What are the sources of features?

• What are the strategies for identifying features?

• What are the general steps in feature modeling?

Sources of features include the following:

• existing and potential stakeholders,

• domain experts and domain literature,

• existing systems,

• pre-existing models (e.g. use-case models, object models, etc.), and

• models created during development.

Strategies for identifying features include both top-down and bottom-up strategies:

• Look for important domain terminology that implies variability, e.g. checking account vs.
savings account, diagonal vs. lower triangular matrix, thread-safe vs. not thread-save
component, etc. It is important to keep in mind that anything users or client programs might
want to control about a concept is a feature. Thus, during feature modeling, we not only
document functional features, e.g. operations such as addition and multiplication of
matrices, but also implementation features, e.g. algorithm variants for implementing the
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operations, various optimizations, alternative implementation techniques, etc. In this
aspect, Domain Analysis is different from classical software analysis, where the usual rule
is to avoid analyzing any implementation issues.

• Examine domain concepts for different sources of variability, e.g. different stakeholders,
client programs, settings, contexts, environments, subjective perspectives, aspects, etc. In
other words, investigate what different sets of requirements these variability sources may
postulate for different domain concepts (we discuss these issues in Section 5.8.2);

• Use feature starter sets to start the analysis. A feature starter set consists of a set of
modeling perspectives for modeling concepts. Some modeling perspectives combinations
are more appropriate for a given domain than for another. For example, for abstract data
types in algorithmic domains, we use a starter set containing modeling perspectives such
as attributes, operations, synchronization, memory management, optimizations, etc. (see
Section 9.3.2.2). Other domains and concepts may require investigating other perspectives,
such as distribution, security, transactions, historization, etc. Starter sets may also contain
examples of features, sources of features, etc. Thus, starter sets are reusable resources
capturing modeling experience. As stated, there will be different starter sets for different
categories of domains. Ideally, feature starter sets are updated by each new project. We
discuss feature starter sets in Section 5.8.2.

• Look for features at any point in the development. As discussed before, we have high-level
system requirements features, architectural features, subsystem and component features,
and implementation features. Thus, we have to maintain and update feature models during
the entire development cycle. We may identify all kinds of features by investigating
variability in use case, analysis, design, and implementation models.

• We found it useful to identify more features that we initially intend to implement. This
strategy allows us to “leave some room for growth”. Although we will not be able to
identify all features that may be relevant in future, it is a big gain if we identify some of
them. At some point in domain design, there should be an extra scoping activity where we
actually decide which features to implement. Therefore, we should record priorities of
variable features when we first document them. By having documented potential features,
we will be able to develop more robust client and configuration interfaces, even if not all of
the features will be implemented at first. We will see a concrete example of applying this
strategy in Chapter 10.

Feature modeling is a continuos, iterative process with the following steps:

1. Record similarities between instances, i.e. common features, e.g. all accounts have an
account number.

2. Record differences between instances, i.e. variable features, e.g. some accounts are
checking accounts and some are savings accounts.

3. Organize features in feature diagrams. Feature diagrams allow us to organize features into
hierarchies and to classify them as mandatory, alternative, optional, or-, and optional
alternative features. We discussed feature diagrams in Section 5.4.1 in detail.

4. Analyze feature combinations and interactions. We may find certain combinations to be
invalid (mutual-exclusion constraints), e.g. a collection cannot be unordered and sorted at
the same time. We may discover dependencies allowing us to deduce the presence of some
features from the presence of others (requires constraints), e.g. if a collection is sorted, it is
also ordered. We may also find innovative combinations, which we did not thought of
previously. Furthermore, when we investigate the relationship of two features, we may
discover other features. For example, when we analyze different combinations of matrix
shapes (e.g. rectangular, diagonal, triangular, etc.) and matrix element containers (e.g. array,
vector, list, etc.), we realize that even for the same combination of shape and container,
different layouts for storing the elements in the container are possible (e.g. a rectangular
matrix can be stored in a two-dimensional array row- or column-wise). Therefore, we

Feature starter set
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introduce the new feature storage format. Similarly, by investigating the relationship
between matrix operations and matrix shapes, we will realize that various optimizations of
the operations due to different shapes are possible. We say that new features may emerge
from the interaction of other features.

5. Record all the additional information regarding features such as short semantic
descriptions, rationale for each feature, stakeholders and client programs interested in each
feature, examples of systems with a given feature, constraints, availability sites, binding
sites, binding modes, open/closed attributes, and priorities. All these concepts are
explained in Section 5.4.2.

We refer to these steps as the “micro-cycle” of feature modeling since they are usually executed
in small, quick cycles. To give you a concrete example of how to perform feature modeling, we
describe how we actually came up with the feature models during the development of the matrix
computations library described in Chapter 10:

Start with steps 1 and 2 in the form of a brainstorming session by writing down as many
features as you can. Then try to cluster them and organize them into feature hierarchies
while identifying the kinds of variability involved (i.e. alternative, optional, etc.).
Finally, refine the feature diagrams by checking different combinations of the variable
features, adding new features, and writing down additional constraints. Maintain and
update the initial feature models during the rest of the development cycle. You may also
start new diagrams at any point during the development.

As the feature modeling process progresses, some new features may be recognized as special
cases of old ones and other new features may subsume other old features. For example, we may
have already documented the matrix shapes square, diagonal, lower triangular, upper triangular,
bidiagonal, and tridiagonal. Later, we recognize that the shape band subsumes all these shapes
since each of these special shapes can be described as the band shape with certain lower and
upper bandwidth. However, this does not imply that we should replace the special shapes by
the band shape in the feature model. The feature model should rather include all these shapes
as well as the relationships between them. If there is a name for a certain property in the domain
vocabulary, this usually indicates the relevance of this property. Obviously, properties which
play an important role in the domain (e.g. certain shapes which are more common than others
and/or are important for optimizing certain algorithms) should have unique names in the model.

Section 9.4.3 describes an approach for deriving reuser- and implementer-oriented feature
diagrams from the analysis feature diagrams. Such an approach is important since the
implementers of features have a different focus than the reusers of features. The reusers need
features which allow them to specify their needs at the most adequate level of detail (which is
different for different reusers or client programs). Implementers, on the other hand, decompose
their solution into elementary, reusable pieces, which they can use and re-use within the
implementation and across implementations of different product lines. Some of them may be too
implementation oriented to be part of the reuser-oriented feature diagrams.

During development, we have to maintain traceability links from the feature diagrams to other
models and update the domain dictionary whenever we introduce new features.

A feature diagram and the additional information constitute a feature model. We discussed
feature models in Section 5.4.

5.8.2 Role of Variability in Modeling
Now that we know how to perform feature modeling, we would like to investigate how feature
modeling fits into other modeling activities. However, before we address this question, we first
need to introduce the principle of separation of concerns (Section 5.8.2.2) and three important
decomposition techniques based on this principle (Section 5.8.2.3). We then discuss the
integration of feature modeling and the decomposition techniques in Section 5.8.2.1
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5.8.2.1 Separation of Concerns and Perspectives
One of the most important principles of engineering is the principle of separation of concerns
[Dij76]. The principle acknowledges that we cannot deal with many issues at once, but rather
with one at a time. It also states that important issues should be represented in programs
intentionally (explicitly, declaratively) and well localized. This facilitates understandability,
adaptability, reusability, and the many other good qualities of a program since intentionality
and localization allow us to easily verify how a program implements our requirements.

Unfortunately, the relevant issues are usually dependent and overlapping since they all
concern one common model (i.e. our program being constructed). Thus, if we try to represent all
these issues explicitly and locally, we will introduce a lot of redundancies. This causes
maintenance problems since we have to make sure that all the redundant representations are
consistent. Also, the overall model becomes very complex since we have to maintain all the
knowledge relating the different representations.

On the other hand, if we choose a less redundant representation of our solution to a problem,
some issues will be well localized and some others will not. This is similar to the idea of
representing a signal in the time domain and in the frequency domain (see Figure 48). In the time
domain, we can explicitly see the amplitude of the signal at any time, but we cannot see the
component frequencies. In the frequency domain, on the other hand, we can see the component
frequencies, but we cannot see the amplitude of the whole signal at a given time. If we keep
both representations, we introduce redundancy.

Ideally, we would like to store our solution to a problem in some efficient representation, i.e. one
with minimal redundancies, and have some supporting machinery allowing us to extract any
perspective on the model we might need. It should be possible to make changes in the extracted
model and have the machinery update the underlying model automatically for us. (Of course, as
we make more and more changes, the machinery might need to transform the underlying
representation into some other form to reduce the accumulated redundancies.)

Unfortunately, our ideal solution is impractical — at least given today’s technology. First, we
would have to model an enormous amount of formal knowledge in order to be able to extract
any desired perspective on a large system automatically. Second, we would need some very
efficient transformation and deductive reasoning machinery (most probably involving AI
techniques) to perform the extraction. (Nevertheless, transformation systems and other tools,
such as some CASE tools, already allow us to compute different perspectives on software
models, e.g. extracting control and data flow.)

We have to look for more practical solution to address our problems: The purpose of today’s
modeling techniques is to develop models which meet the requirements (i.e. functional
requirements and qualities such as performance, throughput, availability, failure safety, etc.)
and, at the same time, strike a balance between

time domain frequency domain

a
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Figure 48    Representation of a signal in the time and in the frequency
domain (from [Kic98])
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• separation of concerns (i.e. having most important issues as localized as possible),

• complexity of implementation (trying localize certain issues may also increase the overall
complexity of the implementation; see Section 7.6.2),

• minimal redundancy, and

• ability to accommodate anticipated change and also unanticipated change to some
degree.45

The result of such a balance is what we might call a “clean” and adaptable code. Different
decomposition techniques help us to achieve this balance.

5.8.2.2 Decomposition Techniques
We distinguish between two important kinds of decomposition of a concept46:

• Modular decomposition: Modular decomposition involves decomposing systems into
hierarchical (i.e. modular) units (e.g. modules, components, objects, functions,
procedures, etc.). The word hierarchical indicates that a unit may contain other units, etc.
The boundaries of such units are drawn in a way, such that they encapsulate some
cohesive “model neighborhoods”. The goal is to achieve high cohesion within the units
and minimal coupling between the units.

• Aspectual decomposition: The main idea behind aspectual decomposition is to organize
the description of a concept (e.g. a system, a domain, a component, a function, etc.) into a
set of perspectives, where each perspective concerns itself with a different aspect and
none of which is itself sufficient to describe the entire concept. An important property of
such decomposition is that each perspective yields a model with a different structure and
all of these models refer to the same concept. As a consequence, there are locations in one
model that refer to locations in other models, which is referred to as crosscutting. Examples
of aspects include interactions, algorithms, data structures, data flow, synchronization,
error handling, memory management, and historization. More examples of aspects are given
in Chapter 7. Most of the existing modeling techniques apply some form of aspectual
decomposition. For example, the UML [Rat98a] deploys different diagrams to describe
different aspects of systems (e.g. class diagrams, use cases, interaction diagrams,
collaboration diagrams, activity diagrams, and state diagrams). It is important to note that
even if we stay within one aspect, we still want to reduce its perceived complexity by
dividing it into modular units.

The basic difference between aspects and modular units47 is shown in Figure 49. The drawing
on the left shows that modular units are cleanly encapsulated and organized into a hierarchy.
The drawing on the right shows that an aspect crosscuts a number of modular units.

Thus, the quality of being an aspect is a relative one: a model is an aspect of another model if it
crosscuts its structure. The aspect shown in Figure 49 is an aspect with respect to the

an aspecta modular
unit

Figure 49    Modular vs. aspectual decomposition
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hierarchical structure also shown in this figure. However, at the same time, the aspect could be a
modular unit of another hierarchical structure not shown in the figure.

Figure 50 shows another view on an aspect: Model A is an aspect of model C since it refers to
many locations in C. For example, C could be a class implementing some abstract data structure
and A could be a synchronization specification referring to the methods of the abstract data
structure.

Modular decomposition allows us to do simple refinement by adding structure that never
crosses the boundaries of the already established modular units. Whenever we have to add
structure that crosses these boundaries, we are actually applying aspectual decomposition.

Modular decomposition and aspectual decomposition complement each other and should be
used in combination. They correspond to the natural modeling strategies of humans: we deploy
both investigating things from different perspectives and dividing them into hierarchies.

Aspectual decomposition is investigated in the area of Aspect-Oriented Programming (AOP),
which we discuss in Chapter 7. As we stated above, aspectual decomposition is quite common
in software development (e.g. the different aspects used in analysis and design methods).
However, the AOP research gives aspectual decomposition some new perspectives:

• AOP encourages the introduction of new aspects rather than adhering to a small set of
general aspects (as in the case of existing OOA/D methods).

• It emphasizes the need for specialized aspects and specialized combinations of aspects for
different categories of domains.

• It postulates the need to support aspects not only in design models, but also in the
implementation. In particular, there is the need for new composition mechanisms and aspect
languages (ideally, implemented as modular language extensions; see Sections 6.4.3.1 and
7.6.3).

• It concentrates on achieving quality improvements due to aspectual decomposition, such
as reduced code tangling, better understandability, maintainability, adaptability, reusability,
etc.

It is important to note that aspects represent perspectives which proved to be useful in
constructing past systems, i.e. they are based on experience. Thus, different systems of aspects
record modeling experience in different categories of domains.

5.8.2.3 Variability in Modeling
In this section, we investigate the question how variability modeling and the different
decomposition techniques fit together.

model A model C

Figure 50    Example of an aspect
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Variability plays an important role in our modern society and strategies for coping with
variability constitute an essential prerequisite for success. This situation has been accurately
characterized by Reenskaug [Ree96]:

“It is popular to claim that in our modern society, change is the only constant factor.
Enterprises have to be able to adapt to a continuously changing environment.

We believe this to be both true and misleading. It is true in the sense that an enterprise
has to keep changing to adapt to changes in its environment. It is also true in the sense
that a business has to change the core of its operations to accommodate the transition
from manual to computer-based information processing; that it has to move its rule-based
operations from people to computer; and that it has to cultivate the creativity,
responsibility, and problem-solving capabilities of its human staff.

It is misleading in the sense that you cannot change everything all the time. So the
challenge to the evolving enterprise is to identify what can be kept stable and what has
to be kept fluid. The stable elements of a business form an infrastructure on which it can
build a light and rapidly changing superstructure.”

Obviously, software is another point in case. We have to explicitly address variability during
modeling. As we have seen so far, this is even more important for reusable software.

If the things that we model contain variability, the variability will emerge in some aspects and
modules somehow. In other words, the variability aspect crosscuts aspects and modules.
Indeed, variability is just another aspect of the reusable software.

However, we stated that reusable software usually contains a lot of variability. Thus, we have
to apply variability modeling in coordination with other aspectual and modular decomposition
techniques. By applying them in a coordinated fashion, we make sure that decomposition
decisions are influenced by variability needs. Adding variability “after the fact” – just as adding
any other aspect – may cause significant code tangling.

Before we move on, let us first clarify, what we exactly mean by variability. We talk here about
the variability of how computation is done, not about the fact that data gets modified all the
time in a running program.48 We have two kinds of variability sources:

• internal variability sources and

• external variability sources.

The internal source of variability is the evolution of state. For example, if a collection grows
beyond a certain limit, we might want to switch to a different sorting algorithm.

External variability sources are more versatile, e.g. different stakeholders (including different
users, developers, and customers), different client programs, different environments, usage
settings, changing requirements, etc.

In previous sections, we discussed feature modeling as an effective technique for modeling
variability. The question now is how we can integrate feature modeling and the other
decomposition techniques.

An example of such an integration is DEMRAL (Domain Engineering Method for Algorithmic
Libraries), which we describe in Chapter 9. In DEMRAL, feature modeling and the other
decomposition techniques are applied in a coordinated fashion as follows:

• Modular decomposition: The first activity in DEMRAL Domain Modeling is identifying
key concepts. DEMRAL specializes in modeling two categories of concepts: abstract data
types (ADTs) and algorithms. The key ADTs and key algorithm families are later
encapsulated in separate packages. New objects and algorithms may be also identified
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during feature modeling. In other DE methods, we will look for other kinds of concepts,
such as workflows, clients, servers, agents, interactions, use cases, etc.

• Aspectual decomposition: Aspectual decomposition is fundamental to DEMRAL. It is
performed in parallel with feature modeling. The idea is to provide so-called feature starter
sets, which are basically sets of aspects suitable for algorithmic domains (see Section
9.3.2.2). The modeling proceeds by modeling each aspect separately in an iterative fashion.
Other methods will define their own starter sets appropriate for other kinds of concepts.

• Feature modeling: Feature modeling is performed for each aspect in separation in an
iterative fashion. Features relevant for the configurability aspect are organized into feature
diagrams. Other features may lead to the development (or reuse) of specialized aspect
languages or modular language extensions. Relationships between features of different
aspects are also modeled.

• Subjective decomposition: Subjective decomposition is based on modeling different
subjective perspectives of different stakeholders (e.g. users, developers) on a system or a
domain. Subjective decomposition has been popularized by the work of Harrison and
Ossher on Subject-Oriented Programming (SOP). We discuss SOP in Section 7.2.1. It is
important to note that subjects may crosscut many aspects and modules of a system.
Subjectivity is accounted for in DEMRAL by considering different stakeholders and
annotating features by their stakeholders.

The interaction of the different decomposition techniques is shown in Figure 51.
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Chapter 6 Generators

6.1 Introduction to Generators
The main goal of generators is to produce software systems 49 from higher-level specifications.
Generators have been studied in various research communities, most notably in

• knowledge-based software engineering or program synthesis community (as one of their
primary subjects, e.g. [Bal85, RW90, Smi90, Pai94, SG96, AKR+97]),

• software reuse community (as means of implementing domain models, e.g. [Nei80, BO92,
ADK+98]), and

• formal specification community (as means of implementing formal specifications, e.g.
[BEH+87, HK93, SJ95]).

It is worth noting that the reuse community has traditionally had a strong focus on practical
applications (e.g. [SSGRG, BT, IPH]).

Three important issues addressed by generators are

• raising the intentionality of system descriptions,

• computing an efficient implementation, and

• avoiding the library scaling problem [Big94].

As we already explained in Section 1.5, intentional descriptions directly represent the structure
of a problem. Intentionality is usually achieved through domain-specific notations and we can
implement such notations using generators.

Generators bridge the wide gap between the high-level, intentional system description and the
executable. In particular, the implementation has to meet certain performance requirements (e.g.
execution speed, response time, memory consumption, utilization of resources, etc.). The
challenge is that the structure of the specification is usually very different from the structure of
the implementation: there is no simple one-to-one correspondence between the concepts in the
specification and the concepts in the implementation and even a slight change in the
specification might require a radically different implementation. Generators, unlike conventional
programming languages and libraries, perform computations at generation time which allow
them to achieve this non-trivial mapping.

The library scaling problem concerns the horizontal scaling of conventional libraries (also see
Section 1.3.2). If a library implements each feature combination as a concrete component in
order to achieve good performance, each new feature can potentially double the number of
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concrete components in the library. On the other hand, factoring libraries into components
corresponding to features and composing them using function or method calls avoids the
exponential growth of the library size, but results in poor performance. Generators allow us to
avoid the performance penalties in the latter case, i.e. we achieve both good performance and
linear library scaling. As we already explained, generators separate the modeling space from the
implementation space, so that these spaces can have different structures. Efficient
implementations are then computed at generation time by applying domain-specific
optimizations and replacing, merging, adding, and removing components.

Generators are based on domain-specific models which define the semantics of the system
specification language and also contain the knowledge of how to produce efficient
implementations. Two major techniques are used during generation: composition and
transformation. Generators based on composition are referred to as compositional generators
[Bat96], whereas generators primarily using transformations are called transformation systems.50

6.2 Composition vs. Transformation
There are two fundamental ways of generating instances of a given concept: composition and
transformation. We will illustrate them using an abstract example. Figure 53 shows us how to
produce an instance of the concept star by composition and by transformation. A simple star
can be described by specifying the following features (see Figure 52):

• the number of arms,

• the inner radius,

• the outer radius, and

• the angle describing the position of the first arm.

In the composition model, we glue together a number of components, whereas in the
transformation model, we perform a number of transformations arriving at the desired result. In
order to be able to generate different stars using the composition model, we need many
concrete components of different sizes and shapes. This is illustrated in Figure 54, on the left.
The circles are described just by the inner radius. The arms, on the other hand, are described
by the three parameters inner radius, outer radius, and number of points. When generating a
star, we need to compose one circle and four copies of one arm selected from Figure 54
according to the desired parameter values. In the transformation model, on the other hand, we
do not need such large gallery of components, but just four transformations (see Figure 54, on
the right).

We can organize the compositional model more effectively by using generative components
instead of concrete components. A generative component accepts an abstract description of a
concrete instance and generates the instance according to the description. Thus, instead of a
whole gallery of concrete circles and arms, we just need two generative components: a
generative circle component and a generative arm component (see Figure 55). The generative
circle component takes radius as its parameter, and the generative arm component has the
parameters inner radius, outer radius, and angle (angle describes the width of section of the
inner circle serving as the bottom of the arm). The components are generative and not generic
since they do not necessarily expect concrete components as their parameters (e.g. concrete
shapes), but rather abstract parameters (e.g. radius, angle, etc.). In terms of software, an
abstract parameter does not have any concrete implementation directly associated with it, but
the implementation has first to be computed based on many parameters. For example, a
performance specification is usually an abstract parameter. Abstract parameters are mapped to
concrete components through configuration knowledge. We will explain this idea in a moment.
Components expecting concrete parameters only are referred to as concretely parameterized
components. For example, data structures and memory allocators are the typical parameters in
the generic Standard Template Library [MS96]. These are concrete parameters since they have
concrete implementations associated with them.
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The component implementing a star in Figure 55 is a generative component itself. The features
of the star concept became the parameters of this component. The star component uses the
generative circle component and the generative arm component to generate the concrete
components it needs. The parameters of the star component are mapped on to the parameters of
the circle and the arm component. This mapping is done by the configuration knowledge of the
star component. For example, the number of arms is used to calculate the angle parameter of the
arm component: angle = 360 / number of arms. This is a vertical constraint, i.e. it maps
between layers of abstraction. In addition to mapping between abstraction layers, configuration
knowledge also contains constraints between parameters of one level, i.e. horizontal
constraints. For example, the inner radius must be smaller than the outer radius, but grater than
zero. Constraints between parameters can be used not only to verify the consistency of the
parameters supplied to a component, but also to complete partial specifications by inferring
unknown parameters from the known ones (whenever possible). The component assembler in

angle = 45°

outer radius = 5 cm

inner radius = 1.8 cm
cm

arm
(# of arms = 5)

Figure 52    Features of a simple concept of a star

composition:

transformation:

rotate
45º

enlarge outer
radius

add four
arms

Figure 53    Generating instances of the star concept by composition or
transformation
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Figure 55 is a generic component taking the generated concrete components and assembling
them into a star. The component takes also one (as we will see later — so-called horizontal)
parameter, namely the angle describing where to attach the arms to the circle.

The generative circle and arm components can be implemented using composition or
transformation technology. They could also contain other generative components, but,
eventually, the model has to be mapped onto generic or concrete components or
transformations, or any combination of these.

It is worth mentioning that composition can be seen as a special case of transformation. This is
illustrated in Figure 56. Composition is sometimes referred to as forward refinement [Big97]
since, during composition, we add new components and progressively approach the final result,
i.e. components are never removed or replaced. In the more general transformational model, on
the other hand, components can be added, replaced, removed, modified, etc., i.e. the progress is
nonmonotonic. It is also important to point out that transformation, in contrast to composition,
allows us to perform optimizations since they require structural changes. The best we can do
with the compositional approach is to use inlining for gluing components together, but domain-
specific optimization cannot be performed without transformations.

5-point star

4-point star

3-point star

3-point star

# of  arms

outer radius
inner radius

transformational model
(a set of transformations):

• resize inner radius
• add arms
• resize outer radius
• rotate

compositional model
(a gallery of components):

...

...

...

...

...

...

...

...

...

...

# of  arms

...

...

Figure 54   Implementing the domain model of the star concept using the compositional
model (on the left) and the transformational model (on the right)
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Whether a generator is primarily based on composition or on transformation, has profound
consequences for its architecture. Most generators found in practice are predominantly
compositional, e.g. GUI builders, visual programming environments, etc. They usually have
some kind of graphical interface, where components can be connected through lines, and they
do some composition consistency checking. Composition is well suited for very large
components, where the time spent for the communication between the components is much
smaller than the time spent for computation within the components. The composition model
also allows us to wrap legacy software and use it in compositions with new components. An
example of a successful environment based on these concepts is METAFrame® [SMCB96,
MS97]. METAFrame® is a commercial system used in the domain of service configuration for
intelligent telecommunication networks (see [SMBR95]).

Since transformation systems are less widely known than compositional generators, we will
discuss some of their basic concepts in the next section (see [Fea86] for a survey of
transformation systems).

configuration
knowledge

generative circle
component

radius

generative arm
component

outer
radius

inner
radius

angle

outer
radius

angleinner
radius

# of
arms

component
assembler

armcircleangle

outer radius >
inner radius > 0

360º /# of arms

Figure 55    Implementing the star concept using generative
components

Figure 56   Composition as a special case of transformation
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6.3 Transformation Systems
A transformation is an automated, semantically correct (as opposed to arbitrary) modification
of a program. It is usually specified as an application of a transform to a program at a certain
location. In other words, a transform describes a generic modification of a program and a
transformation is a specific instance of a transform. The best known category of transforms are
rewrite rules (also called transformation rules). An example of a rewrite rule is the replacement
of the division of two equal expressions by 1:

x/x → 1 if x ≠ 0

This transform replaces occurrences of x/x by 1 whenever x ≠ 0. x/x is the head, 1 is the body,
and x ≠ 0 is the condition of the transform. An example of a transform which is not a rewrite
rule would be a procedural transform which performs repeated modifications that cannot be
represented by a single rule.

Transforms are not applied to program texts directly, but to their syntax trees. This is shown in
Figure 57, which summarizes the structure of a typical transformation system. The program text
to be transformed is turned into an abstract syntax tree (AST) by a parser and the
transformation engine (also referred to as the rewrite engine) applies the transforms to the
AST. Finally, the transformed AST is turned back into the textual representation by an unparser
(or, alternatively, machine code could be generated by a code generator). The variable x in the
transform in Figure 57 is referred to as a metavariable since it matches against whole subtrees
(in our case y+1), i.e. parts of a program.

It is worth mentioning that the structure shown in Figure 57 resembles the structure of a
compiler, which also has a parser and implements optimizations as transformations. The main
difference, however, is that in a transformation system, transforms are written by the user of the
system. Furthermore, it is usually also possible to provide user-defined grammars for the parser
and the unparser. For this reason, transformation systems are often referred to as open
compilers.

In general, transforms can be applied not only to trees but also to general graphs. For example,
the Reasoning5 system transforms — in addition to abstract syntax trees — data flow and
control flow graphs [RS].

6.3.1 Types of Transformations
Software development involves many different types of transformations (see [Par90, BM97]). In
particular, refinements and optimizations are used to implement a specification, whereas
refactorings is used in evolution and maintenance. We will discuss these and other
transformations in the following four sections (see [Par90] for a comprehensive treatment of this
topic).

6.3.1.1 Refinements
A refinement adds implementation detail. It usually involves implementing concepts of one
abstraction level in terms of concepts of a lower abstraction level. This is the main type of
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Figure 57    Main components of a typical transformation system
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transformations used for implementing a specification. Examples of refinements are the
following:

• Decomposition: Concepts of a higher level are decomposed into concepts of a lower level,
e.g. an abstract data type is implemented in terms of a number of other abstract data types.
The decomposition results in a structural organization of the lower level. We refer to this
organization as the horizontal structure of one level (e.g. module structure, object
structure). In general, the correspondence between the concepts of two levels may be
many-to-many (esp. because of optimizations). Also, different decompositions favor
different sets of goals and it is sometimes desirable to maintain overlapping, partial
decompositions (each favoring certain point of view) that can be composed into one
complex model. Unfortunately, traditional decomposition techniques do not support such
overlapping partial decompositions well. We will discuss this topic in Chapter 7 in more
detail. Refinements introduce traceability relationships between concepts of different
levels. They represent the vertical structure.

• Choice of representation: As implementation details are added, we often need to choose
an appropriate lower level representation for the higher level concepts, e.g. a matrix data
type can be represented using arrays, vectors, hash tables, etc. The choice of a particular
representation depends on the desired performance characteristics and other properties of
the higher level concept (e.g. the shape of the matrix).

• Choice of algorithm: Operations can be implemented using different algorithms. The
choice depends on the required operation properties (e.g. performance characteristics) and
the properties of other concepts involved. For example, the choice of the matrix
multiplication algorithm depends on the shapes of the operand matrices (see Section
10.1.2.2.1.5).

• Specialization: Concepts specialized for a certain context of use are often obtained by
specializing more general concepts, i.e. concepts designed for more than one context by
analyzing multiple concrete instances (see Section 2.3.7). For example, a parameterized
module can be specialized by supplying concrete parameters. Another general
specialization technique is partial evaluation. We will discuss this technique in the
following section since it is often used for optimization purposes.

• Concretization: Concretization involves implementation by adding more detail to abstract
concepts (see Section 2.3.7). For example, concrete classes add implementation details to
abstract classes. Since concepts are often abstract and general at the same time,
specialization and concretization may be combined.

6.3.1.2 Optimizations
Optimizations improve some of the performance characteristics of a program (e.g. execution
speed, response time, memory consumption, consumption of other resources, etc.).
Optimizations involve structural changes of the code. Two important types of such changes are
the following [BM97]:

• Interleaving: Two or more higher-level concepts are realized in one section of the lower-
level code (e.g. one module or class).

• Delocalization: A higher-level concept is spread throughout the whole lower-level code,
i.e. it introduces details to many lower-level concepts.

Both types of structural changes make the lower-level code harder to understand and to reason
about. The effects of delocalization on comprehension were studied in [LS86] and [WBM98].

Examples of optimizations are listed below [ASU86, BM97]:

• Partial evaluation: Partial evaluation is a technique for the specialization of a more general
program for a specific context of use. In most cases, programs are specialized at compile
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time to be used in a specific context at runtime, but specialization at runtime is also
possible. The specialization is based on the knowledge of the specific context (i.e. certain
parameters are fixed). In abstract terms, partial evaluation can be thought of as partially
evaluating a function based on the knowledge of some of its parameters to be constant in
the special context. The evaluation involves propagating these constants throughout the
program and simplifying and optimizing the code (e.g. eliminating unnecessary code,
folding constants, unrolling loops, etc.). Partial evaluation is not only an important
optimization technique, but also a reuse paradigm allowing us to specialize a general,
reusable piece of software for the use in a specific context. In particular, it has been used to
specialize scientific code (see [BW90, BF96]). An extensive treatment of partial evaluation
can be found in [JGS93].

• Finite differencing: Finite differencing is an optimization technique involving the
replacement of repeated costly computations by their less expensive differential
counterparts (see [PK82]). For example, if the value of some variable X in a loop grows by
some constant delta in each iteration and some other variable Y in the loop is computed by
multiplying X by a constant factor, we can optimize this multiplication by realizing that Y
also grows by a constant delta. Thus, instead computing Y by multiplying X by the
constant factor in each iteration, we obtain the new value of Y by adding the constant Y
delta to the old Y value. The Y delta can be computed outside the loop by multiplying the X
delta by the constant factor.

• Inlining: Inlining involves the replacement of a symbol by its definition. For example, a
procedure call can be replaced by the body of the procedure to avoid the calling overhead.

• Constant folding: Constant folding is the evaluation of expressions with known operands
at compile time. It is a special case of partial evaluation.

• Data caching/memoization: After some often needed data has been once computed and
the computation is expensive, it is worth caching this data, i.e. memoizing it, for later reuse
[BM97].

• Loop fusion: If two loops have the same (or similar) structure and the computation in both
loops can be done in parallel, then the loops can be replaced by one loop doing both
computations, i.e. the loops are fused. For example, elementwise matrix operations, e.g.
matrix addition involving multiple operands (e.g. A+B+C+D) can be performed using the
same set of loops as required for just two operands (e.g. A+B).

• Loop unrolling: If the number of iterations for a loop is a small constant C known at
compile time, the loop can be replaced by C inline expanded copies of its body.

• Code motion: Code motion is another loop optimization. It involves recognizing invariant
code sections inside a loop and moving them outside the loop.

• Common subexpression elimination: This optimization involves recognizing and factoring
out common subexpressions to reuse already computed results.

• Dead-code elimination: Unreachable code or unused variables can be eliminated.

Most of these optimizations (esp. the last eight) are performed by good compilers.
Unfortunately, compilers can apply them at a very low abstraction level, i.e. the level of the
programming language. On the other hand, optimizations are most effective at higher levels
since the application of optimizations needs information which are often not available at lower
levels (we will see an example of this in Section 6.4.1). Optimizations performed based on higher-
level domain knowledge are referred to as domain-specific optimizations. Another example of
optimizations which compilers usually do not perform are global optimizations. Global
optimizations involve gathering information from remote parts of a program in order to decide
how to change it at a given location. For example, the use of a certain algorithm at one location
in a program could influence the selection of a different algorithm at a different location.
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The use of domain-specific and global optimizations is one of the important differences between
generators based on domain models and conventional compilers.

6.3.1.3 Refactoring
Refactoring transformations reorganize code at the design level. Some refactorings change the
horizontal structure of one layer and other move code between layers. Refactorings are
particularly interesting for evolutionary development and maintenance. Examples of refactorings
include

• Generalization: Generalization involves building general models for a number of instances.
For example, we can generalize a number of classes by factoring out common code into one
parameterized class and converting the portions varying among them into parameters.
Alternatively, we could organize them into a inheritance hierarchy by moving common
parts up the hierarchy. Extracting the common parts represents an example of abstraction.

• Simplification: Simplifications reduce the representation size of a program (i.e. they make
programs shorter, but not necessarily faster). They often improve understandability of a
program.

• Introducing new variation points: In order to increase the horizontal scope of a model, we
might want to introduce new variation points, e.g. new parameters.

These and other general classes of refactorings involve many smaller transformations which are
usually dependent on the modeling paradigm and the technology used. A detailed study of
refactorings for object-oriented models can be found in [Obd92].

6.3.1.4 Other Types of Transformations
Editing transformations perform various simple, rather syntactic code modifications, such as
stylistic improvements, applying De Morgan to logical expressions, etc. They mainly help with
editing.

In [MB97], Mehlich and Baxter also mention jittering transformations, whose purpose is to
modify a program in order to make the transformations we discussed so far applicable.

6.3.2 Scheduling Transforms
Another issue which has to be addressed by a transformation system is when to apply which
transform at which location in the syntax tree. This issue is also referred to as scheduling
transforms. Some transforms can be scheduled procedurally, and others are scheduled by an
inference process based on some domain knowledge (e.g. the configuration knowledge). In any
case, the programs scheduling transforms are referred to as metaprograms [BP97].51

The implementation of a specification using transformations is best illustrated using the
derivation tree model [Bax90, Bax92, BP97] shown in Figure 58. We start with some functional
specification f0 (at the top), e.g. the specification of a sorting problem, and some performance
specification G0 (on the left), e.g. required time complexity and implementation language. Based
on the domain model of sorting and some inference, the transformation system determines that,
in order to satisfy the performance goal G0, it must satisfy the goals G1 and G2. Then, the system
decomposes the goals G1 and G2 into further subgoals. The goal decomposition is carried out
until a concrete transformation T1 is applied to the initial functional specification f0. The
following transformations are determined in an analogous way until we arrive at the
implementation fn of the functional specification f0 satisfying the performance specification G0.
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The goal decomposition could be done procedurally, i.e. by procedural metaprograms (e.g.
[Wil83]), or based on inference, i.e. planning-style metaprograms (e.g. [McC87, Bax90]), or by
some mixture of both (e.g. [Nei80, MB97]). For example, G0 could be a procedure calling G1 and
G2, and G1 could be decomposed in to some G3,  G4, and G5 goals by inference. Also the
transforms can be applied by procedures or scheduled by inference. The goal decomposition
can be viewed as a process of making implementation decisions and asserting new properties of
the program under refinement and then making new implementation decision based on these
properties, etc. In this sense, the inference is based on the fact that each decision has some pre-
and post-conditions.

An important property of the derivation history model is that each step in the derivation tree
can be explained, i.e. each subgoal helps to achieve its parent goal. Also, any changes to the
functional specification being transformed are well defined in the form of transforms (rather than
being some arbitrary manual changes). In [Bax90, Bax92, BP97, BM97, MB97], Baxter et al.
describe an approach allowing us to propagate specification changes through an existing
derivation tree in a way that only the affected parts of the tree need to be recomputed (this
technology is being commercialized by Semantic Designs, Inc. [SD]). The derivation model
clearly demonstrates us the advantages of transformation systems for software maintenance
and evolution. Unfortunately, it requires a comprehensive and detailed domain model, whose
development is not feasible or cost effective in all cases.

We will discuss the scheduling issue in the context of concrete systems and approaches in later
sections.

6.3.3 Existing Transformation Systems and Their Applications
Transformation systems are used in various areas, e.g.
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Figure 58    Derivation tree of the transformational implementation of a functional
specification (adapted from [BP97]). The middle part of the tree is not shown.



Generators 129

• implementing specifications (i.e. program synthesis) and metaprogramming, e.g. Draco
[Nei80], TAMPR [BM84, BHW97], CIP [BEH+87], Medusa [McC88], KIDS [Smi90], TXL
[CS92], Prospectra [HK93], Polya [Efr94], APTS [Pai94], SPECWARE [SJ95], SciNapse®

[AKR+97], and IP [ADK+98],

• evolutionary development through refactoring and reengineering legacy systems, e.g.
Reasoning5 [RS], DMS [BP97, BM97, MB97], SFAC [BF96], and Refactory [RBJ98],

• symbolic mathematical computations, e.g. Mathematica [Wol91], and

• language prototyping (i.e. generating compilers, debuggers, and often syntax-oriented
editors from a specification of a language), e.g. Cornell Generator Synthesizer [RT89],
CENTAUR [BCD+89], Popart [Wil91], and ASF+SDF [DHK96].

Three of these systems and approaches deserve special attention:

• Reasoning5 [RM], which is currently the only commercially available general-purpose
transformation system,

• Intentional Programming [IPH],  a transformation-based programming environment and
platform (still under development), and

• SciNapse® [AKR+97], a commercial domain-specific transformation system synthesizing
high-performance code for solving partial differential equations.

Reasoning5, formerly known as Refine [KM90], has been developed by Reasoning Systems,
Inc., based on some 15-year experience in transformation technology. Reasoning5 represents
programs in three forms: syntax trees, data-flow graphs, and control-flow graphs. These
representations can be analyzed and manipulated by transforms expressed in a declarative
language CQML (code query and manipulation language), which also includes high-level
concepts such as sets and relations. Reasoning5 has been primarily used in the area of
reengineering and maintenance, where legacy code, e.g. in COBOL, Fortran, or C, is imported
using parsers into the internal representations. Transforms can be packaged into problem-
specific plug-ins (possibly binary plug-ins by third party vendors). For example, a special plug-
in for correcting year 2000 problems in COBOL code is available. Reasonig Systems’ technology
has also been used as a platform for forward engineering tools, such as the program synthesis
environments KIDS and SPECWARE (they are discussed in Section 6.4.4). Reasoning5 is
written in Lisp.

Intentional Programming is another commercial general-purpose transformation technology
under development at Microsoft Research. Unlike Reasoning5, Intentional Programming is set
up as an efficient, general-purpose programming environment. We will describe it in Section
6.4.3.

A remarkable example of a commercially available domain-specific transformation system is
SciNapse® (formerly known as Sinapse [Kan93]) by SciComp, Inc. [SC]. The system synthesizes
high-performance code for solving partial differential equations and has been successfully
applied in various domains, e.g. wave propagation [Kan93], fluid dynamics, and financial
modeling [RK97]. It accepts specifications in a high-level domain-specific mathematical
notation. The refinement process in SciNapse® involves performing some domain-specific
mathematical transformations, selecting an appropriate discretization method based on the
analysis of the equations, selecting appropriate algorithms and data structures, generating the
solution in pseudocode, optimizing at the pseudocode level, and, finally, generating C or
Fortran code from the pseudocode. At each major refinement stage, so-called level summaries
are generated which inform the user about the current state of the refinement and the
intermediate results. The system is built on top of a planning expert system written in
Mathematica, where the concepts from the problem specification are represented as objects in
the knowledge base and transforms are triggered by rules.
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6.4 Selected Approaches to Generation
In the following four sections, we will describe four generative approaches, which were selected
to give you an overview of the area. The first approach is Draco. It is a prominent example of
transformation technology. The second approach is GenVoca, which is a compositional
approach with transformational elements. Next, we will describe Intentional Programming, which
is an approach and a transformation-based programming environment supporting compositional
and transformational generation. Finally, we give an overview of a formal approach to
generation based on algebraic specifications.

6.4.1 Draco
Draco52 is an approach to Domain Engineering based on domain-specific languages and
transformation technology. The Draco approach and a prototype of a development
environment, also called Draco, were developed by James Neighbors in his Ph.D. work [Nei80].
It was the first Domain Engineering approach. Since then, the original Draco ideas have been
translated into commercial products, e.g. the CAPE53 environment for prototyping and
developing communication protocols (see [Bey98]). In addition to domain engineering, the new
ideas introduced by Draco include domain-specific languages and components as sets of
transforms.

The main idea of Draco is to organize software construction knowledge into a number of related
domains. Each Draco domain encapsulates the knowledge for solving certain class of problems.
There are several types of domains in Draco [Nei89, Bax96]:

• Application domains: Application domains encapsulate knowledge for building specific
applications, e.g. avionics, banking, manufacturing, video games, etc.

• Modeling domains: A modeling domain is the encapsulation of the knowledge needed to
produce a part of a complete application. It can be reused in the construction of
applications from many different application domains. We can further subdivide this
category into application-support domains, e.g. navigation, accounting, numerical control,
etc., and computing technology domains, e.g. multitasking, transactions, communications,
graphics, databases, user interfaces, etc. Some modeling domains can be as abstract as
time, currency, or synchronization.

• Execution domains: Application domains are eventually refined into execution domains, i.e.
concrete target languages, e.g. C, C++, or Java. Different types of languages could be also
grouped into abstract programming paradigms, e.g. procedural, OO, functional, logic, etc.

Application domains are typically expressed in terms of several modeling domains and the latter
in terms of execution domains. The lower level domains are also referred to as refinements of the
higher level domains. An example of a number of interrelated Draco domains is shown in Figure
59. It is important to note that Draco domains need not to be organized in a strict hierarchy, i.e.
cycles involving one or more domains are possible (e.g. implementation of arrays as lists and
lists as arrays demonstrates a cycle).
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Specifically, a Draco domain contains the following elements ([Nei84, Nei89]):

• Formal domain language54 (also referred to as “surface” language): The domain language
is used to describe certain aspects of an application. It is implemented by a parser and a
pretty printer, and the internal form of parsed code is an abstract syntax tree.

• Optimization transforms: These transforms represent rules of exchange of equivalent
program fragments in the same domain language and are used for performing
optimizations.55

• Transformational components: Each component consists of one or more refinement
transforms capable of translating the objects and operations of the source domain language
into one or more target domain languages of other, underlying domains. There is one
component for each object and operation in the domain. Thus, transformational components
implement a program in the source domain language in terms of the underlying domains.

• Domain-specific procedures: Domain-specific procedures are used whenever a set of
transformations can be performed (i.e. scheduled) algorithmically. They are usually applied
to perform tasks such as generating new code or analyzing programs in the source
language. For example, we could write a procedure implementing a parser from a grammar
specification.

• Transformation tactics and strategies (also called optimization application scripts) :
Tactics are domain-independent and strategies are domain-dependent rules helping to
determine when to apply which refinement. Optimizations, refinements, procedures, tactics,
and strategies are effectively organized into metaprograms.

Now we illustrate each of these elements using simple examples.

Domain-specific languages are designed to allow us writing intentional and easy-to-analyze
specifications. For example, a communication protocol can be nicely defined using a finite state
automaton. This idea is used in CAPE, a Draco-based environment for prototyping and
development of protocols by Bayfront Technologies [BT]. In CAPE, protocols are specified
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Figure 59    Examples of interrelated Draco domains (adapted from [Nei84])
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using the domain-specific language PDL (protocol definition language). The style of PDL
specifications is illustrated in Figure 60. An excerpt from a larger example of a simple data
transfer protocol is shown in Figure 61 (see [BT] for details).

Draco optimization transforms operate within the same language. Examples of simple
optimization transforms in the algebraic calculation domain (see Figure 59) are eliminating the
addition of zero

ADDx0: X+0 → X

and replacing EXP(X, 2) by X*X, where EXP(A, B) raises A to the Bth power

EXPx2: EXP(X, 2) → X*X.

The exponentiation function EXP(A,B) could be implemented using the transformational
component shown in Figure 62. This component defines two alternative refinements of
EXP(A,B): one using the binary shift method and one using the Taylor expansion. Each of
these refinements has a CONDITIONS section defining when the corresponding refinement is
applicable. If a refinement is selected, EXP(A,B) is replaced by its CODE section. The
application of a refinement to a specification produces a new specification with new properties,
which can be stated in the ASSERTIONS section, e.g. the complexity of the implementation.
These assertions are attached to the resulting code as annotations.

example1 { InitialState = State1;
             state State1::
                     Event1 -> Action1, Action2 >> State2;
                     Event2 -> Action3;
             state State2::
                     Event1 -> Action4;
                     Event2 -> Action5, Action6 >> State1;
}

Figure 60    Sample specification in PDL (from [BT])

[ simple data transfer protocol in PDL with timeouts, retry, and no error recovery ]
dataxfer { InitialState = Idle;
      [ Idle state - no connections have been established ]
      state Idle::
            recv(Connect,Net) -> send(Connect,Usr), StartTimer(Tconn) >> SetupReceive;
            recv(Connect,Usr) -> send(Connect,Net), StartTimer(Tconn) >> SetupSend;
      [ SetupReceive state - network has requested a connection with the user ]
      state SetupReceive::
            timeout(Tconn) | recv(Refuse,Usr) -> send(Refuse,Net), StopTimer(Tconn) >> Idle;
            recv(Accept,Usr) -> send(Accept,Net), StopTimer(Tconn), StartTimer(Trecv) >> Receiving;
            macro EventDisc;
      [ Receiving state - user has accepted a connection request from the network, ]
      [ network to user transmission is in progress ]
      state Receiving::
            timeout(Trecv) -> macro ActionError;
            recv(Disconnect,Net) -> send(Disconnect,Usr), StopTimer(Trecv) >> Idle;
            recv(Message,Net) -> CheckMsg{
                                                    MsgOK -> send(Message,Usr), send(Ack,Net), RestartTimer(Trecv);
                                                    MsgBad -> send(NotAck,Net);
                                        };
            macro EventDisc;

      [ ... ]

[ end of dataxfer ]
}

Figure 61    Excerpt from the definition of a simple data transfer protocol in PDL (from [BT])
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At any point during the refinement process of a system specification, more than one refinement
or optimization transforms might be applicable. This is illustrated in Figure 63 showing three
alternative paths of refining EXP(X,2) into C programs. EXP(X,2) can be either directly refined
using the binary shift method refinement or the Taylor expansion refinement, or it can be first
transformed into X * X using our optimization EXPx2. Thus the question is: how are the
appropriate transforms selected? The transforms are scheduled partly by procedures, tactics,
and strategies and partly by the user.

Our example of refining EXP(X,2) illustrates an important point: Optimizations are most
effective, when applied at the appropriate level of abstraction. EXPx2 simplifies EXP(X,2) into
X * X. No such simple optimization could achieve the same result at a lower level. The code
produced by the binary shift method refinement would require an extremely complicated series
of transformations in order to be reduced to X * X. For the Taylor expansion code, no such
transformations exist since the Taylor expansion is only an approximation of EXP(A,B). Thus,
an example of a simple tactic is to try optimization transforms first before applying any
refinements.

COMPONENT: EXP(A,B)
       PURPOSE: exponentiation, raise A to the Bth power
       IOSPEC: A a number, B a number / a number
       DECISION:The binary shift method is O(ln2(B)) while the Taylor expansion is an adjustable number
              of terms. Note the different conditions for each method.
       REFINEMENT: binary shift method
               CONDITIONS: B an integer greater than 0
               BACKGROUND: see Knuth's Art of Computer Programming, Vol. 2, pg. 399, Algorithm A
               INSTANTIATION: FUNCTION,INLINE
               ASSERTIONS: complexity = O(ln2(B))
               CODE: SIMAL.BLOCK
                 [[ POWER:=B ; NUMBER:=A ; ANSWER:=1 ;
                    WHILE POWER>0 DO
                       [[ IF ODD(POWER) THEN ANSWER:=ANSWER*NUMBER;
                          POWER:=POWER//2 ;
                          NUMBER:=NUMBER*NUMBER ]] ;
                     RETURN ANSWER ]]
       END REFINEMENT

       REFINEMENT: Taylor expansion
               CONDITIONS: A greater than 0
               BACKGROUND: see VNR Math Encyclopedia, pg. 490
               INSTANTIATION: FUNCTION,INLINE
               ASSERTIONS: error = (B*ln(A))^TERMS/TERMS!
               ADJUSTMENTS: TERMS[20] - number of terms, error is approximately
                                                              - (B*ln(A))^TERMS/TERMS!
               CODE: SIMAL.BLOCK
                [[ SUM:=1 ; TOP:=B*LN(A) ; TERM:=1 ;
                    FOR I:=1 TO TERMS DO
                      [[ TERM:=(TOP/I)*TERM ;
                         SUM:=SUM+TERM ]] ;
                    RETURN SUM ]]
       END REFINEMENT
END COMPONENT

Figure 62    Example of a transformational component implementing EXP(A,B) (adapted from
[Nei80])
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Procedures, tactics, and strategies allow only a partial automation of the refinement process,
which is a creative process requiring user intervention. The space of all possible derivations
represents an enormous search space. However, this search space can often be significantly
pruned  by means of AI planning and configuration techniques.

6.4.2 GenVoca
GenVoca is an approach to building software system generators based on composing object-
oriented layers of abstraction, whereby layers are staked one on another. Each layer contains a
number of classes in the OO sense and the layer “above” refines the layer “below” it by adding
new classes, adding new methods to existing classes, etc. This model roughly corresponds to
the refinement occurring in OO frameworks by means of inheritance: Existing classes of a
framework can be incrementally refined by adding new layers of derived classes. However, as
we will see later, there are important differences between these two models.

The GenVoca model originated in the work by Don Batory on Genesis [BBG+88], a database
management system generator, and the work by O’Malley et al. on Avoca/x-kernel [HPOA89,
OP92], a generator in the domain of network protocols. These two independently conceived
systems shared many similarities, which lead to the formulation of the GenVoca (a name
compiled from the names Genesis and Avoca) model in [BO92]. Since then, Batory and colleges
have been working on refining and extending this original model and building new GenVoca
generators. P1 [BSS92, SBS93] and P2 [BGT94] were extensions of the C programming
languages for defining GenVoca generators; in particular, they were used to develop Predator
[SBS93], a data container generator. Work on P++ [SB93, Sin96] involved equivalent extensions
of C++. A mechanism for composition validation in GenVoca models was proposed in [BG96,
BG97], and more recently, the originally compositional GenVoca model has been extended with
transformational techniques [BCRW98]. A Java pre-compiler for implementing domain-specific
language extensions and GenVoca domain models is described in [BLS98]. Other systems based
on GenVoca include the distributed file system Ficus [HP94], the ADAGE generators in the
domain of avionics navigation systems [BCGS95], the generator of query optimizers Prairie
[DB95], and the implementation of the data container generator in the IP system (see Section
6.4.3) DiSTiL [SB97].

6.4.2.1 Example
A typical application of the GenVoca model is to organize a library of data containers according
to this model (see [BSS92, SBS93, Sin96, SB97]). Data containers (or collections) belong to the
most fundamental building blocks in programming. Thus, any general-purpose, industrial-
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Figure 63    Three alternative ways of refining EXP(X,2) into a C program (adapted
from [Nei80]). The C code for the binary shift method and the Taylor expansion
implementation are not shown.
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strength programming language has to offer such a library. Examples of data container libraries
for C++ include libg++ [Lea88], the Booch C++ Components [Boo87], and, most recently, the
Standard Template Library (STL) [MS96].

Data containers are good examples of concepts exhibiting wide feature variations. For example,
the Booch C++ Components offer various data structures (bag, deque, queue, list, ring list, set,
map, stack , string, and tree), various memory management strategies (bounded, unbounded,
managed, controlled), various synchronization schemas (sequential, guarded, concurrent,
multiple), and balking and priority implementations for queues (see Table 10 for explanations).
A concrete component can be described through a valid combination of these features and
there are more than 200 valid combinations for the Booch C++ Components.

Implementing all feature combinations as concrete classes is clearly inefficient in terms of
development and maintenance cost and scaling, i.e. adding a new feature can potentially double
the number of concrete classes.56 The Booch C++ Components library addresses this problem

Data structure families in the Booch library

Bag unordered collection of objects, which may contain duplicates

Deque ordered sequence of objects, where objects may be inserted or removed at either
end

Queue ordered sequence of objects, with “first-in first-out” semantics

List a linked list of objects, which are automatically garbage collected

Ring List ordered sequence of objects, organized in a loop

Set unordered collection of objects, which contains no duplicates

Map a tabular data structure which associates instances of one kind of object with
instances of some other kind of object

Stack ordered sequence of objects, with “last-in first-out” semantics

String ordered sequence of objects, where any object may be accessed directly

Tree a binary tree of objects, which are automatically garbage collected

Data structure features which are available to every family

Bounded static memory allocation (upper bound on total number of objects)

Unbounde
d

dynamic memory allocation algorithm (no upper bound on total number of objects)

Managed free objects are stored on a list for subsequent reuse

Controlled a version of managed which operates correctly in a multi-threaded environment

Sequential assumes a single-threaded environment

Guarded assumes a multi-threaded environment, where mutual exclusion is explicitly
performed by the user

Concurrent assumes a multi-threaded environment, where the object ensures that all read and
write accesses are serialized

Multiple assumes a multi-threaded environment, where the object permits multiple
simultaneous read access, but it serializes write access

Data structure features which are available to deques and queues only

Balking objects may be removed from the middle of a sequence

Priority objects are sorted based on some priority function

Table 10     A glossary of the Booch data structure terminology (from [Sin96])
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through a careful design avoiding code duplication by means of inheritance and templates and
reducing the number of concrete classes to about 100. However, a container library of an
equivalent scope but designed using the GenVoca model requires only about 30 components
(i.e. GenVoca layers) and exhibits even a much lower level of code duplication [Sin96]. This is
achieved through consequent interface unification and standardization and aggressive
parameterization. At the same time, the library achieves an excellent performance in terms of
execution speed.

6.4.2.2 GenVoca Model
In the GenVoca model, each abstract data type or feature is represented as a separate layer and
concrete components (or systems) are defined by type expressions describing layer
compositions. For example, the following type expression defines a concurrent, unbounded,
managed bag which allocates the memory for its elements from the heap and counts the
number of elements it contains:

bag[concurrent[size_of [unbounded[managed[heap]]]]]

Figure 64 shows the layered structure equivalent to this type expression. Each layer contributes
classes, attributes, and methods implementing the corresponding features to the entire
composition. heap implements memory allocation from the heap, managed manages the
allocated memory on a free list, unbounded provides a resizable data structure based on
managed, size_of adds a counter attribute and a read-size method, concurrent wraps the
accessing methods in semaphore-based serialization code (we will see an implementation of
size_of and concurrent later), and, finally, bag implements the necessary element management
and bag operations.

Each of these layers, except heap, represents a parameterized component. For example, size_of
takes a data structure as its parameter. We denote this as follows: size_of[DataStructure]. In
general, a GenVoca layer may have more than one parameter. Thus, in general, GenVoca
expressions have a tree structure, e.g. A[B[D, E], C[F, G]] (see Figure 65).
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Figure 64    Example of GenVoca layering
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Each GenVoca layer exports a certain interface and expects its parameters (if any) to export
certain interfaces. These contracts can be expressed explicitly by defining layer interfaces at a
separate location and then using them in layer declarations. In GenVoca terminology, a
standardized layer interface is referred to as a realm. A realm can be thought of as a collection
of class and method signature declarations (we will see a concrete example of a realm in Section
6.4.2.3). We also say that certain layers or layer compositions “belong to a realm” if they export
all the classes and methods declared in the realm (but they are allowed to export other classes
and methods at the same time, too). For example, given the realms R and S, and given the layers
A, B, C, D and E, we could write

R = {A, B[x:R]}
S= {C[x:R], D[x:S], E[x:R, y:S]}

This notation states that

• A and B export the interface R,

• C, D, and E export the interface S,

• B, C, and E import the interface R, and

• D and E import the interface S.

Alternatively, GenVoca domain models can be represented more concisely as grammars. For our
realms R and S and the layers A, B, C, D, and E, we have the following grammar:

R : A | B[R]
S : C[R] | D[S] | E[R, S]

where the vertical bar indicates an or. Please note that the layers B and D import and export the
same realms. We refer to such layers as symmetric. An example of a symmetric layer is
concurrent. Symmetric layers are important since they usually strongly increase the number of
possible configurations. For example, Unix utilities are symmetric and can be combined in many
orders using pipes.

In some cases, we found it useful to have differently named realms, but declaring the same
interface. We can use such realms to differentiate between layers exporting the same operations
in terms of signatures, but of different semantics. For example, the concurrent layer exports the
same operations it imports, and the only difference is that the exported operations are serialized.
If certain other layers require synchronized data structures (which is an example of a
configuration constraint), we might want to define the realms SynchronizedDataStructure and
DataStructure, even if they declare the same operations. Alternatively, we might just define the
DataStructure realm and express the configuration constraint using extra annotations (see
Section 6.4.2.5). Whichever method works best has to be decided in a specific context.
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Figure 65    Example of a tree-like GenVoca
layering
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An important class of GenVoca domain models can be represented using a quite intuitive,
graphical notation shown in Figure 66. In this notation, each box represents a generic layer
containing a set of alternative GenVoca layers (a generic layer corresponds to a realm). The idea
is that we can obtain a concrete instance of this model by selecting exactly one layer per box.
For example, according to Figure 66, B[D[F[J]]] is a valid type expression. We will refer to such
GenVoca models as stacking models since each layer has only one parameter and instances of
this model are simple stacks of layers (in general, instances of GenVoca domain models have a
tree structure). More precisely, all layers of one generic layer export the same realm, e.g. R1, and
also import the same realm, e.g. R2, which, in turn, is exported by all layers in the generic layer
beneath it. We can further extend this model by allowing a generic layer to contain layers
exporting and importing the same realm (as A[R1] in R1 in Figure 67). And finally, we can also
have optional generic layers, i.e. one or none of the layers contained in an optional generic
layer need to be selected when constructing a concrete instance. In other words, the layers
contained in an optional generic layer are optional alternative layers. Optional generic layers are
marked by a dashed inner box as R3 in Figure 67.

In addition to layer parameters (i.e. the realm-typed parameters57), such as x in B[x:R] , layers
can also have other types of parameters, such as constant parameters (e.g. maximum number of
elements in bounded) and type parameters58 (e.g. each of the data container layers require the
element type as its parameter). The constant and type parameters are referred to as horizontal
parameters and the layer parameters as vertical parameters (this terminology is due to Goguen
and Burstall [GB80]; also see [Gog96]). The vertical parameters are instrumental in defining the
vertical refinement hierarchies of layers (as in Figure 64), whereas the horizontal parameters do
not affect this hierarchy, but rather provide for some variability within a single layer. We will
enclose the horizontal parameters into round braces.59 For example, B[x:R](y:type, z:int) has
one vertical parameter x of type R and two horizontal parameters, namely the type parameter y
and the integer constant z.

The GenVoca implementation of the Booch Components described in [Sin96] requires 18 realms
and 30 layers. The main advantage of expressing the Boch Components in terms of realms and
layers instead of inheritance hierarchies and parameterized classes is that layers allow us to
refine multiple classes in a coordinated manner, so that the structure of the library is captured
by layers more adequately. For example, a data container layer contains not only the data
container class, but also a cursor class (i.e. the iterator) and an element class. All these classes
are incrementally refined by each layer in a coordinated fashion as the layers are stacked up.

Next, we will take a look at some concrete examples of realm and layer definitions.

 R4: I,J

 R3: F,G

 R2: D

 R1: A,B,C R1: A[R2] | B[R2] | C[R2]

R2: D[R3]

R3: F[R4] | G[R4]

R4: I | J

Figure 66    Example of a stacking model in
graphical notation and the corresponding
grammar

 R4: I,J

 R3: F,G

 R2: D

 R1: A[R1],B,C R1: A[R1] | B[R2] | C[R2]

R2: D[R3]

R3: F[R4] | G[R4] | R4

R4: I | J

Figure 67    Example of an optional generic layer
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6.4.2.3 Defining Realms and Layers in P++
The adequate implementation of the GenVoca modeling concepts requires new language
features, which are absent in current OO languages, such as C++ or Java. P++ is an extension of
C++ implementing these new features [SB93, Sin96]. We will first explain the required language
constructs using examples in P++. We will then show how to emulate some of these features in
C++ in the next section.

Figure 68 shows two realm declarations. Realm DS defines the interface of the data structure
used in the data container described in the previous section. DS is exported by unbounded and
imported by size_of (i.e. we have size_of[x:DS]; see Figure 64). size_of augments the DS
realm by adding the method read_size() to its container class. Thus, the realm exported by
size_of is DS_size. concurrent also exports DS_size and bag and concurrent import
DS_size (i.e. we have bag[x:DS_size]  and concurrent[x:DS_size]). Please note that
DS_size is declared as a subrealm of DS, i.e. it inherits all its classes and methods. Multiple
inheritance between realms is also allowed. Realm inheritance is an example of pure interface
inheritance as opposed to implementation inheritance.

template <class e>
realm DS
{
    class container
    {
        container();
        bool is_full();
        ... // other operations
    };

    class cursor
    {
        cursor (container *c);
        void advance();
        void insert(e *obj);
        void remove();
        ... // other operations
    };
};

template <class e>
realm DS_size : DS<e>
{
    class container { int read_size(); };
};

Figure 68    Realm and subrealm declarations (from [BG97])
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The implementation of the layers size_of and concurrent is shown in Figure 69. The syntax
resembles C++ class templates with member classes. size_of has one horizontal type parameter
e (i.e. the element type) and one layer parameter x expecting a layer of the realm DS<e> and
exports the realm DS_size<e> .60 Please note that only the type of the layer parameters can be
specified, i.e. layer parameters are an example of constrained generic parameters. size_of
implements the method read_size() of container and refines the cursor methods insert() and
remove() from the lower layer by adding statements incrementing or decrementing  the count
variable. All other container and cursor methods declared in the DS_size realm but not
explicitly implemented in the size_of layer are implicitly defined by the bypass construct.
bypass matches with the name of any method declared in DS_size, but not defined in size_of.
bypass_type matches with the return type of such method and bypass_args with the
argument list. A slightly different usage of this construct is found in the concurrent layer. The
concurrent layer uses the bypass construct to wrap all the container and cursor methods from
the lower layer in semaphore wait and signal statements.

An important aspect of GenVoca is the ability to propagate types up and down the layer
hierarchy. The upward type propagation is achieved through accessing member types of the
layer parameter, e.g. x::container in size_of, i.e. size_of accesses container of the layer
beneath it. The downward type propagation occurs by means of type parameters of realms such
as the type parameter of the realm DS<e> of the parameter x of size_of. Given the layer
bounded (see Figure 70) implementing a bounded data structure with the type parameter e (i.e.
the element type) and the integral constant parameter size (maximum capacity of the data
structure), we can write the following type expression:

template <class e, DS<e> x>
component size_of: DS_size<e>
{
    class container
    {
        friend class cursor;
        x::container lower;
        int count;

        container() { count = 0; };
        int read_size() { return count; };

        bypass_type bypass(bypass_args)
        {   return lower.bypass(bypass_args); };
    };

    class cursor
    {
        x::cursor *lower;
        container *c;

        cursor (container *k)
        {   c = k;
            lower = new x::cursor(&(c->lower)); };

        e* insert (e *element)
        {   c->count++;
            return lower->insert(element); };

        void remove()
        {   c->count--;
            lower->remove(); };

        bypass_type bypass(bypass_args)
        {   return lower->bypass(bypass_args); };
    };
};

template <class e, DS_size <e> x>
component concurrent: DS_size <e>
{
    class container
    {
        friend class cursor;
        x::container lower;
        semaphore sem;

        container() { };

        bypass_type bypass(bypass_args)
        {   bypass_type tmp;
            sem.wait();
            tmp = lower.bypass(bypass_args);
            sem.signal();
            return tmp; };
    };

    class cursor
    {
        x::cursor *lower;
        container *c;

        cursor (container *k)
        {   c = k;
            lower = new x::cursor(&(c->lower)); };

        bypass_type bypass(bypass_args)
        {   bypass_type tmp;
            sem.wait ();
            tmp = lower->bypass(bypass_args);
            sem.signal();
            return tmp; };
    };
};

Figure 69    Implementation of the layers size_of and concurrent (from [BG97])
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typedef size_of <int, bounded <100> > integer_ds;

According to this type expression, integer_ds exports the DS_size interface. It is interesting to
note that we provided bounded only with the size parameter. How does bounded obtain the
value for its type parameter e? The value for this type parameter is derived from the realm type
of the parameter x of size_of, i.e. DS<e>, and, in our case, it is clearly int (see Figure 71). This
type inference constitutes an example of downward type propagation. P++ has also a construct
for passing types defined within one layer to the layer beneath it. This is accomplished by
annotating the newly defined type with the forward keyword and passing it as a parameter to
the realm type of a layer parameter, just as we passed e to DS<e> in size_of (see [Sin96] for
details).

The overall flow of information in a GenVoca hierarchy of layers is summarized in Figure 72.

template <class e, int size>
component bounded : DS<e>
{
    class container
    {
        e objs[size];
        ... // other methods and attributes
    };

    class cursor
    {
        int index;
        ... // other methods and attributes
    };
};

Figure 70   Implementation of the layer unbounded (adapted from [Sin96])

template <class e, int size >

component bounded : DS<e> {...};

template <class e, DS<e> x >

component size_of : DS_size<e> {...};

size_of <int, bounded <100> >

Figure 71   Parameter propagation in a component composition (adapted from
[Sin96])
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6.4.2.4 Implementing GenVoca Layers in C++
GenVoca layers can be implemented in C++ as class templates containing member classes.
Unfortunately, there is no adequate idiom in C++ to implement realms since C++ templates do
not support constrained type parameters, i.e. there is no way to specify the realm of a layer
parameter (e.g. as DS<e> of x in size_of).61 We will discuss the consequences of this problem
later. But even without realms, implementations of GenVoca domain models in C++ are, as we
will see in Chapter 10, very useful.

Figure 73 illustrates the general idea of how to implement a GenVoca layer in C++. ClassA and
ClassB are defined as member classes of LayerA, a class template with the parameter
LowerLayer. ClassA of LowerLayer is accessed using the scope operator :: and lower is
declared to be of this type. The implementations of operationA() in ClassA of LayerA refines
operationA() in ClassA of LowerLayer and the implementation of operationB() forwards the
latter operation to LowerLayer. Since the operation in GenVoca layers are usually defined as
inline, calling operationA() on lower in the operationA() in ClassA of LayerA does not incur
any extra dispatching overhead. This way, we achieve clearly separated layers of abstraction
and, at the same time, do not have to pay any performance penalties.

methods,
constants,

typesconstants,
types

constants,
types

constants,
types

constants,
types

constants,
types

methods,
constants,

types

methods,
constants,

types

layer A

layer C

layer B

horizontal
parameters

Figure 72    Propagation of types, constants, and methods in a GenVoca
hierarchy of layers (adapted from [Sin96])
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The implementation in Figure 73 is based on aggregation, i.e. LayerA holds references to class
instances from the layer beneath it (e.g. lower). Some of the operations from the lower layer may
be exported unchanged to the upper layer using forwarding methods (e.g. operationB() ), some
may be refined (e.g. operationA() ), yet other may be simply used as supporting methods to
implement some new methods of the upper layer. This kind of layer implementation corresponds
to a forwarding static wrapper (wrapper, also referred to as a decorator, is a design pattern
described in [GHJV95])62 shown in Figure 74.

Forwarding-based implementation of a layer is quite adequate if only few or no operations
exported by the lower layer are propagated unchanged up to the interface exported by the upper
layer. Otherwise, one has to write many forwarding methods, which is not only tedious, but also
impairs adaptability and maintainability since any changes to interface of the lower level
ultimately require changes to the forwarding methods of the upper layers. In P++, this problem
is addressed by the bypass construct. But what can we do in C++?

template <class LowerLayer>
class LayerA
{   public:
        class ClassA
        {   public:
                LowerLayed::ClassA lower;

                // refine operationA()
                void operationA()
                {   ... // LayerA-specific work
                    lower.operationA();
                    ... // LayerA-specific work
                };

                //forward operationB()
                void operationB()
                {   lower.operationB(); };
        };

        class ClassB
        { ... };
};

Figure 73    Forwarding implementation of GenVoca layer in C++

template <class Component>
class Wrapper
{   public:
        Component component;

        // refine operationA()
        void operationA()
        {   ... // wrapper-specific work
            component.operationA();
            ... // wrapper-specific work
        };

        //forward operationB()
        void operationB()
        {   component.operationB(); };
};

Figure 74    Example of a forwarding static wrapper
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In C++, the propagation of operations can be achieved using inheritance. Figure 75 shows an
inheritance-based static wrapper. Please note that we no longer need an instance variable to
hold an instance of the component and the original operation can be called using the C++ scope
operator. Based on this idea, we can now rewrite the forwarding layer from Figure 73 as an
inheritance-based layer as shown in Figure 76. Of course, a layer can use forwarding for some of
its classes and inheritance for other classes.

In all the C++ examples we have seen so far, types were propagated upwards using the C++
scope operator (e.g. LowerLayer::ClassA). In general, we can use this operator to access any
member types, i.e. also types defined using the typedef statement. For example, given the class
BottomLayer

class BottomLayer
{ public:
    typedef int ElementType;
};

the member type ElementType can be accessed as follows:

BottomLayer::ElementType

We can also use the same accessing syntax for integral constants. The required idiom is shown
below:

class BottomLayer
{ public:
    enum { number_of_elements = 100 };
};

The integral constant number_of_elements is accessed as follows:

BottomLayer::number_of_elements

The idea of how to propagate types and constants upwards over multiple layers is illustrated in
Figure 77. Using this idiom, we can reach out any number of layers down the hierarchy and then
access the members of some layer we are interested in. Please note that we modeled layers as

template <class Component>
class Wrapper : public Component
{   public:
        // refine operationA()
        void operationA()
        {   ... // wrapper-specific work
            Component::operationA();
            ... // wrapper-specific work
        };
};

Figure 75    Example of an inheritance-based static wrapper

template <class LowerLayer>
class LayerA
{   public:
        class ClassA : public LowerLayer::ClassA
        {   public:
                // refine operationA()
                void operationA()
                {   ... // LayerA-specific work
                    LowerLayer::ClassA::operationA();
                    ... // LayerA-specific work
                };
        };

        class ClassB : public LowerLayer::ClassB
        { ... };
};

Figure 76    Inheritance-based implementation of GenVoca layer in C++
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structs instead of classes. We do this in cases, where all the members of a layer are public. This
saves us writing the keyword  public:.

Upward type propagation can also be used to supply layers with global types and constants as
well as with horizontal parameters. First of all, we found that mixing both vertical parameters (i.e.
layer parameters) and horizontal parameters (i.e. types and constants) in the parameter
declaration of a template implementing a layer obscures the structure of a GenVoca domain
model. This is particularly evident in type expressions since the structure of a model instance
described by an expression is determined by the values of the layer parameters, whereas the
horizontal parameters just distract the reader. Second, if most of the layers of a model require the
same horizontal parameter (e.g. element type in the data container example), we want to provide
the parameter value at one place instead of explicitly supplying each layer with this value. A
solution to both these problems is to propagate the global and horizontal parameters to all layer
from some standard place.

The propagation style shown in Figure 77 has the problem that a layer explicitly asks the layer
beneath it for all the types it needs or another layer above it might need. Thus, a layer has to
explicitly pass a type, even if it is not interested in this type itself. This fact impairs adaptability
since the need to propagate a new type might require changes to many layers. This problem can
be avoided by passing an standard “envelope” containing all the layers, types, and constants
to be propagated (see the struct Config in Figure 78). We refer to this envelope as a
configuration class or, in short, a config class. This use of a config class is an example of a
more general design pattern described in [Eis97]. Config is implemented as a so-called traits
class [Mye95], i.e. a class aggregating a number of types and constants to be passed to a
template as a parameter. The config class is passed to the leaf layers of a GenVoca domain
model (i.e. layers that do not have any layer parameters) and is explicitly propagated upwards
by all other layers. The config class is the only type explicitly passed between layers. All other
communication between layers goes through this envelope. Thus, we can view configuration
class as an implementation of a configuration repository, i.e. a repository of configuration
information.

We usually define global types (e.g. Global1 in Figure 78) or constants (e.g. Global2) as direct
members of the config class. On the other hand, all horizontal parameters of a certain layer (e.g.
HorizA of A) are preferably wrapped in an extra config class specifically defined for that layer
(e.g. ConfigA for A). This idiom prevents name clashes if two layers need two different
horizontal parameters having the same name and is an example of the nested config idiom
[Eis98].

 R1: A

 R3: D,E

 R2: B,C

template <class R2>
struct A
{   typedef typename R2::R3 R3;
    ... // member classes
};

template <class R3_>
struct B
{   typedef R3_ R3;
    ... // member classes
};

template <class R3_>
struct C
{   typedef R3_ R3;
    ... // member classes
};

struct D {...};
struct E {...};

accessing
R3 possible

accessing
R2 and R3
possible

Figure 77    Upward type propagation in a GenVoca model
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So far we have seen a number of examples of upward type and constant propagation. But how
to propagate types and constants downwards?

The downward propagation of types and constants can be accomplished in an indirect way.
The main idea is to put the type expressions assembling the layers in the config class (see
Figure 79). In other words, we wrap the whole layer hierarchy in our config class and propagate
this class up the same hierarchy. This way, we can access any layer exported in the config class
in any other layer, e.g. R1 in R2. In fact, we accomplished layer propagation in any direction.
Unfortunately, there is a limitation to the downward propagation: Types propagated downwards
can be only referenced in lower layers but not used in the C++ sense at compile time. In other
words, downwards-propagated types can be used as types in variable and function parameter
declarations (i.e. we can reference them), but we cannot access their member types (i.e. their
structure is not defined at the time of access). This is so since the hierarchy is built up in C++ in
the bottom-up direction (i.e. functionally: the arguments of a template are built before the
template is built) and types propagated down to a lower layer are actually not yet defined at the
time they are referenced in the lower level. However, even with this limitation, downward type
propagation is still useful and we will see examples of its use in Section 8.7.

The C++ programming techniques presented in this section cover all the parameters and
information flows shown in Figure 72: vertical and horizontal parameters, upward propagation of
operations, types, and constants, and downward propagation of types and constants.

 R1: A

 Config
  export:
  Global1, Global2,
  ConfigA::HorizA,
  ConfigB::HorizB

 R2: B,C

template <class R2>
struct A
{   // expose Config to upper layers
    typedef typename R2::Config Config;
    // retrieve types and constants from Config
    typedef typename Config::Global1 Global1;
    enum { Global2 = Config::Global2};
    typedef typename Config::ConfigA::HorizA HorizA;
    ... // Global1, Global2, and HorizA
    ... // are used in further code
};

template <class Config_>
struct B
{   // expose Config to upper layers
    typedef Config_ Config;
    // retrieve types and constants from Config
    typedef typename Config::Global1 Global1;
    enum { Global2 = Config::Global2};
    typedef typename Config::ConfigB::HorizB HorizB;
    ... // Global1, Global2, and HorizB
    ... // are used in further code
};

template <class Config>
struct B {...};

struct Config
{   typedef int Global1;
    enum { Global2 = 100 };
    struct ConfigA
    {   typedef char HorizA; };
    struct ConfigB
    {   typedef float HorizB; };
    ...
};

Figure 78   Upward propagation of global and horizontal parameters
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6.4.2.5 Composition Validation
A relatively small number of GenVoca layers can be usually composed in a vast number of
combinations. Whether two layers can be connected or not, depends on the compatibility of
their interfaces. Layer A can be used as a parameter of layer B, if layer A exports the same realm
as B imports or a subrealm of the latter. However, the realm compatibility takes into account
only the compatibility of the exported and the imported signatures and not the semantic
compatibility of the corresponding operations. Thus, even if a type expression is syntactically
correct according to a GenVoca grammar, the system defined by this expression may still be
semantically incorrect. For example, the layers corresponding to the concurrency features (see
Table 10) in the GenVoca implementation of the Booch Components import and export the same
realm, namely DS (see Figure 68). Assume that the GenVoca grammar describing the Booch
Components contains the following productions:

DS_size : guarded[DS_size] | concurrent[DS_size] | multiple[DS_size] | size_of[DS] | ...
DS : bounded | unbounded[Memory] | ...

Given these productions, we could define the following data structure:

guarded[guarded[multiple[concurrent[guarded[concurrent[size_of[bounded]]]]]]]

This type expression is syntactically correct, but semantically a complete nonsense. Each of the
layers guarded, concurrent, and multiple are intended to be used as alternatives and only one
or none in one expression defining a data type. We clearly need a way to express such
configuration rules. In general, the rules can be more complicated and they can span over
multiple layers. For example, we could have a higher-level layer which requires that all the data
structures used by this layer are synchronized, i.e. the expressions defining the data structures
used by this layer have to contain the concurrent layer, but there can be several layers between
the data structure expression and the higher-level layer. In other words, we need to verify the
effect of using a layer at a “distance”. Furthermore, a layer can affect the use of other layers not
only below it, but also above it.

A model for defining such configuration constraints for GenVoca layers is presented in [BG96,
BG97].63 The model is based on the upward and downward propagation of attributes
representing constraints on layers or properties of layers. There are two main types of
constraints: conditions and restrictions. Conditions are constraints propagated downward and
restrictions are constraints propagated upwards (see Figure 80). A given layer can be used at a
certain position in a type expression if it satisfies all conditions propagated by upper layers
down to this layer and all the restrictions propagated by lower layers up to this layer. We refer
to such conditions as preconditions and to such restrictions as prerestrictions (see Figure 80)
The use of a layer in a type expression modifies the conditions and restriction “flowing”
through this layer: The conditions leaving a layer in the downward direction are referred to as
postconditions and the restrictions leaving a layer in the upward directions are referred to as

 R1: A

 Config
  export:
  R1, R2

 R2: B

template <class R2>
struct A
{   typedef typename R2::Config Config;
    ...
};

template <class Config_>
struct B
{   typedef Config_ Config;
    typedef typename Config::R1 R1;
    ...
};

struct Config
{   // assemble the layers
    typedef B<Config> R2;
    typedef A<R2> R1;
    ...
};

accessing
R1 possible

Figure 79    Downward type propagation
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postrestrictions. By modifying the postrestrictions, a layer can express some requirements on
the layers above it. Similarly, by modifying the postconditions, a layer can express some
requirements on the layers below it.

There are many ways of implementing conditions and restrictions. In the most simple case,
layers could propagate their properties represented as attributes and check for required or
undesired properties. The details of a slightly more elaborate implementation are described in
[BG96].

The validation checking mechanism based constraint propagation also allows the generation of
detailed warnings and error reports, which actually give specific hints of how to repair the type
expression [BG96].

The composition constrains in a GenVoca domain model correspond to the configuration
constraints we discussed in the context of feature diagrams (see Section 5.4.2) or to the
conditions and annotations of Draco transformations (see Section 6.4.1). As we remember,
constraints can be used in at least two ways: to validate a given configuration or to
automatically complete a partial configuration. Validation is based on detecting constraint
violations and reporting an error. Automatic completion is based on inferring property values
based on constraints and a partially specified configuration. For example, given the property of
a subsystem synchronized and the constraint that a synchronized subsystem has to use
synchronized data structures, we can infer that the data structures used in this subsystem also
have to be synchronized. This knowledge could be used to automatically insert the concurrent
layer into the type expressions defining the data types, whenever the property of the subsystem
is synchronized. We will discuss this kind of automatic configuration in the next section.

6.4.2.6 Transformations and GenVoca
The GenVoca model, as we described it so far, represents a typical example of the compositional
approach to generation. Each layer represents a relatively large portion of the generated system
or component. But as we stated in Section 6.2, compositions may also be viewed as
transformations. From the transformational perspective, each GenVoca layer represents a large-
scale refinement64 and type expressions can be viewed as a hierarchy of refinement applications.
For example, the type expression

concurrent[size_of [unbounded[managed[heap]]]]

when interpreted in a top-down order,65 denotes the application of the concurrent refinement,
then of size_of, etc. We can illustrate this refinement using the operation read_size() as an
example (see Figure 81). The refinement starts with the empty read_size() operation declared in
the realm DS_size. concurrent refines read_size() by inlining the highlighted code. size_of
finishes the refinement by inlining direct access to counter.

layer A

preconditions

postconditionsprerestrictions

postrestrictions

Figure 80    Flow of conditions and
restrictions through a GenVoca layer
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The transformational view of GenVoca suggests us that transformation systems certainly
represent a possible implementation platform for GenVoca domain models.

Beyond this transformational interpretation of GenVoca layers, there is also an opportunity of a
truly transformational extension to GenVoca: transformations on type expressions [BCRW98].
We will explain the usefulness and the concept of such transformations in the remainder of this
section.

Type expressions such as

bag[concurrent[size_of [unbounded[managed[heap]]]]]

are still quite close to the implementation level since each layer represents a single concrete
refinement. The layers correspond to features which were determined by factoring out
commonalities and variabilities of concrete code of different systems or subsystems. The main
goal of this factorization was to minimize code duplication and to be able to compose these
features in as many ways as possible. All the features are concrete since each of them is directly
implemented as a layer. The writer of type expressions has to know the order of the layers, the
design rules, and also these layers that can be regarded as implementation details. However, the
user can often provide a more abstract specification of the system or component he needs. For
example, he could specify some usage profile for a data container by stating abstract features
such as the calling frequency of insert, update, remove and other operations. This information
could be then used to synthesize an appropriate type expression. The synthesis is complicated
by the fact that different layers have different influence on the performance parameters and that
there are a vast number of different type expressions for a given GenVoca domain model. Thus,
exhaustive search for a solution is usually not practical and we have to use heuristic search
methods. This search problem is usually addressed in transformations systems by means of
inference-based scheduling of transformations deploying rules, procedures, tactics, and
strategies. We have already discussed these components in the context of Draco (see Section
6.4.1). In [BCRW98], Batory et al. describe a prototype of a design wizard that is based on the
cost model of various operations on data structures and applies transformations to type
expressions which insert, delete, or replace layers in order to improve the performance
characteristics of expressions defining data containers. As already stated, in general, the kind of
knowledge needed for code synthesis includes not only constraints on component
combinations but also constraints, procedures, and heuristics mapping from higher-level
specifications to lower-level specifications. Until now, knowledge-based configuration has been
predominantly studied in the context of AI Configuration and Planning and applied to configure
physical systems.

In Chapter 10, we will present a case study, in which we actually treat a GenVoca domain model
as an implementation language and we will deploy some simple metaprogramming techniques to
translate specifications in a more abstract domain-specific language into GenVoca type
expressions.

6.4.2.7 Class Libraries, Frameworks, and GenVoca
Class libraries represent libraries of relatively small components implemented using OO
techniques and intended to be called by application programs. Examples of class libraries are

int read_size ()
{ ??? };

int read_size ()
{   int  tmp;
    sem.wait ();
    tmp = lower. read_size ();
    sem.signal ();
    return tmp; };

int read_size ()
{   int tmp;
    sem.wait ();
    tmp = lower.count;
    sem.signal ();
    return tmp; };

read_size ()
in

DS_size

concurrent size_of

read_size ()
after applying

concurrent

read_size ()
after applying

size_of

Figure 81    Refinement of read_size() by successive inlining
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container libraries such as the Booch C++ Components [Boo87] or the STL [MS96].
Frameworks, on the other hand, are reusable frames which can be customized by completing
them with specialized components. OO frameworks are typically implemented as sets of
cooperating classes and application programmers can customize them by integrating specialized
classes into them. The user-defined classes are called by the framework and not the other way
round. Examples of frameworks are ControlWORKS [CW] and Apple’s MacApp [Ros95].

We have already seen how to use the GenVoca model to organize class libraries in Section
6.4.2.3. As described in [SB98a, SB98b], the GenVoca model is also useful for organizing OO
frameworks. As already stated, OO frameworks are sets of cooperating classes. In fact, not all
classes of a framework communicate with all other classes, but they are rather involved in
smaller, well defined collaborations. Each class participating in a collaboration plays a certain
role and this role usually involves only some of its methods. A collaboration is then defined by
a set of roles and a communication protocol between the objects participating in the
collaboration. One object can play different roles in different collaborations at the same time.
This view of the world is the cornerstone of the analysis and design methods called role
modeling [Ree96, KO96] and collaboration-based design [VHN96, Rie97, VH97]. According to
this methods, concrete classes are obtained by composing the roles they play in different
collaborations. Such designs are then implemented as frameworks. Unfortunately, when using
the conventional framework implementation techniques (e.g. [GHJV95]), the boundaries between
collaborations are lost in the implementation. However, we can use the GenVoca model to
encapsulate each collaboration as a single layer. This way, we not only preserve the design
structure in the implementation, but we can also conveniently configure frameworks in terms of
collaborations using type expressions and easily extend the whole model with new (e.g.
alternative) layers.

6.4.2.8 Components and GenVoca
Component-based software engineering is currently a rapidly developing area (see e.g. [Szy98]).
The main contributions in this area in the 90ies include component technologies such as
CORBA [OMG97, Sie96]), COM66 [Ses97, Box98], ActiveX67 [Arm97], and JavaBeans [Sun97].
The first two technologies enable the communication of independent, distributed components,
which are often written in different languages and run on different platforms (at least with the
first technology). ActiveX and JavaBeans define models for the components themselves by
standardizing how they advertise their services, how they should be connected, delivered to the
client machine, etc. Most of these technologies emphasize the binary character of the
components: their services should be exposed through a binary standard.

It is interesting to note that some of the concepts found in Draco or GenVoca are part of the
component models ActiveX and JavaBeans. For example, both models use attributes to describe
parameterized properties of components and support the communication between components
at composition time to exchange and modify these attributes. This communication enables the
components to tune to each other by selecting appropriate implementation algorithms,
parameters, etc., at composition time.

Unfortunately, the configuration of features within the ActiveX or JavaBeans components is
usually based on dynamic binding. This might be desirable for features that have to remain
reconfigurable at runtime. But features that are provided to be used in different constant
configurations in different systems should be implemented using static binding and domain-
specific code optimization that can actually “interweave” or “merge” the code pieces
implementing various features together, as in hand-optimized code (see [Big97]). The failure to
do so causes problems which can be observed in many contemporary OCX controls which are
often bulky components with a large number of runtime flags. First, the configuration through
runtime flags leads to inefficiencies that, even if they may be acceptable in GUIs, are prohibitive
in many other contexts (e.g. automatic control, numerical computing, image processing, etc.).
Moreover, runtime flags (including dynamic polymorphism) require the unused parts of the
code to be present in the final component and this results in wasting memory space.

Generation models, such as GenVoca, provide a solution to this problem by allowing to optimize
and regenerate a component for the specific context of use based on the settings in the
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customization interface. They also are orthogonal to the component models and can be
integrated into the latter. For example, Batory et al. describe in [BCRW98] ContainerStore, an
Internet-based component server for data containers. Containers can be requested from the
server over the Internet by specifying the required properties and the requested component is
generated and then delivered to the user. Biggerstaff refers to such component servers as a
virtual libraries [Big97].

Generation techniques seem to be particularly useful for the implementation of the components
of large software systems. As Biggerstaff notes in [Big97], conventional composition
techniques such as function and method calls seem to be adequate for composing subsystems
of large software systems (typically over one million lines of code) since the time spent in the
subsystems is often far more longer than the time needed for the communication between them.
Thus, it appears to be reasonable to compose large systems from components using
conventional technologies rather than optimizing generation technologies. On the other hand,
the latter are very appropriate at the component level, which has also been their usual scale of
use. For example, the GenVoca model has been used to generate systems (or subsystems) up to
some 100 thousands of lines of code (e.g. Genesis 70 KLOC [SB93]).

6.4.2.9 OO Languages and GenVoca
None of the current main-stream OO languages provides all the features needed to adequately
implement GenVoca domain models, although C++ is powerful enough to express practical
GenVoca domain models. In Section 6.4.2.4, we have seen how to implement layers, vertical and
horizontal parameters, upward propagation of operations, types, and constants, and downward
propagation of types and constants in C++.

Also the translations between higher level representations and GenVoca type expressions
discussed in Section 6.4.2.6 can be expressed in C++ using template metaprogramming (see
Chapter 8). Properties of components can be encoded as member constants or types and
propagated as described in Section 6.4.2.4. In conjunction with template metaprogramming, they
can also be used to select appropriate implementation algorithms, components, parameters, etc.,
at compile time. We will demonstrate these techniques in Chapter 8.

Since C++ does not support constrained type parameters, there is no way to implement realms.
The bottom-up instantiation order of nested templates also limits the downward type
propagation. Finally, although attributes needed for composition validation can be encoded and
propagated as constants or types, composition validation still cannot be adequately
implemented in C++ because of the inability to issue user defined warnings and error reports at
compile time. In other words, we can prevent a semantically incorrect type expression from
compiling, but the user will receive cryptic error reports coming from the middle of the
component implementation. In our experience, the last limitation is the most severe.

Java provides even less support for implementing GenVoca models since it lacks type
parameters and compile-time metaprogramming. A possible solution to this problem is provided
by the Jakarta Tool Suite (JTS) [BLS98], which is a transformation-based pre-compiler for Java
allowing us to implement language extensions and supporting compile-time metaprogramming.
JTS has been used to extend Java with features for implementing GenVoca domain models.

Ideally, we would like to have a metaprogramming language allowing us to write components
and to manipulate and modify them both at compile time and runtime — all in the same
language. With such language we could express configuration knowledge equally usable at
compile time and runtime.

6.4.3 Intentional Programming
Intentional Programming (IP) is a ground-breaking extendible programming environment under
development at Microsoft Research since early nineties. In particular, IP supports the
development of domain-specific languages and generators of any architecture (e.g. Draco or
GenVoca), as we will see soon, in a unique way. The idea of IP was originated by Charles
Simonyi,68 who also leads its development [Sim95, Sim96, Sim97, ADK+98].
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The main idea of IP is not to view computer languages as separate, fixed entities, but rather
focus on the abstractions (i.e. language features) they provide and to allow the use of these
abstractions in a program as needed without being confined to one language at a time. This
view is very different from the conventional, computer science view, wherein a compiler is
developed for one language (e.g. by specifying its grammar and the code generation actions
and presenting this specifications to a compiler generator such as the Unix utility yacc). The
main problem with this view is that real programs require abstractions from different domains, so
that one domain-specific language is not sufficient [Sim97]. As a consequence of this
observation, IP takes rather an incremental view: new abstractions are added to the
programming system as they are needed. Of course, each new abstraction is expressed in terms
of the already defined ones.

In the IP terminology, these abstractions or language features are referred to as intentions
[Sim95, Sha98]. As programmers conceive solutions in terms of domain concepts in their brains
(Chapter 2), the main purpose of intentions in IP is to represent these domain concepts directly
(or intentionally), i.e. without any loss of information or obscure language idioms.

The IP programming environment can be viewed as a special kind of transformation system. The
most unique feature of this transformation system is the lack of a parser: abstract syntax trees
(ASTs) are entered and edited directly using commands. Since IP no longer represents programs
as text, there is no need for a parser to construct the AST from a textual representation (which is
not there). There are exciting advantages of direct editing and not having a parser, but we will
discuss them a bit later. Of course, we still need parsers for importing legacy code written in
textual legacy languages, such as C++ or Java, into the IP system.

Furthermore, IP uses a framework-based approach: the nodes of the AST use default and user-
defined methods for displaying, editing, optimizing, transforming, and generating code. Just
about any aspect of the system can be specialized using methods including debugging and
source control. When new intentions (i.e. language features) are loaded into the system, they
bring along all the methods implementing their behavior for these aspects.

6.4.3.1 What Is Wrong With the Fixed Programming Language View?
One could argue that there are at least two alternative ways to deal with the problem of a
program requiring many domain-specific abstractions. One solution is to use a general-purpose
programming language with abstraction mechanisms such as procedures or objects, which allow
us to define our own libraries of domain-specific abstractions. This is the conventional and
widely-practiced solution. The second solution would be to provide one comprehensive
application-specific language per application type, so that the language contains all the domain-
specific abstractions needed for each application type as part of this language. Unfortunately,
both solutions have severe problems.

6.4.3.1.1 Problems with General-Purpose Languages and Conventional
Libraries

There are four main problems with the general-purpose programming language and
conventional library approach: loss of design information, code tangling, performance penalties,
and no domain-specific programming support.

• Loss of design information: When using a general-purpose programming language,
domain-specific abstractions have to be mapped on to the idioms of the programming
language. The resulting code usually includes extra clutter and fails to represent the
abstractions declaratively (i.e. intentionally). Even worse, some of the domain information is
lost during this transformation. For example, there are many ways to implement the
singleton pattern [GHJV95].69 And given a particular implementation code only, it is not one
hundred percent certain that the intention of the code was to implement the singleton
pattern. This information could be included in a comment, but such information is lost to
the compiler. On the other hand, with the domain-specific (or application-specific) language
approach, one would introduce the class annotation singleton, which would allow us to
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unambiguously express the singleton intention. The loss of design information makes
software evolution extremely difficult since changes are usually expressed at the higher
level of abstraction. Using the general-purpose programming language and library
approach, the program evolution would require code analysis to recover the intended
abstractions, which, as we illustrated with the singleton concept, is an impossible task.

• Code tangling: Programming problems are usually analyzed from different perspectives and
an adequate, intentional encoding should preserve the separation of perspectives (e.g.
separating synchronization code from functional code). As we will see in Section 7.6, in
most cases, achieving this separation requires domain-specific transformations, but such
cannot be encapsulated in conventional libraries, unless the language supports static
metaprogramming.70 In other words, we need to put some code extending the compiler to be
executed at compile time into the library, but this is usually not supported by current library
technologies. Thus, when using conventional procedural or class libraries, we are forced to
apply these transformations manually. Thus, we produce tangled code, which is hard to
understand and to maintain. We will investigate these issues in Chapter 7 in great detail.

• Performance penalties: The structure of the domain-level specification does not
necessarily corresponds to the structure of its efficient implementation. Unfortunately, the
main property of procedures and objects is that they preserve the static structure of a
program into runtime. The compiler can apply only simple optimizations since it knows only
the level of the implementation language, but not the domain level. For example, as we
discussed in Section 6.4.1, no compiler could possibly optimize the Taylor expansion code
into X*X (see Figure 63). A considerable amount of domain-specific computation at compile
time might be required in order to map a domain-level representation into an efficient
implementation. With the general-purpose programming language and library approach, no
such computation takes place (again, this would require static metaprogramming).

• No domain-specific programming support: Domain-specific abstractions usually require
some special debugging support (e.g. debugging synchronization constraints), special
display and editing support (e.g. displaying and editing pretty mathematical formulas), etc.
Such support would require that libraries, in addition to the procedures and classes to be
used in client programs, also contain extensions of programming environments. However,
current technologies do not support such extensions.

6.4.3.1.2 Problems With Comprehensive Application-Specific Languages

Given a comprehensive application-specific language containing all language features we need,
we could implement a programming environment which would provide an adequate support of
the language, i.e. implementing necessary optimizations and debugging, displaying, and editing
facilities. The language itself would allow us to write intentional, well separated code. In other
words, we would solve all the problems mentioned in the previous section. Unfortunately, there
are three major problems with the comprehensive-application-specific-language approach:
parsing problem, high cost of specialized compilers and programming environments, and
problems of distributing new language extensions.

• Parsing problem: The problem of conventional text-based languages is that it is not
possible to add more and more new language features without eventually making the
language unparsable. C++ is a good example of a language reaching this limit. C++ has a
context-sensitive grammar, which is extremely difficult to parse. The requirement of being
able to parse a language also imposes artificial constraints on the notation. For example, in
C++, one has to insert an extra space between the triangular brackets closing a nested
template (e.g. foo<bar<foobaz> >) in order to differentiate it from the right-shift operator
(i.e. >>). The requirement of parsability represents an even more severe restriction on
domain-specific notations since they are usually full of ambiguities in the sense of
parsability. Even the simplest notations found in mathematical books would be impossible
to be directly represented as conventional, text-based computer languages. The ambiguity
of a domain-specific notation does not imply the ambiguity of the underlying
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representation. In fact, the ambiguity of the domain-specific notations is caused by the fact
that they do not have to show all the details of the underlying representation. For example,
when editing text in a WYSIWYG71 text editor, such as Microsoft Word, one does not see
whether two paragraphs were assigned the same style (e.g. body text) since they could
have the same text properties (e.g. font size, font type, etc.). In other words, the WYSIWYG
view is ambiguous with respect to the underlying representation since we cannot
unambiguously determine the style of a paragraph based on its text properties. An example
of an unambiguous textual representation is the TEX file format [Knu86]. However, this

representation is not WYSIWYG. Other limitation of textual representation include being
confined to one-dimensional representations, no pictures, no graphics, no hyperlinks, etc.

• High cost of specialized compilers and programming environments: The cost of
developing compilers and programming environments is extremely high. On the other hand,
large portion of the compiler and programming environment infrastructure can be reused
across languages. Thus, the development of large numbers of separate, extremely
specialized programming environments from scratch does not seem to be economical.

• Problems of distributing new language extensions: Finally, even if we extend a language
with new features, dissemination of the new features is extremely difficult since languages
are traditionally defined in terms of a fixed grammars and compilers and programming
environments do not support an easy and incremental language extensibility. That is why,
as Simonyi notes in [Sim97], new useful features have the chance to reach a large audience
only if they are lucky enough to be part of a new, widely spread language (e.g. interfaces in
Java). Such opportunities are, however, a rare occasion. On the other hand, Java is also a
good example of a language that is extremely difficult to extend because of its wide use and
the legacy problem that comes with it.

6.4.3.1.3 The IP Solutions

IP addresses the problems listed in the two previous sections as follows:

• Loss of design information and code tangling are avoided by providing domain-specific
language extensions. In IP, language extensions are packaged into extension libraries,
which can be loaded into the programming environment in order to extend it.

• Performance penalties are avoided by applying domain-specific optimizations, which are
distributed as part of extension libraries.

• Domain-specific programming support (e.g. domain-specific debugging, editing, displaying,
etc.) can also be provided as a part of the extension libraries.

• The parsing problem is solved in IP by abandoning the textual representation altogether
and allowing direct and unambiguous entry of AST nodes using commands.

• Some of the high development cost of specialized compilers and programming
environments is reduced by providing a common reusable programming platform (i.e. the IP
system), so that only the language extensions need to be programmed. Furthermore, single
new language features can be integrated into many existing larger frameworks of language
features.

• Extension libraries represent a convenient and economical means for distributing language
extensions.

We will discuss the IP solutions in the following section in more detail.

6.4.3.2 Source Trees
All IP programs are represented as ASTs, also referred to as source trees (since they represent
the source of the programs). The source tree of the expression X+Y is shown in Figure 82. The
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nodes representing X and Y are referred to as the operands of the + node. Operands are always
drawn below their parent node and we count them in the top-down direction, i.e. X is the first
operand and Y is the second operand. The nodes of the source tree are also referred to as tree
elements.

Each tree element has its declaration. We use dotted lines to point to the declarations (see
Figure 83). In our example, the nodes representing +, X, and Y are really just references to their
declarations. Declaration nodes are designated by putting “DCL” in front of their names. As we
will later see, only the solid lines organize the nodes into trees. The dashed lines, on the other
hand, connect the nodes to form a general directed graph. This is the reason why the solid lines
are often referred to as tree-like links and the dashed lines as graph-like links.72

Declarations are trees themselves. The source tree representing the declaration int X;  is shown
in Figure 84. The root node of a tree representing a declaration — just as any node — also has a
declaration, which, in our case is the special declaration DCL (represented as the DCL DCL
node in Figure 84). In fact, the declaration of the root of any declaration is always the
declaration DCL. The first operand of the of the root node is usually the type of the declaration.
In our case, it is the integral type int.

Figure 85 shows the fully expanded source trees of a small program declaring the variables X
and Y and adding them together. The three source trees enclosed in gray boxes represent the
three statements of the program. They reference other trees provided by the system, such as the
declaration of + and the declaration of int. There are also the three (meta-)declarations TypeVar,
Type and DCL. As we already explained, DCL is the declaration of all declarations and,
consequently, also the declaration of itself. Type is the type of all types (and also of itself). +,
int, TypeVar, Type, and DCL are all examples of intentions — they define language
abstractions. The nodes referencing them are their instances. We also refer to nodes not being
declarations (i.e. nodes having other declarations than DCL) simply as references.

X + Y

+

Y

X

Figure 82    Source tree of X+Y (the
graphical notation is based on [Sha98])

DCL Y

DCL X

DCL +

X + Y

Figure 83    Source tree of X+Y with declarations

int X;
DCL int

DCL DCLDCL X

Figure 84    Source tree of int X;
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Each tree element is implemented as a collection of fields (see Figure 86). There is the optional
field name. For example, the name X is stored in the name field of the DCL X node. References
usually do not have names. Names are exclusively used for the communication with the
programmer, i.e. to be displayed on the screen or to be typed in. The reference to DCL X in the
expression X+Y is a true pointer, i.e. it does not use the name. When the system displays X+Y,
the name X is retrieved from DCL X. The field operator (Figure 86) points to the declaration of
the node. Since every node has a declaration, every node also has the operator field. The
optional field constant data is for storing constant data. For example, we can use this field to
store the bits representing a constant. Figure 87 shows a DCL X of type int and with the initial
value 1. The value is stored in the constant data field of the second operand. The operator field
of this operand points to DCL constant, which provides the interpretation for the value. A
node can also contain a number of annotations. Annotations are somewhat similar to operands,
but they are used to provide some extra information about the node. For example, we could
annotate the declaration of X with const, i.e. const int X = 1;, in order to specify that the value
of X should not change. Annotations are a convenient means of expressing preferences about
what kind of implementation to generate, e.g. we could annotate the type MATRIX with
diagonal to tell the system to generate optimized code. Finally, there are the operand fields
pointing to the operands.

Source trees are stored on disk as binary files. Thus, they can contain bitmaps, hyperlinks,
drawings, etc.

DCL TypeVar

DCL DCLDCL +

int X;
int Y;
X + Y;

DCL Type

DCL int

DCL X

DCL Y

int Y;

int X;

X+Y;

Figure 85    Fully expanded source tree of a small program73

operand 2

operand 1

annotation 2

constant data

annotation 1

operator

name

...

...

Figure 86    Fields of a tree
element
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6.4.3.3 Extension Methods
As we already explained, the IP system is organized as a framework calling default and user-
defined methods, where each method defines some aspect of the system, e.g. displaying,
compiling, typing in intentions, etc. These methods are referred to as extension methods (or
Xmethods) since, as a new extension method is defined and loaded, it extends the IP system.

Extension methods are classified according to their purpose. We have the following categories
of methods [Sha98]:

• Reduction methods: The process of transforming source trees into lower-level trees is
referred to as reduction. The process continues as long as the tree being reduced contains
only instances of a predefined set of intentions for which machine code can be directly
generated (in the phase called code generation). This representation is referred to as
reduced code or R-code. Reduction involves the replacement of instances of intentions by
instances of lower-level intentions and is performed by reduction methods. Reduction
methods, as we explain later, are attached to intentions. Thus, the reduction methods of an
intention know how to compile its instances and, effectively, they implement the semantics
of the intention. The methods may gather information from the context of the intention
instance being reduced, e.g. from other parts of the program, before replacing it by the
appropriate code. In general, there is more than one set of R-code intentions, each defined
for a different target platform, e.g. the Intel 86 family of processors or Java bytecodes. The
reduction methods can usually reduce the source tree towards a different target platform,
based on the context settings. However, it is possible that not all high-level intentions can
be reduced to a given set of R-code intentions.

• Rendering methods: The display of a source tree on the screen is accomplished by the
rendering methods attached to the intentions being referenced. The rendering methods
may display the tree using true two-dimensional output (as in mathematical formulas),
graphical representations, embedded bitmaps, etc. They can also display information
coming from remote places, e.g. when defining the implementation of a procedure, its
signature is automatically displayed based on the information contained in the procedure
prototype (i.e. declaration), even if the prototype is defined in a different source tree. In
other words, the signature is not being stored redundantly, but only displayed twice for
better readability. In general, rendering methods would usually display just some aspects of
the tree at a time, i.e. one would implement different views of the tree rather than displaying
all information at once.

• Type-in methods: Type-in methods are called when the source tree is entered or
manipulated. When a reference to an intention is entered, a special method can be defined
to insert an appropriate number of place holders as operands of this instance (e.g. after
typing the name of a procedure, the appropriate number of place holders for the arguments
are inserted) or to do any other kind of special editing (e.g. typing in a type will replace the
type by a declaration of this type). There are methods defining how to select the elements
shown on the screen, the tabbing order, etc.

DCL constant

int X = 1
DCL int

DCL DCLDCL X

1

Figure 87    Source tree of int X = 1;
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• Debugging methods: Since the reduction methods can perform arbitrary, user-defined
computation to generate the executable code, there might be little or no structural
correspondence between the source tree and the runtime code. This lack of
correspondence renders the conventional debugging model of stepping through the source
impractical. While domain-specific notations will have to provide their specialized
debugging models for the client code (e.g. GUI specifications are debugged visually by
examining the graphical layout or real time constraints can be highlighted when they are
violated), the programmer of the reduction methods still needs some debugging facilities in
order to track down bugs in the reduction process. The IP system supports the programmer
in a unique way. At any time during the reduction process, a reduction method can call a
snapshot method, which takes a snapshot of the current state of the tree. Later, when the
compiled client code is executed, it is possible to step through the code at any of the levels
defined by the snapshots. The mapping between the code positions in the executable and
in any of the levels is taken care of automatically by the system.74 However, not all values
of the abstract variables of a higher level can be inspected since they might not be present
in the executable (e.g. they could have been optimized away or represented by other
variables). However, the programmer has the opportunity to write his own debugging
methods which may map back the values in the executable onto the variables of each of the
intermediate levels and the source level, so that they can be inspected.

• Editing methods: Since the source is represented as an AST, it is quite easy to perform
mechanical restructuring of the source. Methods performing such restructuring are called
editing methods. Some editing methods may be as simple as applying De Morgan to logical
expressions or turning a number of selected instructions into a procedure and replacing
them by a call to this procedure (in IP this is done with the lift command), and some may
perform complex design-level restructuring of legacy code (i.e. refactorings).

• Version control methods: Version control methods allow us to define specialized protocols
for resolving conflicts, when two or more developers edit the same piece of code.

The are also other methods which do not fit in any of these categories.

Extension methods (or Xmethods), as a language mechanism, correspond to methods in the OO
paradigm. However, the specific implementation of methods in the IP system is unique.
Extension methods have two conceptual parts: a prototype, which is basically a signature
defining the arguments and their type, and multiple implementation bodies attached to different
intentions. This implementation combines the best of C++ and Smalltalk methods. In C++, the
definition of pure virtual methods corresponds to defining Xmethod prototypes. Derived
classes may then provide specific implementations to the pure virtual methods defined in the
base class. So C++ limits the implementors of methods to derived classes only. This is clearly a
severely limited form of polymorphism (called inheritance-bound polymorphism), which, for
example, lead to the introduction of interfaces in Java. In Smalltalk, on the other hand, any class
can choose to provide an implementation for any message (this is called signature-bound
polymorphism). Thus, a Smalltalk method is extremely generic since it works with any objects
implementing the messages sent to them in the method. Unfortunately, since the matching
between messages and methods in Smalltalk is based on their names, it is not clear, whether two
methods implemented in different classes but having the same name implement semantically the
same message or whether their equal names are just a coincidence. This is a severe problem
when trying to change the name of a message or trying to understand someone else’s code.
Xmethods implement the Smalltalk flavor but without name ambiguities since the methods have
“free-standing” (i.e. not attached to any intention) prototypes which identify them uniquely. If
an intention defines an implementation body for a particular method, it references the prototype
explicitly using a pointer (i.e. using a graph-like link). Compared to Java interfaces, Xmethods
avoid the necessity to define many small, artificial interfaces, such as sortable, printable,
clickable, etc.

Now, we will take a look at a sample Xmethod definition. As we already explained, each
intention has to provide the methods for reducing its instances. In particular, in IP there is the
method KtrTransformTe, which is called by the system when a tree element needs to be
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reduced. In other words, the system provides the prototype for this method and each intention
defines its specific implementation body for this method. The prototype of KtrTransformTe is
defined as follows (in the default rendering view):

MethodDefaultPfn(KtrTransformTeDefault) XMETHOD KTR KtrTransformTe(PVIP pvip, HTE hte);

This corresponds to a source tree for a declaration of the type XMETHOD and the name
KtrTransformTe. Furthermore, the declaration has the annotation MethodDefaultPfn with the
operand referencing DCL KtrTransformTeDefault (which is the default implementation body for
the Xmethod defined elsewhere) and operands defining the Xmethod return type KTR and the
arguments pvip and hte. KTR stands for kind of transformation result, which is an enumerated
type used to report on the success of the method. PVIP is a pointer to a virtual inheritance path
(explained at the end of this section) and HTE is a handle to a tree element. hte is the handle to
the tree element being transformed.75

Assume that we are defining a new intention, namely the new type MATRIX. If we use MATRIX
in a client program, the program will contain references to MATRIX and the IP system will call
the KtrTransformTe method on these references when reducing the client program. Thus, we
need to define the KtrTransformTe method for MATRIX. This can be done as follows:

DefineXmethod KtrTransformTe for (MATRIX) dxmMATRIXKtrTransformTe:
    KTR KtrTransformTe(PVIP pvip, HTE hte)
{
...// implementation statement list
}

The corresponding source tree is shown in Figure 88. Thus, the implementation body of the
KtrTransformTe method is defined as a declaration of type DefineXmethod.76 The reference to
the method prototype (i.e. DCL KtrTransformTe) and the reference to MATRIX are the
operands of the reference to DCL DefineXmethod. Please note that the section of the code
implementing the method body highlighted below

DefineXmethod KtrTransformTe for (MATRIX) dxmMATRIXKtrTransformTe:
    KTR KtrTransformTe(PVIP pvip, HTE hte)
{
...// implementation statement list
}

is not represented in the tree. This section is displayed by the rendering methods and the
needed information is retrieved from DCL KtrTransformTe. Also, DCL MATRIX is referenced
through a list since we could define the same implementation of a method for more than one
intention.
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Currently, all intentions for the language C are implemented in the IP system (implementation of
C++ and Java intentions is underway). Thus, we can use C to implement the bodies of methods.

As we already explained, dxmMatrixKtrTransformTe will be called whenever a reference to
MATRIX needs to be reduced. But in client code, MATRIX is usually used for declaring
variables of type MATRIX, e.g.

MATRIX m;

Thus, client programs contain references to MATRIX, declarations of type MATRIX, and also
references to declarations of type MATRIX (i.e. variables of type MATRIX) and we still need to
define the transform method implementations for the latter two. The question that arises is
where to attach these implementations? They have to be somehow associated with MATRIX
since they must be in the server code (i.e. the code defining MATRIX). The particular solution in
IP is to define so-called virtual intentions representing declarations of the type MATRIX and
the references to such declarations. These intentions are called virtual since they are never
referenced from the client code, but they represent certain patterns in the client code — in our
case declarations of the type MATRIX and references to such declarations. The virtual
intentions are than associated with the type MATRIX using the two special annotations
DclOfThisTypeVI and RefToDclOfThisTypeVI as follows:

VI viDclOfTypeMATRIX;
VI viRefToDclOfTypeMATRIX;
DclOfThisTypeVI(viDclOfTypeMATRIX) RefToDclOfThisTypeVI(viRefToDclOfTypeMATRIX) Type MATRIX;

This code first declares the virtual intentions viDclOfTypeMATRIX and
viRefToDclOfTypeMATRIX, then it declares MATRIX to be a Type, and, finally, it associates
both virtual intentions with DCL MATRIX through the annotations DclOfThisTypeVI and
RefToDclOfThisTypeVI.

Now, we can declare the bodies of the transform method for declarations of type MATRIX and
references to such declarations:

DefineXmethod KtrTransformTe for (viDclOfTypeMATRIX) dxmviDclOfTypeMATRIXKtrTransformTe:
    KTR KtrTransformTe(PVIP pvip, HTE hte)
{
...// implementation statement list
}

DefineXmethod KtrTransformTe for (viRefToDclOfTypeMATRIX)
dxmviRefToDclOfTypeMATRIXKtrTransformTe:

DCL dxmMatrixKtrTransformTe

DCL List

DCL KtrTransformTe

DCL DefineXmethod

DCL MATRIX

...

statement list not shown

...

Figure 88    Source tree of DCL dxmMatrixKtrTransformTe77
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    KTR KtrTransformTe(PVIP pvip, HTE hte)
{
...// implementation statement list
}

An Xmethod can be called as follows

KTR ktr = hte.KtrTransformTe(hte);

where hte is a handle to a tree element. This method call will prompt the system to look for the
appropriate implementation of the method KtrTransformTe to be invoked. If hte points to a tree
element which is a reference to a declaration of the type MATRIX, the implementation
dxmviRefToDclOfTypeMATRIXKtrTransformTe is invoked. If the tree element is a declaration
of the type MATRIX, the implementation dxmviDclOfTypeMATRIXKtrTransformTe is executed.
In these two and any other cases, the search starts at the type of the declaration. If no method
is found, the search is continued in the types of the declarations of the declarations, etc. If no
implementation is found, the default method (i.e. KtrTransformTeDefault) is executed.
Effectively, this search represents the method inheritance mechanism in IP. For each method
call, the system computes a so-called virtual inheritance path (VIP), which is used for the
search. It is also possible to call a method supplying the inheritance path explicitly [Sha98]:

VipFromHte(&vip, hte);
ktr = &vip.HteTransform(hte);
DestroyVip(&vip);

This way, it is possible to manipulate the inheritance path before calling the method and to
influence the default look-up process.

6.4.3.4 Reduction
The KtrTransformTe method is called by the system during the reduction process of a tree.
Thus, the system decides when and on which tree element to call this method. On the other
hand, it is necessary to synchronize the reduction of instances of intentions which depend on
each other. For example, if one intention needs some information from another intention, the
instances of the latter should not be reduced before the first intention gets a chance to look at
them. The IP system provides a special dependency mechanism for accomplishing this goal: We
can define a special method for an intention, which declares all the intentions of which
instances are examined or created in the transform method of the first intention. Based on these
declarations, the so-called scheduler [ADK+98], which is a part of the system, can determine
when to call the transform method and on which tree element. If the intention A declares to
examine the instances of the intention B, all instances of A will be reduced before reducing any
instances of B. Now, if the intention C declares to create instances of B, all instances of C will be
reduced first (so all instances of A come into existence to be examined by B), then all instances
of A, and finally all instances of B. Given such dependency mechanism, deadlocks of the
scheduling algorithm are possible. We can visualize them best using simple diagrams, wherein
examine dependencies are represented as dashed lines and create dependencies are
represented as solid lines [IPD]. Any cycle in the dependency diagram represents a deadlock
(see Figure 89).
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It turns out, that many practical designs lead to deadlocks. In general, many deadlocks are
caused by the fact that intentions often do not really want to look at all the instances of another
intention, but only some of them occurring in specific contexts. Unfortunately, the dependency
mechanism allows us to declare dependencies on all instances of an intentions only. The
challenge is that a dependency mechanism checking for instances in certain contexts (i.e.
checking for certain patterns) would lead to an inefficient scheduling algorithm. However, most
deadlocks can be resolved through some simple design changes (e.g. introducing extra
intermediate-level intentions).

If a number of intentions wish to interact in some special way other than allowed by the
standard dependency protocol, they can be declared to be members of a guild [ADK+98]. A
guild is a special intention, whose transform method transforms its members in any fashion and
order it wishes to. The guild itself has its dependencies on other intentions declared as usual.
When its transform method is called, it gets the source tree containing, among others, instances
of its members as a parameter and then looks for these instances and reduces them. Effectively,
guilds allow us to write custom rewrite systems for some number of intentions. For example, the
matrix operations +,-, and * are good candidates to be members of a guild since generating
optimized code for matrix expressions requires looking for many neighboring operations at once,
i.e. the intentions depend on each other and can be reduced in one method.

The body of KtrTransformTe method uses the tree editing API in order to transform the source
tree. The tree editing API consists of a number of operations on tree nodes, such as accessing,
adding, and deleting operands and annotations, reading and setting the operator, name, etc.
(see [ADK+98] for details]). However, there is a set of rules of what is allowed and what not in
the transform method (e.g. there are special limitation on deleting nodes and accessing other
nodes can be done using special synchronizing questions only).

6.4.3.5 System Architecture
The IP system consists of the following components:

• Editing and browsing tools: The editing tools call the rendering and type-in methods for
displaying and editing code. Browsing tools use the declaration links for navigation and
names of intentions for string-based search.

• Transformation engine and scheduler: The scheduler calls the transform methods of
intentions to reduce source trees into the appropriate R-code. From the R-code machine
code for Intel processors (currently using the Microsoft back-end of the Visual product
family) is generated or Java bytecodes.

• Libraries of intentions: The intentions available for programming are distributed in libraries.
For example, there is a library containing all the C intentions. Loading this library allows
writing C code. Other libraries, e.g. C++ intention library or libraries of domain-specific
intentions, can be also loaded and the client programs may use them all at once.

BA

BA

C

BA

BA examine dependency

create dependency

Figure 89    Examples of deadlocks
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• Version control system: The team-enabled IP version control system — as opposed to
conventional text-based version control systems — works on the binary IP source files.

• Parsers: Language parsers, e.g. for C++ or Java, are available for importing legacy code into
the IP system. This needs to be done only once. The code is then saved in the IP source
tree file format.

The IP system was originally written in C including the C intentions. Then it was bootstrapped
by compiling its C sources with the IP system in 1995 [Sim95]. This way, the system “liberated”
itself from C and since then new intentions have been added, e.g. the intentions implementing
Xmethods.78 In other words, the IP is being developed using IP which, besides delivering the
proof of concept, allows the IP developer team to continually improve the system based on their
own immediate feedback. The size of the system is currently over one million source tree nodes.

6.4.3.6 Working With the IP Programming Environment
The IP programming environment supports all the usual programming activities: writing code,
compiling, and debugging. Figure 90 shows a screenshot of a typical programming session. The
editor subwindow contains a simple C “Hello World” program. The program can be stored on
the disk in one binary IP source file referred to as a project or a document. In general, a program
can consist from more than one document. To the right of document editor subwindow, the
declarations list tool is shown. This tool allows the developer to search for declarations based
on their names. A click on one of the displayed names opens the document containing the
corresponding declaration in the current editor window. There are other browsing tools, such as
the references list tool showing all the references to a certain declaration, libraries list tool
enumerating all the currently opened libraries, to-do list tool displaying a list of to-do
annotations, etc. There is also a tree inspector showing the exact tree structure of the selected
code. Finally, one can jump to the declaration of a selected node by a mouse click.

The “HelloWorld” program can be compiled by simply pushing the compile button on the menu
bar. This initiates the reduction process, which, if successfully completed, is followed by the
generation of the executable. If there are syntax or semantic errors in the source, the error
notifications are attached to the involved nodes and appear on the screen next to the erroneous
position in the code in a different color. After a successful compilation, it is possible to step
through the intermediate results of the reduction process, as they were recorded by the
snapshot function which can be called for debugging reasons at various places in the transform
methods of different intentions. The executable can be then debugged at the source level or any
of the intermediate levels.



Generative Programming, K. Czarnecki164

6.4.3.6.1 Editing

Probably the most unusual experience to the novice IP programmer is editing. This is since the
programmer edits the tree directly, which is quite different from text based-editing. To give you
an idea of how tree editing works, we will walk through a simple editing example. Figure 91
shows you how to type in the following simple program:

int x = 1;
int y;
y = x + 1;

Each box in Figure 91 shows you the editing screen after typing the text shown below the
preceding arrow. We start with the empty screen and type in “int”. As we are typing it, the gray
selection indicates that we have still not finished typing the token. We then finish typing the
token by entering <tab> or <space> (the first is preferred since it automatically positions the
cursor at the next reasonable type-in position). After typing <tab>, the system tries to find a
binding for the token we have just typed in. In our case, the system finds that the name of the
declaration of the type int matches the token. But before replacing the token with a reference to
the int declaration, the system calls the type-in method of int. The method look-up actually finds
a type-in method in Type, which is the type of int (see Figure 85). This method wraps int in a
declaration, which results in the tree shown in Figure 84. This is so since types are usually
typed in to be the types of declarations. The name of the new declaration is set to “???”. We
can see the result in box 2 in Figure 91. Since we typed <tab> last, the declaration name (i.e.
“???”) is now selected and we can type in the name of the declaration, in our case “x”. The
result is shown in box 3. We finish typing this token with a <tab> and enter an extra <tab> to
position the cursor for typing in the initializer (box 5), in our case 1. The result of entering 1 is
the box 6 and the corresponding source tree after entering <tab> is in Figure 87. We did not
type in the equal sign — it is displayed by the rendering method of the declaration. By entering
an extra <tab>, we position the cursor behind the declaration statement in the current statement
list and are ready to type in the next statement (box 7). We type in the following two statements
in an analogous way. Please note that we actually explicitly enter the equal sign in the third
statement since it denotes an assignment.

Figure 90    Screenshot of a typical programming session with the IP system
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It is interesting to take a look at how to change the name of a declaration. For example, we might
want to rename x to z. All we have to do in IP is to select the name of the x declaration (box 1
Figure 92) in and change it to z (box 3). Since all references to the x declaration do not store its
name but retrieve it from this declaration for display, the third statement displays the correct
name immediately (box 3). This simple example illustrates the power of a tree representation
compared to text-based representations. Also, if we select z and then push the jump-to-
declaration button, the cursor will jump to the z declaration. In fact, we could have changed the
name of the y declaration to z as well. In this case, the last statement would contain two z
references (i.e. z = z + 1); however, both references will still correctly point to the two different
declarations as previously (we can verify this using the jump-to-declaration button). In such
cases, where there are more than one declaration with the same name in the same scope, typing
in the name will actually not bind the token to any of them. The token will turn yellow instead,
indicating a dangling reference. We can still bind the token using a list tool listing all the
candidate declarations and selecting the one we would want bind the token to.

A slightly more complex example is shown in Figure 93. This example demonstrates how to type
in the transform method for the MATRIX intention, as discussed in Section 6.4.3.3. We start with
an empty module and type the name of the intention DefineXmethod. The type-in method of
DefineXmethod inserts all the other necessary nodes, effectively constructing most of the tree
shown in Figure 88. However, the first operand of DefineXmethod points to the special to-be-
determined declaration TBD, which is rendered as the first three question marks in the box 3.
The second three question marks are the default name of the whole declaration. Next, we enter
the reference to MATRIX (box 4) and then to KtrTransformTe (box 5). Please note that the
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Figure 91    Typing in a simple program in IP
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signature of the method is automatically displayed. As we already explained, the rendering
method retrieves this information from DCL KtrTransformTe.

Clicking on a token on the screen does not select its letters but the corresponding tree node or
subtree. In fact, there are a number of different selection types. We can select one node (crown
selection), or a node including all its subnodes (tree selection), or we can select a place
between two nodes (place selection). It is also possible to select the token as such, and change
its name (contents selection). If the token is a reference then the reference will be rebound
based on the new name. If the token is a name of a declaration, the name will be simply changed
(as in Figure 92). There are also other types of selections.

The IP editor is not a syntax-oriented editor, i.e. it is perfectly acceptable for the edited tree to be
in an inconsistent state. For example, if we type a name which cannot be bound to any

1

2

3

4

5

MATRIX
(and select ???)

KtrTransformTe
<tab>

<tab>

DefineXmethod

Figure 93    Typing in a transform method
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declaration, the token will turn yellow and we know that we need to fix this before attempting to
compile the source. Also, as we type, the structure of the tree can be syntactically incorrect. On
the other hand, through the type-in methods, as we have seen in Figure 91 and Figure 93,
intentions may provide the programmer with type-in templates and suggest what to type in next.
Effectively, syntax errors are quite rare and we still have the freedom to type in the tree as we
wish without being forced into the syntax straightjacket at every moment.

The major advantage of tree editing is that we are not dealing with passive text. The intentions
can even have different type-in behaviors based on the tree context or the currently active view.
They can even interact with the developer through menus, dialogs, etc.

Also the tree display provides unique opportunities. First, intentions can be rendered in a truly
two-dimensional way (see Figure 94). Second, we can define different views, e.g. we could have
a view showing certain aspects and suppressing other aspects of the code, e.g. code
implementing synchronization or error handling code. When typing in one of the aspect views,
the intentions can still communicate with the other intentions which are not displayed and
provide the user with the appropriate feedback (e.g. if some inconsistency between them
occurs). We could also have alternative textual or graphical views, etc. The standard system has
already a number of predefined views: the default view (as in Figure 90), the pretty C view
(which, e.g., uses pretty mathematical operators), and the core view, which displays all the
details of the source tree including its implementation details. The last view is provided only for
debugging purposes.

Figure 94   Example of a domain-specific notation for mathematical formulas
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6.4.3.6.2 Extending the System with New Intentions

New intentions (e.g. a new control structure, or the class construct, or the built-in MATRIX
type) are implemented by declaring them and writing their transform, rendering, type-in,
debugging, and other methods. In most cases, we need at least the transform, rendering, and the
type-in methods.79 The intentions are usually declared in a separate file, which is the interface
file. The methods are then defined in one or more other files and compiled into a DLL80. The user
of the new intentions only needs to be given the interface file and the corresponding DLL, while
the developer can keep the sources of the methods. An application program would then import
the interface file in order to be able to use the new intentions. When we load the application
program into the IP system, all the imported interfaces are automatically loaded and their
corresponding DLLs are dynamically linked to the system (i.e. the IP system is extended).
Thanks to the DLLs, the system knows how to display, compile, and debug the intentions
referenced in the application program. Related intentions, e.g. intentions implementing a
domain-specific notation, are usually packaged in one DLL. The DLL can also contain special
commands for working with the new notation (e.g. typing aids, analysis tools, etc.), which can
be automatically made available on the IP tool bar after loading the DLL.

Now we will briefly review the steps performed by a typical transform method. A transform
method first analyzes the context of the tree element it was called on. It checks if the structure of
the subtree is correct, so it can then reduce it. It basically looks for syntax and semantic errors.
If it discovers any errors, it attaches error annotations. Even if there are no errors, it is often
useful to attach some other information gained in the analysis to the tree nodes, so that other
transformations can take advantage of it in later phases. In general, intentions can gather
information from remote corners of the program in order to do various optimizations. Then the
subtree is reduced by replacing its nodes with instances of other intentions. Accessing and
modifying the tree is done using the tree editing API we mentioned in Section 6.4.3.4. In
addition to this low-level tree editing API, there are also some higher-level facilities, such as
pattern matching functions and quote constructs. The latter allow a compact definition of  trees
used for matching or replacement. For example, a declaration of type MATRIX can be reduced —
based on the annotation of the declaration describing the matrix — to a C array (statically
allocated matrix) or to a C struct containing the number of rows and columns and a pointer to
the matrix elements (for dynamically allocated matrices) or to other C data structures. The
following sample declaration declares a dynamically allocated, rectangular matrix:

configuration(dynamic, rectangular) MATRIX m;

The code for reducing this declaration is shown below:

HTYPE htype;
if (matrix_description.fDynamic && matrix_description.fShape == rectangular)
{
    htype = ‘struct
        {
        int rows;
        int cols;
        $htypeElement* elements;
        };
} else { ... };

htype is a handle to a tree element which represents a type (this will be the type, which MATRIX
gets reduced to). matrix_description is a struct which was created during the analysis of the
annotations of the matrix declaration shown earlier. The statement inside the if-then branch
assigns a tree representing a C struct with the number of rows and columns and a pointer of the
matrix element type (the element type is a variable defined elsewhere). Instead of constructing
this tree using the low-level tree editing API (i.e. calling the create node, set operand, set
operator operations, etc.), the C code is quoted using ‘.81 Once we have the tree representing
the C data structure, we can replace the original matrix declaration being reduced by a new one
of the newly created C type. Next, the system will reduce the C intentions by calling their
transform methods.
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6.4.3.7 Advantages of IP
The main advantages of IP stem from the way IP represents programming concepts, which is
summarized in Figure 95. The structure of a concept instance (i.e. instance of an intention) is
given by the structure of its source tree. Its external representation is defined by the rendering
methods and its semantics by the transform methods of its intention. More precisely, the
external representation consists of the rendering methods for displaying and the type-in
methods for editing.

This separation has profound consequences. If you represent a specific concept instance using
a source tree, its structure represents the most invariant part of this instance. Its external view
and also semantics depend on the context. It may be displayed differently at different times (e.g.
editing or debugging time) or it may be displayed differently depending on the tree context (i.e.
on the way it is used in a program). The generated code depends on the tree context, on the
platform, etc. Given this separation, it is usually enough to modify or extend the transform
methods to implement new optimizations, adapt the client code to a new context, new platform,
etc., without having to modify the client code at all.

If we need to change the tree representation itself, it is easier to do this than changing a textual
representation. Tree editing has many advantages over text editing, such as fewer syntax errors,
active interaction with the intentions during editing, and often less typing. (e.g. short intention
names, no need to retype signatures of remotely declared procedures and methods). Also,
automatic refactoring and reengineering of code is easier if the source is already in the form of a
resolved AST.

Rendering allows different views, special notations, graphical representations, etc., and,
together with the binary source tree representation, it gives an opportunity for realizing a truly
document-based programming (as in Knuth’s literate programming [Knu92]). You can embed
animations and hyperlinks in the comments, use pretty notations for the code, embed bitmaps
(e.g. in IP you can pass a bitmap as a parameter of a procedure and the bitmap is actually shown
graphically), etc. At the same time, the transform methods may perform complex computations in
order to generate highly-optimized code for these programs.

As noted in [Sim97], with IP we have a major shift of focus from languages to programming
abstractions, i.e. intentions. Currently, new language constructs have to look for a host
language and this is quite difficult since the most popular languages are hard to extend (this
would require updating all the books, existing standards, compilers, etc.). New features can only
spread through new and successful languages, such as Java. Unfortunately, not only good
features reach large audiences this way. If a bad feature makes into one of the widely used
languages, it is difficult, or impossible, to get rid of it. The situation is very different in IP:
programming abstractions become true entities with their own “life”. They have to survive
based on their own merits. They encapsulate the knowledge they need to be displayed,
compiled, and debugged in different contexts. They can be easily distributed as extension
libraries. The vision of IP is the emergence of an intention market. In such market, there will be
intention vendors, who will develop new intentions and will have to make sure that these
intentions cooperate as necessary. Given such a market, language abstractions are no longer
looking for host languages but rather for customers [Sim97]. With all the critique of

semantics
(transform methods)

external views
(rendering methods)

structure of a concept instance
(source tree)

Figure 95   Separation of structure, external representation, and
semantics in IP [Sim98]
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programming languages, from the IP viewpoint, existing computer languages are nevertheless
important: they are sources of useful language features.

The interoperability of intentions is an important issue in IP. First, it turns out that many
features can simply live in one space without any knowledge about each other since they are
used in different contexts. Second, there are composition mechanisms, such as annotations,
which facilitate the integration of many types of new language features. Furthermore, intentions
will have to adhere to certain protocols, just as components do. And finally, given the source
tree representation and methods, intentions have a lot of opportunities to find out about each
other through introspection.

The research on design patterns and idioms gives a further motivation for the need of change of
focus from languages to programming abstraction (see e.g. [GL98]). The pattern work attempts
to classify new useful domain-specific and general programming abstractions and mechanisms.
There is the conviction that programs are essentially assembled from these fundamental
building blocks. On the other hand, as more such patterns are identified and documented, it
becomes more difficult for any language to express them adequately. Few of these abstractions
make into languages. For example, dynamic polymorphism or inheritance require implementation
idioms in C, but they are part of OO languages. However, with the explosion of new abstractions
hardly any language could keep up.

It is interesting to realize the analogies between components and intentions: they both are
distributed to customers and then composed and they both contain code for different phases
(e.g. composition time, debugging, run-time, etc.). However, there are two major differences:
First, intentions are components which became the programming language themselves, whereas
conventional components still need programming languages to be encoded. Second, the
compilation process in IP can completely change the structure of a composition by applying
domain-specific optimizations, merging components, introducing new ones, and eliminating
others. On the other hand, the structure of a composition of conventional components is
usually preserved into runtime.

6.4.4 Approaches Based on Algebraic Specifications
There is at least one theory which provides a theoretical foundation for many of the concepts
presented in the previous sections, namely the theory of algebraic specifications (see
[LEW96]). Algebraic specifications were primarily developed for specifying abstract data types.
However, it turned out that they are also appropriate for formally specifying domains (see
[Sri91]). Furthermore, since they also encourage the transformational implementation style (as
we explain later), a number of formal transformation systems (e.g. CIP [BEH+87], SPECWARE
[SJ95], and ASF+SDF [DHK96]) are based on the theory of algebraic specification.

First, we will introduce some basic concepts of algebraic specifications. We will then explain
how they can be used to specify domains, and, finally, we explain how these specifications are
used to generate software systems.

An algebraic specification specifies an abstract data type (ADT), i.e. a class of concrete data
types. It consists of two parts: one defining the syntax of a language for talking about the
instances of an ADT and the other one defining the semantics of this language. We explain this
idea using a simple specification of a list (see Figure 96).
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The sample specification in Figure 96 consists of a signature and a set of axioms. The signature
defines a simple language for defining and manipulating lists. It consists of a set of types (also
referred to as sorts) and a set of operations. These types and operations are pure symbols.
They take on meaning if we assign one set of values to each type and one function on these
sets to each operation. Such assignment is referred to as an algebra  and represents a concrete
data type (i.e. data types are described as sets of values and relationships between them).

Not every assignment of sets and functions to the signature satisfies the specification. The
assignments have to satisfy all the axioms of the specification. The axioms are the properties of
all algebras described by the specification. In other words, an algebraic specification defines a
set of algebras, i.e. an ADT.82 Since axioms are statements in some appropriate logic, we can use
inference to derive further properties from these axioms. Any property derivable from the axioms
is referred to as a theorem (e.g. head(l).tail(l) = l is a theorem of LIST). The axioms can also be
viewed as rewrite rules which can be applied to the expressions of the language defined by the
signature. These expressions are also called term expressions. This view explains why algebraic
specifications were used as a formal basis for numerous transformation systems (e.g. [BEH+87,
SJ95, DHK96]).

Practical algebraic specifications are usually organized into networks of related smaller algebraic
specifications (see [Sri91] for examples). If we consider that each of the smaller specifications
defines its own language and the relationships represent refinement, inclusion, parameterization,
etc., the similarity of this model to the model of Draco is striking. This is why Srinivas proposed
in [Sri91] the use of algebraic specifications to specify domain models (see Section 3.7.7).

The mechanisms for organizing and composing algebraic specifications have been studied in
the literature very extensively (see [BG77, Wir83, Gog86, ST88a, ST88b, GB92]). These
mechanisms also lie at the heart of automatic generation of programs from specifications.

One of the basic relationships between algebraic specifications is specification morphism (see
e.g. [LEW96]), which represents a structural relationship between two specifications. A
specification morphism between a source and a target specification is defined as a signature
morphism, i.e. a mapping between the sorts and operations of the source and target signatures,
which, if used to translate theorems, ensures that the translated theorems of the source
specification are also theorems of the target specification. Intuitively, given the source
specification A and the target specification B, the morphism from A to B tells us that the ADT
specified by A can be obtained from the ADT specified by B by “forgetting” some of the
structure of the latter ADT.

Many specification composition mechanisms can be represented as specification morphisms,
e.g. parameterization, inclusion, derivation, views, etc.

An example of work of using algebraic specifications and morphisms to define domain models
and generating systems on this basis is the work by Douglas Smith et al. at the Kestrel Institute
[SKW85, Smi90, SJ95, SJ96, KI]. An interesting facet of this work is the development of a formal
theory of algorithm design called classification approach to design [Smi96], which can be
deployed by algorithm synthesizers (e.g. [Smi90]). The theory is based on algebraic

specification LIST:
    signature:
        types = {LIST, ELEM}
        operations = {
            . : ELEM, LIST → LIST,
            head : LIST → ELEM,
            tail : LIST → LIST
        }
    axioms:
        variables = {l : LIST, e : ELEM}
        head(e.l) = e
        tail(e.l) = l
        ...

Figure 96    Algebraic Specification of a list
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specifications and mainly two organizing structural relationships: interpretations and
refinements. Interpretations define the structural correspondence between a reusable problem
specification and the specification of a problem at hand. Constructing an interpretation between
the reusable problem specification and the given problem specification is also referred to as
classification since we classify the given problem as an instance of the known general problem.
An interpretation from the specification A to B has the following structure: A→ A-B ← B,
where the arrows represent specification morphisms and A-B is a specification called the
mediator. In contrast to a simple morphism, an interpretation can define a mapping not only
between types and operations, but also between types and type expressions and vice versa.
Effectively, interpretation can be seen as views (or adapters).

A refinement is a morphism between two specifications, where the refined specification contains
more implementation details. Effectively, a refinement defines the relationship between a
reusable problem specification and its reusable solution. The reusable problem solution defines
the “interface vocabulary” for the solution specification — it really is a vertical parameter of the
solution specification. Thus, refinements are vertical relationships, whereas interpretations are
horizontal relationships.83

As an example, we consider the problem of sorting a list of numbers. Assume that we specified
this problem as the algebraic specification SortingProblemSpec (see Figure 97). The
problem can be solved by applying the divide and conquer problem solution strategy. Suppose
that the general problem specification GeneralProblemSpec and its corresponding divide
and conquer solution Divide&ConquerSolution are stored in a library (the general
problem specification defines some interface symbols such as the input and the output set for
the Divide&ConquerSolution). Both specifications are also referred to as design
theories. We can reuse this problem-solution pair by identifying the correspondence between
the symbols in SortingProblemSpec and GeneralProblemSpec. This step defines
the interpretation relationship I. Finding this correspondence is often not a trivial task, which,
in general, cannot be automated. Different interpretations will finally lead to the derivation of
different sorting algorithms, e.g. mergesort, insertion sort, or quicksort. Next, the specification
SortingProblemSolution, which structurally satisfies both SortingProblemSpec
and Divide&ConquerSolution, is determined, whereby various mathematical procedures
are used. This process of interpretation and refinement is carried on untill an executable
specification Specn is constructed (see Figure 98). The details of the sorting example can be
found in [Smi96].
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Figure 97    Relationships between the
specification of the sorting example
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Depending on the concrete interpretations and refinements used, we can derive different sorting
algorithms. The various sorting algorithms span a design space as shown in Figure 99. Also the
reusable problem solving strategies used in algorithm design are organized into a refinement
hierarchy (see Figure 100). Such design spaces are usually augmented with performance
characteristics and design rationale to guide the selection of the appropriate design theory
based on the context.

The domain of sorting is well understood today and can be easily formally described using the
concepts presented above. Such formal description provides a basis for the automatic synthesis
of algorithms from specifications. A prominent example of a system capable of such synthesis is
KIDS (Kestrel Interactive Development System) [Smi90], which has been part of Kestrel
Institute’s research efforts for over 10 years. Of course, synthesizing sorting algorithms, while
interesting from the theoretical viewpoint, provides little leverage for practical software
development. However, the work on the transportation scheduling domain at Kestrel
demonstrated that there are also practical domains which are understood well enough and
stable enough to be formalized. According to [SPW95, SG96], the scheduler generated from a
formal domain model using KIDS is over 20 times faster than the standard, hand-coded system
deployed by the customer.

Based on the extensive experience with KIDS, a new system has been built, namely SPECWARE
[SJ95, SM96], which is more systematically based on the concepts presented above than KIDS.
In particular, the system is explicitly based on category theory [Gol79] which provides a
theoretical foundation for working with specification morphism diagrams (such as in Figure 98).
The system supports the user in the construction of interpretation and refinement relationships
through various mathematical procedures (e.g., constraints propagation, unskolemization,
computing pushouts, etc.).

I1
Spec1DT1

I2
Spec2DT2

I3
Spec3DT3

In
Specn

DT = design theory

DTn

Figure 98    Ladder construction
[Smi96]
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The success in the domain of transportation scheduling demonstrates that there is clearly a
potential for the practical application of these formal concepts, especially in mature, stable, and
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well defined domains. Unfortunately, most application domains cannot be formalized at all for
reasons discussed in Chapter 2 and even if, given their complexity and instability, the
formalization results would be “dead on arrival”. Nonetheless, the insights gained from these
theories allow us to better understand at least some theoretical aspects of software design.
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Chapter 7 Aspect-Oriented Decomposition and
Composition

7.1 Introduction
Throughout the previous chapters, we stressed the importance of high-level, intentional
specifications. But what constitutes a high-level, intentional specification? The hallmark of such
specifications is that important issues concerning the system being described are dealt with in a
localized way. For example, in a banking application, there will be well-localized, modular units
(e.g. objects) representing accounts, customers, currency, etc.

There are numerous benefits from having an important concern of a software system being
expressed well localized in a single code section. First of all, we can more easily understand how
this concern is addressed in the code since we do not have to look for it in different places and
discern it from other concerns. Moreover, we can more easily analyze such code, modify it,
extend it, debug it, reuse it, etc.

The need of dealing with one important issue at a time was named by Dijkstra as the principle of
separation of concerns [Dij76]. Unfortunately, while the principle expresses an important quality
of code and a development process, it does not tell us how to achieve it.

Separation of concerns is a fundamental engineering principle applied in analysis, design, and
implementation. Most analysis and design notations, and programming languages provide
constructs for organizing system descriptions as hierarchical compositions of smaller, modular
units. However, as Kiczales et al. note in [KLM+97], current methods and notations concentrate
on finding and composing functional units, which are usually expressed as objects, modules,
procedures, etc. They also refer to such units as generalized procedures since they are called
from the client code. But Kiczales et al. also state that there are other important issues, which are
not well localized in functional designs. For example, system properties involving more than one
functional component, such as synchronization, component interaction, persistency, etc.,
cannot be expressed using current (e.g. OO) notations and languages in a cleanly localized way.
Instead, they are expressed by small code fragments scattered throughout several functional
components.

The latter observation lies at the heart of the new research area of Aspect-Oriented
Programming (AOP) started by researchers from XEROX PARC84 [KLM+97, AOP97, AOP98,
AOP]. The goal of AOP is to provide methods and techniques for decomposing problems into a
number of functional components as well as a number of aspects which crosscut functional
components and then composing these components and aspects to obtain system
implementations.85
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Once we subscribe to the idea of separating aspects, we need concrete methods and techniques
to achieve this separation. In particular, there are three main questions we have to address:

• What are the important issues that need to be separated? We already mentioned some
examples such as synchronization or component interaction. What we are looking for are
reusable sets of concerns to be used in the decomposition of problems. Some of the
concerns will be more application-specific, e.g. defining financial products or configuring
network services. Other concerns will be more general, e.g. synchronization or workflow.
Some of the concerns (both application-specific and general) will be aspects. As we
discussed in Section 5.8.2.1, by selecting an appropriate set of concerns for a problem, we
achieve a “healthy” balance between the localization of relevant issues, complexity, and
redundancy. Of course, different domains will require different sets of concerns.
Throughout this chapter, we give you more examples of important concerns.

• What composition mechanisms other than calling generalized procedures can we use? If
not all aspects can be encapsulated and composed using generalized procedures, we need
to find other important composition mechanisms. The hallmark of such mechanisms is
achieving loose, declarative coupling between partial descriptions. We would also like the
mechanisms to support a broad spectrum of binding times and modes and also noninvasive
adaptability (i.e. adaptability by composition and transformation rather than manual
change).

• How do we capture the aspects themselves?  We express aspects using some appropriate
linguistic means: In the simplest cases, we can use conventional class libraries. In other
cases, we might want to use specialized languages or language extensions. Each approach
has its advantages and disadvantages and we will discuss them in Section 7.6.1.

AOP, while still in its definition phase, already begins to provide benefits by focusing and
stimulating existing and new work addressing these three questions. We will discuss some
answers to these questions in this chapter. In most cases, we will concentrate on OO methods
and languages, but the AOP idea is not limited to OO.

The message of this chapter is that current methods and languages (including OO) do not allow
us to cleanly encapsulate certain important design decisions. In this chapter, you will find
examples of such shortcomings and also approaches to address them.

7.2 Aspect-Oriented Decomposition Approaches
There is a number of existing approaches that concentrate on encapsulating various system
properties including aspects that crosscut modular units of functionality. The following three
sections describe three of such approaches. These approaches extend the OO programming
model to allow us the encapsulation of aspects which, in conventional OO programs, are usually
implemented by slices of multiple objects (i.e. they crosscut object structures). These
approaches also propose concrete composition mechanisms; however, we will postpone
discussing these mechanisms until Section 7.4. In Section 7.2.4, we will discuss how Domain
Engineering relates to aspect-oriented decomposition.

7.2.1 Subject-Oriented Programming
Subject-Oriented Programming (SOP) was proposed by Harrison and Ossher of IBM Thomas J.
Watson Research Center [SOP, HO93, OKH+95, OKK+96] as an extension of the object-oriented
paradigm to address the problem of handling different subjective perspectives on the objects to
be modeled. For example, the object representing a book  for the marketing department of a
publisher would include attributes such as subject area or short abstract, whereas the
manufacturing department would be interested in rather different attributes, such as kind of
paper, kind of binding, etc. The usage context of an object is not the only reason for different
perspectives. The approach also seeks to address the problem of integrating systems
developed with a large degree of independence, e.g. the two different applications for the
publisher. In this case, we have to deal with perspectives of different development teams on the
same objects (e.g. the book object). Furthermore, the goal is to be able to add previously
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unforeseen extensions to an existing system in a noninvasive way. Thus, subjective
perspectives may be due to different end-users, contexts, and developers.

Each perspective gives rise to a so-called subject. A subject is a collection of classes and/or
class fragments (in the sense of mixins86) related by inheritance and other relationships owned
by the subject. Thus, a subject is a partial or a complete object model. Subjects can be
composed using composition rules. There are three kinds of composition rules:

• correspondence rules,

• combination rules, and

• correspondence-and-combination rules.

Correspondence rules specify the correspondence, if any, between classes, methods, and
attributes of objects belonging to different subjects. For example, we could use a
correspondence rule to express that the book in the marketing department application is the
same as the book in the manufacturing department application (even if the corresponding
classes had different names). We could have further correspondence rules stating the
correspondence between methods and attributes of these classes. Alternatively, it is possible to
use a special correspondence rule which will establish both the correspondence of two classes
and all of their members having equal names. Of course, we can override this automatic
correspondence for some members by defining additional member correspondence rules.
Finally, we can use combination rules to specify how the two classes are to be combined. The
resulting class will include the independent methods and attributes and the corresponding ones
will be combined according to the combination rules. For example, a method coming from one
subject could override the corresponding methods of the other subjects or all the
corresponding methods could be executed in some specified order. When combining two
independently developed subjects, we would usually develop a third, so-called glue subject
including the code necessary to combine the other two. For convenience, there are also the
correspondence-and-combination rules which provide a shortcut for specifying correspondence
and combination at the same time. The details of the SOP composition rules can be found in
[OKH+95, OKK+96, SOP]. We will also show a simple example of a subject-oriented program in
Section 7.4.5.

It is worth noting that there is a close relationship between GenVoca (Section 6.4.2) and SOP.
GenVoca can be easily simulated in SOP, by implementing each GenVoca layer as a separate
subject.87 However, the SOP composition rules represent a more elaborated composition
mechanism than the layer composition in GenVoca.

As of writing, a prototype support for subjects exists as an extension of IBM’s VisualAge for
C++ and VisualAge for Smalltalk, and an implementation for VisualAge for Java is currently
under development (see [SOP]). A useful feature of the Java prototype is the possibility to
specify correspondence and composition visually using a graphical user interface.

7.2.2 Composition Filters
The Composition Filters (CF) approach by Aksit et al. [AT88, Aks89, Ber94, ATB96, CF] is
motivated by the difficulties of expressing any kind of message coordination in the
conventional object model. For example, expressing synchronization at the interface level of an
object requires some way of – in effect – injecting synchronization code into all its methods
which need to be synchronized. The straightforward solution of literally inserting this code into
the methods (as in Figure 108 in Section 7.4.3) results in mixing functionality and
synchronization code in a way that limits reusability. For example, extending a class with new
methods by subclassing may require changes in the synchronization schema and thus
overriding other methods even if their functionality remains the same. This and other related
problems are referred to as inheritance anomalies [MWY90, MY93].88 In short, we can state
that one of the problems of the conventional object model is the lack of proper mechanisms to
separate functionality from the message coordination code.

Subjects, mixins,
and composition
rules

Inheritance
anomalies
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The CF approach extends the conventional object model with a number of different so-called
message filters. Figure 101 shows the main elements of an object in the CF model. The object
consists of an interface layer and an inner object (also referred to as kernel object). The inner
object can be thought of as a regular object defined in a conventional OO programming
language, e.g. Java or C++. The interface layer contains an arbitrary number of input and output
message filters. Incoming messages pass through the input filters and the outgoing through the
output filters. The filters can modify the messages, e.g. by changing the message selector or the
target object.89 In effect, they can be used to redirect messages to other objects, e.g. the
internal objects, which are encapsulated in the interface layer, or some external objects
referenced from the interface layer, and to translate messages (by modifying the selectors of the
messages). They can also discard or buffer messages or throw exceptions. Whatever action is
taken depends on the type of the filter. There are a number of predefined filter types, e.g.
delegation filters (for delegating messages), wait filters (for buffering messages), error filters
(for throwing exceptions), and new filter types can be added. Whether a filter modifies a
message or not may depend on the message and also on some state conditions defined over the
state of the inner object.

Message filtering is a very powerful technique, which allows us to implement synchronization
constraints [Ber94], real-time constraints [ABSB94], atomic transactions [ABV92], precondition-
style error checking [Ber94], and other aspects in a well-localized way. Indeed, any aspect that
lends itself to the implementation by intercepting message sends or “wrapping” methods in
before and after actions (i.e. actions executed before or after executing a method) can be
adequately represented in the CF model.

The redirecting capability can also be used to implement delegation and dynamic inheritance.
In short, delegation involves redirecting some messages received by a delegating object to
another object, called the delegate object, which the delegating object holds a reference on.
Furthermore, we also have to make sure that when the delegate object uses the keyword self, it
refers to the delegating object and not the delegate objects.90 This way, the methods of the
delegate objects are written as if they were methods of the delegating objects and the delegate
objects can be regarded as true extensions of the delegating objects. This is quite similar to the
relationship between a class and its superclass: When the superclass uses the keyword self, it
refers to the class of the receiver, which is not necessarily this superclass.

Message filters

Delegation

input filters

internal
objects

external
objects

output filters

incoming messages

outgoing messages

interface layer

inner object

external
references

Figure 101    Elements of an object in the CF model (adapted from
[ATB96])
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In the CF model, delegation means redirecting messages to the external objects and making sure
that self always refers to the original receiver (see Figure 102). Inheritance, on the other hand,
means redirecting messages to the internal objects and making sure that self always refers to the
original receiver. This relationship between inheritance and delegation was originally discussed
in [Lie86b, Ste87].

A filter can also delegate a certain message to different internal objects based on some state
conditions. Consequently, this means that the superclass of an object can change depending
on its state, which is referred to as dynamic inheritance.

The details of the CF model can be found in [Ber94]. The model has been implemented as an
extension of existing OO languages, e.g. C++ [Gla95] and Smalltalk [MD95]. Message filters can
be implemented as metaobjects, so that they are present at runtime and thus can also be
modified at runtime. Some filters, if necessary, can also be compiled away for performance
reasons.

7.2.3 Demeter / Adaptive Programming
The original idea behind Demeter / Adaptive Programming was to provide a better separation
between behavior and object structure in OO programs [Lie92, Lie96, Dem]. This was motivated
by the observation that OO programs tend to contain a lot of small methods which do none or
very little computation and call other methods passing information from one part of the object
diagram91 they operate on to other methods operating on other parts of the diagram. Trying to
understand the computation in such programs involves an “endless chase” through such small
methods and wondering where the “real” computation gets done. In addition to this
understandability problem, the more serious flaw with such designs is that a simple change in
the computation algorithm may require revisiting a large number of methods.

The large number of the small “information-passing” methods in classical OO designs is a direct
consequence of the application of the Law of Demeter [LHR88]. Law of Demeter is an OO
design principle stating that a method should only contain message sends to self, local instance
variables, and/or method arguments.92 In particular, we should avoid long sequences of
accessing methods (e.g. object.part1().part2().part3().part4()), which perform some “deep”
accessing into the object structure since such sequences hardwire large object structures into
methods.93 By following the Law of Demeter, we trade the “structure-hardwiring-in-large-
methods” problem for the problem of having a large number of small information-passing
methods. Given these two alternatives only, the latter is usually the preferred choice.
Unfortunately, even when we follow the Law of Demeter, a change in the part of the object
structure which is not directly involved in the computation, but needs to be traversed by the
small information-passing methods, requires manual addition or modification of these methods.

In either case, we have a tight coupling between the conventional OO implementations of
algorithms and the object structure: the code implementing the algorithms contains hard-coded
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Figure 102    Delegation and inheritance in the CF model
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names of classes which are not needed for the computation. For example, in order to compute
the total salary paid by a company, we need to visit the Salary object of every employee in the
company. Let us assume that the company consists of a number of divisions and each division
contains a number of employees. One possible solution would be to implement a total-salary-
computing method in the Company class, which calls a helper method of the Department class
on each department object of the company, which calls a helper method of the Employee class
on each employee object of a department. The latter two methods would accumulate the total
salary for the departments and return it to the top-level method. Finally, the top-level method
would return the total salary for the whole company. The problem with this implementation is
that when we want to change the class structure, for example, by inserting divisions between
the company and the departments, we need to implement a similar helper method in the new
Division class, even if this method does not really contribute to the computation. Even if we
implement the total-salary computation using the visitor pattern  (see [GHJV95]), we still have to
provide the accept method in all traversed classes as well as specialized methods (one per
visited class) in the visitors. The latter need to be extended whenever new classes are added to
the traversed portion of the class diagram.

A different solution proposed by Lieberherr [Lie96] involves writing behavior code against
partial specifications of a class diagram instead of the whole concrete class diagram. The partial
specifications mention only those classes which are really needed for the given computation.
These partial specifications are referred to as traversal strategies (see [LP97]; in [Lie96] they are
called propagation directives). An example of a simple traversal strategy for the total salary
example is

from Company to Salary

This strategy states that the computation of the total salary involves traversing some given
concrete class diagram of the company from the Company class to the Salary class. The code
for the abstract method computing the total salary would state that an accumulator variable
needs to be initialized when traversing Company and then passed down the company class
diagram during traversal. Whenever a Salary object is visited, its value has to be added to the
accumulator. Finally, when the traversal is back in Company, the total is returned. Please note
that this total-salary computation specification does not mention any other classes than the
ones referenced in the traversal strategy. Given this so-called structure-shy behavior
specification (i.e. the algorithm code based on the traversal strategy) and a concrete class
diagram, all the other necessary little “information-passing” methods in Department and
Employee can be generated automatically. Moreover, when we extend the class graph with the
Division class, no changes to the behavior specification are needed and we can simply re-
generate our concrete program.

The term Adaptive Programming was introduced around 1991 and it covered the class structure
aspect and the structure-shy behavior aspect described above [Lie98]. Later, it was extended
with the synchronization aspect [LL94] and the remote invocation aspect [Lop95] (also see
[Lop98]). Indeed, the work on Adaptive Programming and on the synchronization and the
remote invocation aspects is one of the important roots of Aspect-Oriented Programming
[Lie98]. According to a recent definition “Adaptive Programming is the special case of Aspect-
Oriented Programming where one of the building blocks is expressible in terms of graphs and
where the other building blocks refer to the graphs using traversal strategies. A traversal
strategy is a partial specification of a class diagram pointing out a few cornerstone classes and
relationships. Traversal strategies are graphs where each edge defines a regular expression
specifying a traversal through a graph.” [Lie98]

More recent work on Demeter [Lie97, ML98] is aimed at extending it with a fragment-based
composition mechanism (cf. Section 7.4.5).

The ideas of Demeter have been integrated into OO languages such as C++ (Demeter/C++
[SHS94, Lie96]) and Java (Demeter/Java [LO97]).94 For example, the Demeter/Java tool processes
behavior specifications (wherein the algorithmic parts are expressed in Java) and class diagrams
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and produces Java programs. Additionally, it also provides a high-level means for instantiating
complex object structures using sentences of grammars derived from class diagrams.

7.2.4 Aspect-Oriented Decomposition and Domain Engineering
The relationship between Domain Engineering and aspect-oriented decomposition can be best
explained using the Draco approach to Domain Engineering (see Section 6.4.1). The idea of
Draco was to organize domain knowledge into a network of related domains, where each domain
provides a domain language. In this model, applications are defined in terms of a number of
high-level application and modeling domains, whereby each domain is used to describe certain
aspect of the application. Similarly, the domains themselves are defined in terms of other
domains. The decomposition based on domains does not necessarily adhere to functional
structures. Thus, those of the domain languages explicitly aiming at capturing crosscutting
aspects in a Draco model are aspect languages in the AOP sense.

The transformational implementation inherent to the Draco approach is also closely related to
the AOP idea. Compiling aspect-oriented programs involves processing a number of separate
aspect representations (e.g. a number of aspect programs written in different languages or a
number of different constructs within one language) in order to produce the resulting
representation of the one common concept described by the crosscutting aspects. This
compilation process is referred to as weaving [KLM+97] and may involve merging components,
modifying them, optimizing, etc. The goal of weaving is the same as the goal of generators: to
compute an efficient implementation for a high-level specification. However, it is important to
note that weaving does not have to be implemented as a static generation process. It can also
be realized by run-time interpretation of the aspect programs or run-time generation.95 We will
see a concrete example of dynamic weaving in Section 7.5.2.

The cornerstone of Domain Analysis is to model the common and variable system parts and
their interdependencies in a class of systems. One of the techniques of Domain Analysis is to
capture the commonalities and variabilities in feature models (see Section 5.4). It is important to
note that features often crosscut functional designs. Just as the criteria for scoping a domain do
not have to be technical ones (see Section 3.6.1), the same applies to identifying features. For
example, some features could be determined based on some market analysis and thus there is a
good chance that they will not fit into generalized procedures. In general, we will have some
features which can be directly implemented as generalized procedures (e.g. objects), other
features will be expressed using aspect languages (e.g. synchronization), yet other will be
purely abstract and will require some configuration knowledge in order to be mapped onto the
features of the two previous categories. Indeed, variability is just another aspect of reusable
software. We already discussed the relationship between aspectual decomposition and feature
modeling in Section 5.8.2.

Methods such as ODM or FODA (see Sections 3.7.1 and 3.7.2) provide an extremely general
process for Domain Engineering. On the other hand, there are huge differences between
domains found in practice. One way to deal with these differences is to introduce some
categorization of domains and provide specialized Domain Engineering methods for each
category. For example, domains such as data containers, image processing, matrix computations,
and speech recognition, could be characterized as algorithmic domains. They can be quite
adequately modeled using abstract data types (ADTs) and algorithms. Given a domain
category, we can specialize an existing generic Domain Engineering method such as ODM to
provide an effective support within this category. The key activities to be performed during the
ODM domain analysis include domain scoping, finding the key concepts in the domain, and,
finally, describing these concepts using feature models. The challenge is to jumpstart each of
these activities since no concrete guidance is given by the ODM method on how to decompose
problems into domains, concepts, and features. Indeed, ODM has been deliberately conceived
as a generic method requiring specialization. One of the ODM modeling tools requiring
specialization is a concept starter set (see Section 3.7.2). Concept starter sets are used to
jumpstart the activity of finding the key concepts in a domain. The specialization of ODM for a
certain domain category will require providing some concrete concepts categories for the
concept starter set. For example, in the case of the category of algorithmic domains, the concept
starter set would include concept categories such as ADTs and algorithms. In Section 5.8.1, we
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also introduced the analogous notion of feature starter sets, which help us to jumpstart feature
modeling of the key concepts. For example, the feature starter set for ADTs would then include
concerns such as operations, attributes, structure, synchronization, error handling, etc. The
term “starter set” suggests that the items in the set are just good starting examples and that new
kinds of concepts and features may emerge during analysis. Of course, some concerns in a
feature starter set will be aspects in the AOP sense. We will see a concrete example of an ODM
specialization in Chapter 9.

The items in a starter set correspond to concerns that we would like to separate. One of the
concrete contributions of the AOP research is to identify and codify concerns for the starter
sets. For example, the above-mentioned feature starter set for ADTs contains concerns which
have drown a lot of attention of the AOP community. The process of codifying relevant
concerns for different kinds of domains is a continuos one. We will have concrete languages for
some concerns and other concerns may first just simply remain items in some domain-category-
specific starter sets. The domain analysis process is aimed at developing languages (or
language extensions) for the latter concerns.

7.3 How Aspects Arise
Subject composition rules, synchronization, real-time constraints, error checking96, and
structure-shy behavior are examples of aspects, which the approaches we discussed in previous
section help to separate. There are many other examples of aspects, e.g. object interaction
[AWB+93, BDF98], memory management [AT96], persistence, historization, security, caching
polices, profiling, monitoring, testing, structure and representation of data, and domain-specific
optimizations (see e.g. Sections 6.4.1 and 9.4.1). Many aspects arise together in certain kinds of
systems. For example, some of the aspects of distributed systems include component
interaction, synchronization, remote invocation, parameter transfer strategies, load balancing,
replication, failure handling, quality of service, and distributed transactions (see [Lop97, BG98]).

But how do aspects in the AOP sense arise? Some aspects follow structures which naturally
crosscut generalized procedures such as control flow or data flow. For example,
synchronization, real-time constraints, and object interaction follow control flow and parameter-
transfer strategies in distributed systems [Lop97] and caching strategies follow data flow.
Furthermore, subjective perspectives modeled in SOP and variability modeled in Domain
Analysis are often expressed in terms of incremental deltas which crosscut objects. Finally,
domain-specific optimizations clearly represent a category of aspects. As we discussed in
Section 6.3.1.2, optimizations involve interleaving and delocalization, i.e. some of the high-level
concepts of the specification to be optimized are interleaved (i.e. merged) and some of them are
distributed among other lower-level concepts. These two effects lie at the heart of the so-called
code tangling [KLM+97] found in the optimized version, i.e. the optimized code is hard to
understand and maintain. In fact, code tangling occurs whenever we try to implement aspects
using generalized procedures only. In the case of optimizations, instead of writing the optimized,
tangled code by hand, we should rather represent our program using the high-level,
unoptimized code and a set of domain-specific optimizations (e.g. in the form of rewrite rules or
some other transforms). The optimized code can then be obtained by applying the optimizations
to the unoptimized code using a generator. Examples of such optimization are loop fusing and
elimination of temporaries in matrix computation code. We will see an implementation of this
aspect of matrix code in Sections 10.2.6 and 10.3.1.7.

Crosscutting lies at the heart of aspects. As you remember our discussion from Section 5.8.2.2,
modular units of decomposition are organized into clear hierarchies, whereas aspects crosscut
such hierarchies. This is illustrated in Figure 103.

We also stated in Section 5.8.2.2 that the quality of being an aspect is a relative one: a model is
an aspect of another model if it crosscuts its structure. The aspect shown in Figure 103 is an
aspect with respect to the hierarchical structure also shown in this figure. However, at the same
time, the aspect could be a modular unit of another hierarchical structure not shown in the
figure.
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Since an aspect is relative to some model, it might be possible to refractor the model so that the
aspect ceases to be an aspect of the model. For example, some interaction patterns between a
number of components are an aspect of the component structure since they crosscut the
structure. One way to deal with this problem is to introduce a mediator component that
encapsulates the interaction patterns (see mediator pattern  in [GHJV95]). Thus, we refactored
our design and turned an aspect into a component. (This pattern-based solution is not always
an ideal one: in addition to simply moving the problem into a new component, it introduces extra
complexity and possibly performance penalties. But, nonetheless, it is a solution.) In general, it
would be foolish to think that we can “get rid” of all aspects simply by refactoring our models.
Localizing some issues will always cause some other issues to become aspects (just as in our
example with the signal diagram in Figure 48, Section 5.8.2.1). Real systems will always have
some “inherent crosscutting” that refactoring will not be able to get rid of. Rather than trying to
sweep the problem under the rug, we have to provide adequate technology to deal with the
crosscutting.

It is worth noting that the code tangling problem due to crosscutting tends to occur in later
phases of the conventional development process. We usually start with a clean, hierarchical
functional design, then manually add various aspects (e.g. code optimizations, distribution,
synchronization — indeed, all of the aspects listed at the beginning of this sections are aspect
with respect to functional decompositions), and the code becomes tangled. Separating the
aspects from the functionality code allows us to avoid this code tangling. Once we have
identified the relevant aspects, we still need to find

• appropriate linguistic means of expressing aspects and

• efficient mechanisms for composing them.

Using generalized procedures only (e.g. objects, procedures, functions, etc.) may be appropriate
for implementing the modular units of functionality, but it does not work for aspects since we
still need mechanisms for dealing with crosscutting. Appropriate composition mechanisms
provide a solution to this problem. We will discuss them in Section 7.4. Applying specialized
linguistic means to capture aspects themselves allows us to further reduce complexity. We will
discuss this idea in Section 7.5.

7.4 Composition Mechanisms
Function calls, static and dynamic parameterization, and inheritance are all examples of
important composition mechanisms supported by conventional languages (see Section 5.5).
However, as we stated in the previous sections, not all relevant aspects occurring in practice
can be adequately composed using these mechanisms and thus we need new ones. Subject
composition rules in SOP, message filters in CF, and traversal strategies in Demeter are some
examples of the new composition mechanisms we have already discussed in Section 7.2 (see
[NT95, CIOO96] for more examples of composition mechanisms).

In this section we will give some requirements for composition mechanisms. We will then show
how these requirements can be satisfied. In the discussion, we will use a simple example of
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separating the synchronization aspect from the base implementation of a stack. We will walk
through various stages of separation: starting with a tangled version mixing synchronization
with the functionality code, then a somewhat better version using inheritance, then a cleanly
separated version using the composition mechanisms of SOP. In Section 7.5, we will revisit the
stack example and show you how to represent the synchronization aspect itself in a more
intentional way.

7.4.1 Some Requirements
Ideally, we would like the aspect composition mechanisms to allow

• minimal coupling between aspects,

• different binding times and modes between aspects, and

• noninvasive addition of aspects to existing code (and thus noninvasive adaptability of
existing code).

The following three sections explain each of these requirements.

7.4.1.1 Minimal Coupling
We require minimal coupling between aspects rather than complete separation between them
since complete separation is only possible in a few trivial cases and the majority of aspects
cannot be completely separated. The reason for the latter is that aspects describe different
perspectives on some single model. Even the term orthogonal perspectives does not imply
complete separation. We can back this observation with a simple example. The leftmost drawing
in Figure 104 shows three orthogonal perspectives of a 3-D object. In our example, the
perspectives are a rectangle and a triangle on the side planes and a circle on the bottom plane.
Next, we might use our three orthogonal planes as a kind of generator, i.e. we put some 2-D
figures on the planes and interpret them as perspectives of some 3-D object to be built. Even if
our perspectives are orthogonal (in terms of angles), the 2-D figure cannot be chosen
independently. The middle drawing in Figure 104 shows us a set of 2-D figures which are
inconsistent in our model, i.e. we cannot construct an 3-D object with these figures as its
orthogonal perspectives. A consistent set of 2-D figures is shown in the rightmost drawing in
Figure 104.

Demeter provides an excellent example of composition with minimal coupling (see Section 7.2.3).
Conventional OO behavior code hardwires the object structure it works on by explicitly
mentioning more classes and relationships than it really needs. Classes and relationships
required for computation need to be mentioned, but classes and relationships used just for
navigation need not. The traversal strategies in Demeter (i.e. the partial class diagram
specifications) provide for a declarative, loose coupling between class structure and structure-
shy behavior and also between class structure and remote communication (see [Lop98]). They

inconsistent !

Figure 104    Examples of consistent and inconsistent orthogonal perspectives of 3-D
objects
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can be viewed as the aspect composition mechanism between the class structure aspect and
the behavior aspect and the remote communication aspect in Demeter.

The example of traversal strategies as a composition mechanism also illustrates the concept of
join points [KLM+97]. Traversal strategies are part of the behavior aspect and they mention
some of the classes and relationships from the class structure aspect. We say that these classes
and relationships represent the join points between the behavior aspect and the class structure
aspect. In the case of SOP (see Section 7.2.1), the join points between the subjects and the
subject composition rules are class names, method names, and attribute names. In general, we
can distinguish between three types of join points between aspects:

• Simple “by name” references to a definition of a language constructs (e.g. classes,
methods, attributes, etc.). For example, an aspect could refer to the definition of a method
and state that calls to this method should be logged to a file. Thus, by referring to the
definition, we affect all calls to the method.

• Qualified “by name” references. Sometimes we do not want to log all calls to the method
M1 but only those made within M2. In this case, the aspect would make a reference to M1
qualified with M2. Thus, qualified references allow us to refer to some points of use of a
language construct.

• References to patterns.97 Traversal strategies are an example of pattern-based coupling. A
structure-shy behavior specification refers to certain regions in a class graph using
traversal strategies, i.e. patterns.

Thus, if you see some constant piece of code accompanying some definition or instance of a
construct or some code pattern, you can turn it into an aspect and use the construct definition
or instance or the code pattern as a join point. This way, you will avoid code duplication since
the constant piece of code will be stated only once.

The essence of separating aspects is illustrated in Figure 105. The top box displays some code
whose different lines implement two different aspects (lines implementing one of the aspects are
highlighted; don’t try to read this code!). By separating these aspects, we get two pieces of
code, each implementing one aspect. These pieces still refer to each other (or, in this particular
case, one of them refers to the other one only). The points of reference are the join points. It is
important to point out that, in the separated case, an aspect says something declaratively about
the model it crosscuts rather than having the model make calls to the aspect. For example, in the
later sections, we will see a synchronization aspect that makes statements about a stack such as

Join points

#include "ace/Synch.h" //line  1
//line  2
template<class Element, int S_SIZE>//line  3
class Sync_Stack //line  4
{ public: //line  5
     enum {//line  6
           MAX_TOP = S_SIZE-1, // maximum top value//line  7
           UNDER_MAX_TOP = MAX_TOP-1 // just under the maximum top value
//line  8
 };//line  9
     Sync_Stack() //line 10
           : top (-1), //line 11
             push_wait (lock), //line 12
             pop_wait (lock) { };//line 13
     void push(Element *element) //line 14
     {    ACE_Guard<ACE_Thread_Mutex> monitor (lock);//line 15
          while (top == MAX_TOP) push_wait.wait();//line 16
          elements [++top] = element; //line 17
          if (top == 0) pop_wait.signal(); // signal if was empty//line 18
          // the lock is unlocked automatically//line 19
          // by the destructor of the monitor //line 20
     }//line 21
     Element *pop() //line 22
     {    Element *return_val; //line 23
          ACE_Guard<ACE_Thread_Mutex> monitor (lock);//line 24
          while (top == -1) pop_wait.wait ();//line 25
          return_val = elements [top--];//line 26
          if (top == UNDER_MAX_TOP) push_wait.signal ();  // signal if was full //line
27
          return return_val; //line 28
     }//line 29
  private: //line 30
     // synchronization variables//line 31
     ACE_Thread_Mutex lock;//line 32
     ACE_Condition_Thread_Mutex push_wait ;//line 33
     ACE_Condition_Thread_Mutex pop_wait;//line 34
//line 35
     // stack variables//line 36

code with
merged

crosscutting
structures

template<class Element, int S_SIZE>
class Stack
{  public:
      // export element type and maximum top value
      typedef Element Element;
      enum {MAX_TOP = S_SIZE-1};

      Stack() : top (-1) {}
      void push(Element *element)
      {   if (top < MAX_TOP) elements [++top] = element;
          else throw "attempt to push on a full stack";
      }
      Element *pop()
      {   if (top > -1) return elements [top--];
          else throw "attempt to pop from an empty stack";
          return NULL;
      }
   protected:
      int top;
   private:
      Element *elements [S_SIZE];
};

COORDINATOR Stack {
     SELFEX {push (Element*), Element *pop
()};
     MUTEX {push (Element*), Element *pop
()};
     GUARD    void push (Element*)
           REQUIRES {top < S_SIZE} OR
WAIT;
           ENABLES (pop());
     GUARD    Element *pop ()
           REQUIRES {top > -1} OR WAIT;
           ENABLES (push (Element*));
};

      Element *elements [S_SIZE];
};

code with
separated

crosscutting
structuresrefers to

Figure 105    Separating crosscutting structures
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“you should not push and pop elements at the same time”. Thus, an aspect extends or modifies
the semantics of the model it refers to. We will come back to this topic in Section 7.4.1.3.

An important category of join points in OO are message join points (or operation join points;
see [OT98]), i.e. points where operations are defined or called. As demonstrated in the CF
approach (see Section 7.2.2), they can be used to couple functional designs with aspects such
as concurrency, real-time constraints, atomic transactions, precondition-like error handling, and
security. Other aspects amenable to coupling through message join points are profiling,
monitoring, testing, caching, and historization. They can all be implemented by intercepting
message sends.

7.4.1.2 Different Binding Times and Modes
As stated in Section 7.2.4, there is an important relationship between features and aspects: some
features are aspects in the AOP sense. Features found during Domain Analysis are documented
using feature diagrams (see Section 5.4.1), which are annotated with binding times, e.g. whether
they are bound before runtime or during runtime. Indeed, we stated later in Section 5.4.4.3 that
many different, even product-specific binding times are possible (the generalized concept is
referred to as binding site). Thus, it is important that a composition mechanism supports
different binding times.

We also would like to support both static and dynamic binding (i.e. different binding modes).
Static binding means optimized and “frozen” binding, e.g. inlining, in which case rebinding is
more difficult and time consuming since we possibly need to do some code regeneration. Please
note that static binding does not have to happen at compile time since code regeneration or
code modification can also be performed at runtime. Dynamic binding, on the other hand, leaves
some indirection code between the entities to be bound. This extra code allows a quick rebind,
or the binding is even computed lazily (as in the case of dynamic method binding in OO
languages). We should use dynamic binding whenever rebinds are very often and static
binding otherwise. It might be also useful to be able to switch between static and dynamic
binding at runtime.

There are several important issues concerning binding time and binding mode. First, the
composition mechanism for gluing the concrete feature implementations together needs to
support different binding times and modes. Second, there is also the code which computes
configurations of concrete features based on other concrete and abstract features and it should
be possible to execute this code at different binding times. Finally, we want to be able to reuse
as much code across different binding times as possible. In other words, we do not want to
have different implementation versions of concrete features for different binding times but only
one per feature (i.e. binding time should be a parameter of the composition mechanism).
Similarly, we do not want different versions of configuration code for different binding times.

The latter two requirements are difficult to impossible to satisfy using conventional
programming languages. For example, in C++, we have to use a complicated idiom in order to
parameterize the binding mode of feature composition (see Section 7.10). We cannot satisfy the
second requirement in C++ since static configuration code is written using template
metaprogramming code (see Chapter 8) and dynamic configuration code is written as usual
procedural C++ code. In IP (see Section 6.4.3), on the other hand, we can call the same
procedure at generation and at runtime.

7.4.1.3 Noninvasive Adaptability
By noninvasive adaptability we mean the ability to adapt a component or an aspect without
manually modifying it. This is trivial, if the component or aspect provides a parameter (or any
other type of variation point) for the kind of change we would like to make. However, we would
also like to be able, as far as possible, to make unplanned noninvasive adaptations for which no
special hooks were foreseen in the component or the aspect.

Ideally, we want to express any change as an additive operation: we use some composition
operator to add the change to the existing code. The code we want to modify is not really

Message join points
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physically modified, but the composition expression itself states that the original code has a
modified semantics now. An example of such composition operator is inheritance: we can define
a new class by difference. Unfortunately, inheritance is noninvasive with respect to the
superclass only. The client code has to be changed at some location(s), in order to create
objects of the new derived class instead of the superclass (unless we combine inheritance with
other techniques — see Section 7.4.4). Of course, we prefer composition mechanisms that are
noninvasive with respect to both the component and the client code, i.e. we can modify the
meaning of a component without changing its code or the client code. We will also discuss
other examples of noninvasive composition mechanisms in later sections.

An example of a composition mechanism supporting this kind of noninvasive adaptability is the
composition mechanism of SOP. In SOP, we can write a composition rule that composes a class
and an extension to this class and publishes the new class under the same name as the original
one, so that no changes in the client code are necessary. We will see an example of such
composition rule in Section 7.4.5.

Noninvasive adaptability is not possible in all cases. The prerequisite is that we have some
appropriate “handle” in the code of the component to be adapted. This handle does not have to
be an explicit “hook” foreseen during the design. For example, using SOP, we can noninvasively
override any method of a component. If a component does not have the appropriate method
that we can override to achieve the desired modification, SOP will not help. Thus, the method
join points go only a limited way. If our composition mechanism supports pattern join points,
we can cover more complicated cases, where the locations to be modified in the component can
be identified using a pattern (e.g. complex modifications within the method code). We could
then use a transformation system to generate the modified code. Finally, if the only way to
identify some location in the component is by stating “the spot between lines 48 and 49”, we
need to redesign the component.

Loose coupling is also related to the issue of adaptability. When we change one aspect, it might
be necessary to change another one, which is supposed to be composed with the first one. If
the coupling between the aspects is minimal, then there is less chance that the change of one
aspect requires the change of the other one. For example, if we change the class structure of a
conventional OO program, we often have to change a large number of methods. On the other
hand, when we apply the Demeter approach, we can make more kinds of changes to the class
structure without having to change the behavior aspect than in the conventional program:
Changes to the parts of the class structure which are not mentioned in the traversal strategies
have no effect on the behavior specification. Thus, avoiding overspecification increases
adaptability.

7.4.2 Example: Synchronizing a Bounded Buffer
Imagine that you have a bounded buffer component, e.g. a stack or a queue with a limited size,
and you want to synchronize access to it in a multithreaded environment. In other words, there
will be clients that run in different threads and access the buffer to put elements in and take
elements out. Since the buffer is a shared resource, the access of the different clients to it has to
be synchronized.

Ideally, we would like to implement the buffer in one piece of code, e.g. as a class, and express
the synchronization aspect in a separate piece of code. This is shown in Figure 106. The
synchronization aspect would state some synchronization constraints, such as you should not
put and take elements at the same time, you should wait with a put if the buffer is full, you
should wait with a take if the buffer is empty, etc. This is an example of the classical “bounded
buffer synchronization”, which we will discuss in Section 7.4.3 in detail.

At this point, we can make two important observations: One observation is that the aspect
“says something about” the buffer. In order to be able to say something about the buffer, it has
to refer to some parts of the buffer. In our case, the synchronization aspect mentions the buffer
methods put, take, is_empty, and is_full.
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Another important observation is that, whereas the buffer can be used “stand alone” (e.g. in a
single threaded program), the synchronization aspect cannot. The synchronization aspect does
not do anything useful on its own. In order to do something useful, it needs to be used with
some concrete buffer. This example indicates the kind of asymmetry between components and
their aspects that is common in practice (we often refer to the components as the primary
structure). Nonetheless, a bounded buffer synchronization aspect is a reusable piece of code
since you can reuse it on a queue, on a stack, or on some other kind of buffer.

Now, let us take a look at what the composition requirements discussed in the previous sections
mean in our context:

• Minimal coupling: We want the aspect to mention as few details as possible about the
component. In our case, the aspect refers to the methods put, take, is_empty, and is_full,
which is necessary to formulate the synchronization constraints. Thus, we use operation
join points to connect the synchronization aspect to the component.

• Different binding times and modes: In general, we want to be able to plug and unplug an
aspect at any time. In the case of synchronization, this will be of particular interest if we
have to coordinate a number of components (see e.g. Section 7.5.2.1).98 For example, if the
components are dynamically reconfigurable, we also should be able to plug and unplug
synchronization aspects dynamically.

• Noninvasive adaptability: We should be able to add the synchronization aspect to a
component without having to modify the component or the client code manually (see
Figure 107).  The composition is taken care of by weaving (static or dynamic). Weaving
effectively “injects” aspect code into the component at appropriate places. We will discuss
ways of implementing weaving later in Section 7.6.2.

In the following sections, we will gradually come to this ideal solution outlined above. In our
discussion, we will use a simple stack component as an example of a bounded buffer. We first
start with a “tangled” version of the stack, i.e. one that hardwires synchronization directly into
the functional code. We then show how to separate the synchronization aspect using design
patterns and the SOP composition mechanism. Finally, we give you the ideal solution in Java
and AspectJ and in Smalltalk.

synchronization
aspect

bounded
buffer

put

take

refers to

refers to

is_empty
refers to

refers to
is_full

Figure 106    Bounded buffer and its synchronization
aspect

Primary structure
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7.4.3 “Tangled” Synchronized Stack
We start with a simple C++ implementation of a synchronized stack in which the
synchronization code is not separated from the functionality code at all. The C++ code is shown
in Figure 108 (the equivalent Java implementation is shown in Figure 121). The stack has a
push() and a pop() method (line 14 and line 22) and the code responsible for synchronization
has been highlighted. The synchronization code involves five synchronization variables: lock,
push_wait, pop_wait (lines 32-34), monitor in push() (line 15) and monitor in pop() (line 24).
lock is the most important synchronization variable on which all synchronization locking is
performed. The remaining synchronization variables are just wrappers on lock allowing for
different styles of locking. The implementation in Figure 108 uses the publicly available and
portable ACE library [Sch94], which provides a number of synchronization classes, such as
ACE_Thread_Mutex, ACE_Condition_Thread_Mutex, and ACE_Guard, which wrap the low-
level synchronization variables provided by operating systems (see [Sch95] for a detailed
discussion of synchronization wrappers).

Let us first state the synchronization constraints that this synchronization code implements:

1. push() is self exclusive, i.e. no two different threads can execute push() at the same time;

2. pop() is self exclusive;

3. push() and pop() are mutually exclusive, i.e. no two different threads can be executing
push() and pop() at the same time;

4. push() can only proceed if the stack is not full;

5. pop() can only proceed if the stack is not empty.

Thus, push() and pop() are both mutually exclusive and self exclusive. This is achieved by
locking the shared lock variable on entering push() and pop() and releasing it on leaving push()
and pop(), respectively. This locking is automated using the class template ACE_Guard. We
wrap lock into ACE_Guard by declaring the temporary variable monitor at the beginning of
push() and pop() (lines 15 and 24). The effect of this wrapping is that lock is locked in the
constructor of monitor at the beginning of the synchronized methods and released
automatically in the destructor of monitor at the end of the methods (see the comment in lines
19-20). Thus, the programmer does not have to manually release lock at the end of the method,
which has been a common source of errors. The declaration of monitor at the beginning of a
method amounts to declaring the method as synchronized in Java (compare Figure 121).

In addition to making push() and pop() mutual and self exclusive, we also need to suspend any
thread that tries to push an element on a full stack or pop an element from an empty stack (i.e.
requirements 4 and 5). The implementation of these constraints involves the conditional
synchronization variables push_wait and pop_wait (lines 33-34 and 12-13). The stack
conditions of being full or empty are checked at the beginning of each method (lines 16 and 25)

calls

influences

(the influence
is implemented
by dynamic or
static weaving)

client

component aspect

method

Figure 107    Noninvasive addition of an aspect to a component
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and, if necessary, the current thread is put to sleep by calling wait() on push_wait or on
pop_wait. At the end of each method, signal() is called on pop_wait or on push_wait if the
state of the stack transitions from empty to not empty or from full to not full. For example, when
a thread waits to pop an element from an empty stack and some other thread pushes some
element on the stack and executes signal() on pop_wait, the waiting thread wakes up, evaluates
its condition (which is false), and pops the element. The synchronization of push() and pop() is
an example of the classical bounded buffer synchronization schema  which is used for
synchronizing concurrent access to data buffers (see e.g. [Lea97]).

The problem with the implementation in Figure 108 is that it mixes the synchronization code with
the functionality code. This has a number of disadvantages:

• Hard-coded synchronization: Since synchronization is not parameterized, it cannot be
changed without manually modifying the stack class. A reusable component has to work in
different contexts and different synchronization strategies might be required in different
contexts. In the simplest case, we would also like to use the stack in a single-threaded
environment, but the synchronization code introduces unnecessary overhead and, even
worse, will cause a deadlock when trying to push an element on a full stack or pop an
element from an empty stack.

• Tangled synchronization and functionality aspects: The functionality code is mixed with
the synchronization code, which makes it more difficult to reason about each of these
aspects in separation. This causes maintenance problems and impairs adaptability and
reusability. More complex components might also require some extra state variables to be
used in the synchronization conditions. Such variables are referred to as the
synchronization state. Thus, our naive, tangled solution also mixes the synchronization
state with the logical state of the component. In the stack example, we saw that the
synchronization aspect crosscuts the methods of the stack. In general, the situation may be
much worse since we often need to coordinate a number of objects and the synchronization
code may crosscut all or some of them in different ways. We discuss different kinds of
crosscutting found in OO programs in Section 7.4.8.

• Non-intentional representation of the synchronization aspect: The synchronization
constraints are not represented explicitly in the code. For example, instead of the code
involving lock and mutex, all we would have to say is to annotate the push and pop
methods as mutually and self exclusive.99 Also the implementation of the conditional
synchronization is too implicit and exposes too much detail. We will see a better solution in
Section 7.5.1.
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7.4.4 Separating Synchronization Using Design Patterns
A standard way of separating synchronization code from the functionality code is to use
inheritance (see [Lea97]). The usual implementation involves putting the synchronization into a
subclass. The subclass wraps the methods of the superclass which have to be synchronized
with appropriate synchronization code. In C++, we can additionally parameterize the superclass,
so that the synchronization class can be reused on a number of related functionality classes.
The implementation of the synchronization class uses the inheritance-based static wrapper
idiom shown in Figure 75. The implementation of the stack and a stack synchronizer is shown in
Figure 109.

Stack in Figure 109 does error checking which is needed if we also want to use it in a single-
threaded environment. Trying to push an element on a full stack or pop an element from an
empty stack in a single-threaded application is clearly an error. Stack checks for these
conditions and throws an exception if necessary. For use in a multithreaded application, we can
wrap Stack in the synchronization wrapper in order to make it thread safe as follows:
Sync_Stack_Wrapper<Stack<...> >. One of the advantages of the wrapper solution is that
we can reuse the synchronization wrapper for different stack implementations, e.g. stacks using
different containers for storing their elements.

#include "ace/Synch.h" //line  1
//line  2

template<class Element, int S_SIZE> //line  3
class Sync_Stack //line  4
{ public: //line  5
     enum { //line  6
           MAX_TOP = S_SIZE-1, // maximum top value //line  7
           UNDER_MAX_TOP = MAX_TOP-1 // just under the maximum top value //line  8

 }; //line  9
     Sync_Stack() //line 10
           : top (-1), //line 11
             push_wait (lock), //line 12
             pop_wait (lock) { }; //line 13
     void push(Element *element) //line 14
     {    ACE_Guard<ACE_Thread_Mutex> monitor (lock); //line 15
          while (top == MAX_TOP) push_wait.wait(); //line 16
          elements [++top] = element; //line 17
          if (top == 0) pop_wait.signal(); // signal if was empty //line 18
          // the lock is unlocked automatically //line 19
          // by the destructor of the monitor //line 20
     } //line 21
     Element *pop() //line 22
     {    Element *return_val; //line 23
          ACE_Guard<ACE_Thread_Mutex> monitor (lock); //line 24
          while (top == -1) pop_wait.wait(); //line 25
          return_val = elements [top--]; //line 26
          if (top == UNDER_MAX_TOP) push_wait.signal();  // signal if was full //line 27
          return return_val; //line 28
     } //line 29
  private: //line 30
     // synchronization variables //line 31
     ACE_Thread_Mutex lock; //line 32
     ACE_Condition_Thread_Mutex push_wait; //line 33
     ACE_Condition_Thread_Mutex pop_wait; //line 34

//line 35
     // stack variables //line 36
     int top; //line 37
     Element *elements [S_SIZE]; //line 38
}; //line 39

Figure 108    "Tangled" implementation of a synchronized stack in C++
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The stack implementation in Figure 109 still has one major deficiency: If we wrap the stack into
the synchronization wrapper to be used in a multithreaded environment, the base stack
implementation still checks for errors, although the checking is not needed in the this case. One
solution to this problem is to separate the error checking aspect from the base implementation of
the stack using another inheritance-based static wrapper, just as we did it with the

template<class Element, int S_SIZE>
class Stack
{  public:
      // export element type and maximum top value
      typedef Element Element;
      enum {MAX_TOP = S_SIZE-1};

      Stack() : top (-1) {}
      void push(Element *element)
      {   if (top < MAX_TOP) elements [++top] = element;
          else throw "attempt to push on a full stack";
      }
      Element *pop()
      {   if (top > -1) return elements [top--];
          else throw "attempt to pop from an empty stack";
          return NULL;
      }
   protected:
      int top;
   private:
      Element *elements [S_SIZE];
};

template<class UnsyncStack>
class Sync_Stack_Wrapper : public UnsyncStack
{  public:
     // import elemet type and maximum top value
     typedef UnsyncStack::Element Element;
     enum {MAX_TOP = UnsyncStack::MAX_TOP};
     // declare UNDER_MAX_TOP
     enum {UNDER_MAX_TOP = MAX_TOP-1};

     Sync_Stack_Wrapper()
           : UnsyncStack (),
             push_wait (lock),
             pop_wait (lock) { }
     void push(Element *element)
     {    ACE_Guard<ACE_Thread_Mutex> monitor(lock);
          while (top == MAX_TOP) push_wait.wait();
          UnsyncStack::push(element);
          if (top == 0) pop_wait.signal(); // signal if was empty
     }
     Element *pop()
     {   Element *return_val;
          ACE_Guard<ACE_Thread_Mutex> monitor (lock);
          while (top == -1) pop_wait.wait();
          return_val = UnsyncStack::pop();
          if (top == UNDER_MAX_TOP) push_wait.signal();  // signal if was full
          return return_val;
     }
   private:
     // synchronization variables
     ACE_Thread_Mutex lock;
     ACE_Condition_Thread_Mutex push_wait;
     ACE_Condition_Thread_Mutex pop_wait;
};

Figure 109    Implementation of a stack and a synchronizing stack wrapper using
parameterized inheritance
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synchronization aspect. This is shown in Figure 110. Thus, we implemented the synchronization
aspect as a “mixin class” with parameterized inheritance.

Given the code in Figure 110,  Balking_Stack_Wrapper<Stack<...> > has the same meaning
as Stack<...> in Figure 109. Now, we can use Balking_Stack_Wrapper<Stack<...> > in a
single-threaded application and Sync_Stack_Wrapper<Stack<...> > in a multi-threaded
application (in both cases, we use Stack from Figure 110). Of course, we could further
parameterize the synchronization and the error checking wrappers to provide different
synchronization, error-checking, and error-response polices.

The stack example also illustrates an important point: there are interdependencies between
aspects. Trying to push an element on a full stack or to pop an element from an empty stack
concerns both error handling and synchronization. In fact, in a multithreaded environment, we
treat the following different polices uniformly — simply as alternatives [Lea97]:

• Inaction: Ignoring an action if it cannot be performed.

• Balking: Throw an exception if an action cannot be performed (e.g.
Balking_Stack_Wrapper).

template<class Element, int S_SIZE>
class Stack
{  public:
      // export element type and maximum top value
      typedef Element Element;
      enum {MAX_TOP = S_SIZE-1};

      Stack() : top (-1) {}
      void push(Element *element)
      {   elements [++top] = element;
      }
      Element *pop()
      {   return elements [top--];
      }
   protected:
      int top;
   private:
      Element *elements [S_SIZE];
};

template<class UnsafeStack>
class Balking_Stack_Wrapper : public UnsafeStack
{  public:
      // import elemet type and stack size
      typedef UnsafeStack::Element Element;
      enum {MAX_TOP = UnsafeStack::MAX_TOP};

      Balking_Stack_Wrapper()
            : UnsafeStack () {}
      void push(Element *element)
      {    if (top < MAX_TOP) UnsafeStack::push(element);
           else throw "attempt to push on a full stack";
      }
      Element *pop()
      {    if (top > -1) return UnsafeStack::pop();
           else throw "attempt to pop from an empty stack";
           return NULL;
      }
};

Figure 110    Implementation of a stack without error checking and a balking stack wrapper
using parameterized inheritance
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• Guarded suspension: Suspending a thread until the precondition becomes true (e.g.
Sync_Stack_Wrapper)

• Provisional action: Pretending to perform an action, but not committing to its effects until
success assured.

• Rollback/Recovery: Trying to proceed, but upon failure, undoing any effects of partially
completed actions.

• Retry: Repeatedly attempting failed actions after recovering from previous attempts.

The applicability of these policies is discussed in [Lea97] in detail.

Adding synchronization or error handling by method wrapping (as in Sync_Stack_Wrapper or
Balking_Stack_Wrapper) is not always possible. Sometimes we need to make a call to a
synchronizer or an error checker somewhere in the middle of a method. In this case, we can
parameterize the method with the synchronizer or the error checker using the strategy pattern
(see [GHJV95]]). If static binding is sufficient, we can use a static version of the strategy pattern
based on a template parameter. The pattern is illustrated in see Figure 111. The listing shows
three different strategies. Please note that the strategy method someAction() is declared as
static in each strategy. If, in a certain context, no action is necessary, we can use
EmptyStrategy  which implements someAction() as an empty method. If we use inlining,
someAction() will not incur any overhead. If necessary, we can also pass *this as a parameter
to the strategy method. Defining the strategy method as static minimizes any overhead;
however, if the strategy algorithm needs to retain some state between calls, we would define the
strategy method as an instance method and add a strategy instance variable to the component.
If we want to allow for both static and dynamic binding, we need to use the idiom presented in
Section 7.10.

class StrategyA
{   public:
    static void someAction()
    {    // do some work
    }
};

class StrategyB
{   public:
    static void someAction()
    {    // do some other work
    }
};

class EmptyStrategy
{   public:
    static void someAction()
    {} // empty action
};

template <class Strategy>
class Component
{   public:
    //...
    void method()
    {   // some method-specific work
        Strategy::someAction();
        // some other method-specific work
    }
    //...
};

Figure 111    Strategy pattern based on a template parameter
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Unfortunately, calling hook methods such as someAction() pollutes the code implementing the
basic functionality. Sometimes we can solve this problem by splitting methods and classes in a
way that the wrapper pattern can be used (e.g. the section of the code that needs to be
synchronized could be moved into a separate method). In order to solve this problem, we need
new composition mechanisms that address the different kinds of crosscutting discussed later in
Section 7.4.8.

Once we decide to use the static wrapper solution presented in this section, we still need to
somehow modify the client code in order to create object of
Sync_Stack_Wrapper<Stack<...> > instead of Stack<...>.

Let us assume that Stack is declared in file stack.h and Sync_Stack_Wrapper is declared in
sync_stack_wrapper.h. Furthermore, some client client.cpp includes stack.h and uses Stack.
One way to make the client use the wrapped stack instead of Stack is to move stack.h into
some new directory, e.g. original, and create a new stack.h at the same place where the original
stack.h resided before moving it. The content of the new stack.h is shown in Figure 112.

7.4.5 Separating Synchronization Using SOP
Using the SOP approach, we can nicely separate functionality code from the synchronization
code by encapsulating them in two separate subjects. In the C++ version of SOP (see [SOP]) a
subject is modeled simply as a C++ namespace.

Let us assume that Stack has been defined in the namespace original. The implementation is
shown in Figure 113. Unfortunately, the current implementation of SOP/C++ does not support
the composition of class templates. Therefore, we implement Stack as a C++ class. The
constants Element and S_SIZE are then defined using the preprocessor directive #define in a
separate include file (see Figure 114).

//stack.h
namespace original {
      #include "original/stack.h"
}
namespace extension {
      #include "sync_stack_wrapper.h"
}
// wrap original::Stack into extension::Sync_Stack_Wrapper and publish it as Stack
template<class Element, int S_SIZE>
class Stack : public extension::Sync_Stack_Wrapper<original::Stack<Element, S_SIZE> >
{     public:
            Stack() : extension::Sync_Stack_Wrapper<original::Stack<Element, S_SIZE> >() {}
};

Figure 112    Content of the new stack.h
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Next, we define the new namespace sync  which contains the stack synchronization class
Stack. We will later compose original::Stack with sync::Stack in order to synchronize it. The
code for sync::Stack is shown in Figure 115.

// stack.h
#include "constants.h"

namespace original {
class Stack
{  public:
      Stack() : top (-1) {}
      void push(Element *element)
      {   elements [++top] = element;
      }
      Element *pop()
      {   return elements [top--];
      }
   private:
      int top;
      Element *elements [S_SIZE];
};
} //namespace original

Figure 113    Implementation of the class Stack

//constants.h
#ifndef CONSTANTS_H
#define CONSTANTS_H

#define Element int
#define S_SIZE 10

#endif

Figure 114    Content of constants.h
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sync::Stack is a “vanilla” C++ class which is very similar to Sync_Stack_Wrapper in Figure
109. The differences between sync::Stack and Sync_Stack_Wrapper are the following:

• sync::Stack has no superclass;

• sync::Stack has the two additional method declarations inner_push() (line 27) and
inner_pop() (line 28); the implementations for these methods will be provided upon
composition;

• push() of sync::Stack calls inner_push() (line 14) and pop() of sync::Stack calls
inner_pop() (line 21).

Composition in SOP is achieved by writing composition rules which specify the correspondence
of the subjects (i.e. namespaces), classes, and members to be composed and how to combine
them (see Section 7.2.1). Before we show the subject composition rules for composing the
namespace original with the namespace sync , we will first describe the composition in plain
English:

1. original and sync  should be composed into the new namespace composed by merging
their members, e.g. classes, operations, attributes, etc. and making sure that if two members
have the same name, they correspond. In particular, original::Stack and sync::Stack
correspond and should be merged into composed::Stack. Furthermore, when merging
corresponding attributes, e.g. original::Stack::top and sync::Stack::top, only one copy
should be included in the composite class, i.e. composed::Stack::top.

// sync_stack_extension.h // line  1
#include "ace/Synch.h" // line  2
#include "constants.h" // line  3

// line  4
namespace sync { // line  5
class Stack // line  6
{  public: // line  7
     Stack () // line  8
           : push_wait (lock), // line  9
             pop_wait (lock) { } // line 10
     void push(Element *element) // line 11
     {    ACE_Guard<ACE_Thread_Mutex> monitor (lock); // line 12
          while (top == S_SIZE-1) push_wait.wait(); // line 13
          inner_push(element);       //  <----- call inner_push // line 14
          if (top == 0) pop_wait.signal();  // signal if was empty // line 15
     } // line 16
     Element *pop() // line 17
     {   Element *return_val; // line 18
          ACE_Guard<ACE_Thread_Mutex> monitor (lock); // line 19
          while (top == -1) pop_wait.wait(); // line 20
          return_val = inner_pop();      //  <----- call inner_pop // line 21
          if (top == S_SIZE-2) push_wait.signal();  // signal if was full // line 22
          return return_val; // line 23
     } // line 24
  private: // line 25
     // inner methods declarations (implementations will be provided on composition) // line 26
     void inner_push(Element *element); // line 27
     Element *inner_pop(); // line 28

// line 29
     int top; // line 30

// line 31
     // synchronization variables // line 32
     ACE_Thread_Mutex lock; // line 33
     ACE_Condition_Thread_Mutex push_wait; // line 34
     ACE_Condition_Thread_Mutex pop_wait; // line 35
}; // line 36
} // namespace sync // line 37

Figure 115    Implementation of sync::Stack
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2. The “by name” correspondence implied by the previous requirement should be overridden
for original::Stack::push() and sync::Stack::push() and for original::Stack::pop() and
sync::Stack::pop(). Instead, we want sync::Stack::inner_push() and
original::Stack::push() to correspond and be combined into
combined::Stack::inner_push(). The combined operation should use the implementation
of original::Stack::push(). We want the same to happen for sync::Stack::inner_pop()
and original::Stack::pop(). Effectively, the push() and pop() of the synchronizer class will
call push() and pop() of the original Stack class as their inner methods (see next
requirement). This has the effect of wrapping the original push() and pop() into
synchronization code.

3. If a method is called inside one of the classes to be composed on self, we want self in the
resulting composite class to refer to the composite class. In particular, the call to
inner_push in sync::Stack::push, once promoted to composed::Stack::push, should
call the new inner method, i.e. composed::Stack::inner_push. The same applies to the call
to inner_pop in sync::Stack::pop.

4. The constructors of both classes to be composed should also be composed. This
requirement is taken care of automatically by the SOP system.

These composition requirements are satisfied by the composition rules shown in Figure 116.

The ByNameMerge rule in Figure 116 is a correspondence-and-combination rule, which
implements the requirements 1, 3, and 4. It implies by name  correspondence and merge
combination of the subjects original and sync . It also specifies that the name of the resulting
subject is composed. Please note that the first parameter of this rule indicates the resulting
name and the second parameter lists the names to be composed (lists are enclosed into
parenthesis). The next two equate rules are correspondence rules. They implement requirement
2. Since the scope of these two rules is single methods and such scope is smaller than the scope
of the merge rule (which was defined over subjects), the equate rules have precedence over the
ByNameMerge rule.

It is important to note that once we compile some_client.cpp, stack.h,
sync_stack_extension.h, stack.rul, the client code in  some_client.cpp will automatically
reference composed::Stack at any place it explicitly references original::Stack. Thus the SOP
composition is noninvasive with respect to both Stack and the client code.

This example illustrated two kinds of composition rules available in SOP. There are more rules
allowing a fine-grained control over the composition of subjects.

The SOP composition rules work on labels of subjects rather than their sources. A label
contains all the symbolic information about a subject, such as the names of the classes,
methods, and attributes contained in the subject. As a consequence, we can actually compose
compiled subjects (in SOP, each subjects can be compiled separately). In other words, SOP
supports the composition of binary components.

Variability-Oriented Programming (VOP) [Mez97a, Mez97b] is another composition approach,
which we could have used to implement our synchronization example. The major difference
between VOP and SOP is that VOP supports both static and dynamic composition of classes
and class fragments.101 Using dynamic fragment composition, we can simplify the

// stack.rul

// requirements #1, #3, #4
ByNameMerge(composed, (original, sync))

// requirement #2
Equate(operation composed.inner_push, (sync.inner_push, original.push))
Equate(operation composed.inner_pop, (sync.inner_pop, original.pop))

Figure 116    Rules for composing the original and extension namespaces100
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implementation of many of the design patterns described in [GHJV95]. For example, the
implementation of the visitor pattern given in [Mez97a] requires only a small fraction of the
methods in the original implementation in [GHJV95]. We will discuss the advantages of fragment
composition over the conventional design-pattern-based solutions in Section 7.4.6.

7.4.6 Some Problems of Implementing Design Patterns and Some Solutions
Design patterns described in [GHJV95], but also in [Cop92, Pre95, BMR+96], represent a
tremendous advance towards more reusable software. When we discuss the design patterns
collected in [GHJV95], we need at least to distinguish between two important contributions of
design patterns:

• design patterns as a form of documenting recurring problems and solutions in OO designs
and

• the concrete solutions proposed by specific design patterns.

In our discussion, we will focus on the second contribution and specifically on the concrete OO
solutions proposed in [GHJV95].

Design patterns collected in [GHJV95] help us to decouple and encapsulate various aspects of a
software system using concrete implementation idioms based on the two object-oriented
composition mechanisms: inheritance and object composition (by object composition we mean
composition by referencing objects and by containing objects, which, of course, covers
association and aggregation). Table 11 lists the aspects that some of the design patterns allow
us to encapsulate and vary.

Unfortunately, implementation idioms based exclusively on inheritance and object composition
also introduce more complexity than necessary. For example, in order to be able to vary some
algorithm, we can apply the strategy pattern which involves factoring out the algorithm and
encapsulating it in an extra strategy object. But often the algorithm is really part of the original
object and by encapsulating it into the separate strategy object we add extra complexity of

• handling an additional strategy object and

• having to live with a level of indirection between the original object and the strategy object.

Similarly, when we decorate an object, we really want just to add or override some of its
members. But when we apply the decorator pattern based on object composition, we also end
up with two objects and an extra indirection level. A similar observation applies to adapter,
state, bridge and other patterns.

Several researchers identified a number of problems with the implementation of design patterns
in conventional OO languages (see e.g. [Sou95, SPL96, Mez97a, Bos98, SOPD]). We group

Design Pattern Aspect(s) That Can Vary

Adapter interface to an object

Bridge implementation of an object

Mediator how and which objects interact with each other

State states of an object

Strategy an algorithm

Table 11    Design aspects that design patterns let you vary
(excerpt from Table 1.2 in [GHJV95])
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these problems into three major problem categories: object schizophrenia, the preplanning
problem, and the traceability problem.

7.4.6.1 Object Schizophrenia
The problem of the split of what intentionally supposed to be a single object is referred to as
object schizophrenia [SOPD].

One subproblem of object schizophrenia is broken delegation [SOPD] (also referred to as the
self problem [Lie86a]; cf. Section 7.2.2). For example, if an algorithm is a part of an object and it
needs to send a message to the object it is part of, it simply sends this message to self.
However, if we factor out the algorithm as a strategy object, we need to send the message to the
original object. We can no longer think of the algorithm simply as a part of the original object.
Instead, we have the extra complexity of indirection, e.g. we need some extra arrangements to
provide the algorithm with the data it needs from the original object.

Another problem results from the fact that we have to manage two object identities instead of
one. This also causes extra complexity and increases the chance of programming errors, e.g.
when the component “escapes” its wrapper (i.e. when we accidentally give away a reference to
the wrapped object).

Fragment-based composition, as supported in SOP or VOP, allows us to avoid these problems
by modeling extensions such as strategies and wrappers as true class fragments of the extended
class.102 In other words, we do not have to deal with two object identities or an indirection level
and we can code the fragments as if they were simply parts of the resulting composite objects.

7.4.6.2 Preplanning Problem
Another problem of design patterns is that they allow for adaptability, but only if the need for
certain adaptability was anticipated and the appropriate design patterns were applied in the
design phase. This is referred to as the preplanning problem [SOPD].

As we have seen in previous sections, there are many situations where fragment-based
composition of SOP allows us to noninvasively adapt a component, even if the adaptation has
not been anticipated at the design time of the component. We will also show an implementation
of a noninvasive composition mechanism in Smalltalk in Section 7.4.7.

7.4.6.3 Traceability Problem
Yet another problem with many design patterns and idioms 103 is their indirect representation in
the source code. We refer to this problem as the traceability problem [Bos98] (also indirection
problem in [SOPD]). As we already discussed in Section 6.4.3.1.1, given a concrete
implementation, it is usually unclear which design patterns were actually applied. The code
implementing a pattern is intertwined with other aspects and scattered over a number of
components. As a consequence, it is difficult to impossible to distinguish which parts of the
resulting program were contributed by which design pattern. Additionally, design patterns
increase the fragmentation of the design by introducing many extra little methods and classes.
This indirect representation of design patterns causes severe problems for maintenance, reuse,
and evolution since the design information is lost.

New language features and composition mechanisms will allow a more direct representation of
design patterns. For example, the Demeter approach replaces the conventional OO
implementation idiom of the visitor pattern given in [GHJV95] with a more direct representation,
which, as we discussed in Section 7.2.3, allows us to avoid some problems of the first one.
Proposals of other language constructs for the direct representation of design patterns can be
found in [SPL96, Mez98a, Bos98].

We can say that patterns and idioms represent just one phase in the evolution of abstractions,
which, eventually, may become language features. Once some design patterns and idioms
become features of programming languages, they loose much of their substance as patterns.
We no longer think of them as design patterns or idioms in the conventional sense, just as we

Broken delegation
(i.e. the self
problem)
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do not regard inheritance as a design pattern. On the other hand, the documentation format of
design patterns can be still useful for documenting the applicability of language features for
solving specific problems.104

7.4.7 Implementing Noninvasive, Dynamic Composition in Smalltalk
Noninvasive, dynamic composition based on intercepting messages can be easily implemented
using the reflection mechanisms of a reflective language such as Smalltalk [GR83]. By reflective
facilities we mean explicit representations of some language features, e.g. metaobjects
representing classes, methods, and method execution contexts, which are part of the language
itself and can be manipulated by the very same language features to affect their own semantics.
In Smalltalk, these metaobjects exist at the runtime of an application. As an example of a
noninvasive, dynamic composition mechanism, we will show a Smalltalk implementation of an
extremely simplified version of the CF model (see Section 7.2.2). Later, in Section 7.5.2, we will
use this mechanism to compose synchronization objects and functionality objects at runtime.

7.4.7.1 Model of the Composition
The model of the composition mechanism is shown in Figure 117. The idea is to be able to
attach listener objects to a base object at runtime. Both listeners and base objects are simply
instances of some arbitrary classes. We say that a listener is attached to a base object at a
certain message messageA meaning that when we send messageA to the base object, the
message is redirected to the listener.

By drawing the interface layer in Figure 117 around the base object, we indicate that the
dispatch filters, which forward some messages to the listeners, and the references to the
listeners are added after the base object has been created. However, please note that the
interface layer should be transparent with respect to both the environment and the base object.
In fact, we regard the interface layer as a true part of the base object. Thus, it is not appropriate
to implement it as a wrapper based on object composition.

Figure 117    Model of a simple composition mechanism based on message interception

In order to implement this model, all we need is to be able to

• dynamically override methods on a per-instance basis, i.e. in a single instance rather than
the whole class; given this ability, we can implement each dispatch filter as a method which
forwards to the appropriate listener;

• dynamically add instance variables on a per-instance basis; this ability allows us to add
references pointing at new listeners.

In summary, we can attach an object B to another object A at the message messageA by

Listener objects

dispatch
filters

listener
objects

incoming messages

interface
layer

base object
references
to listeners

messageA
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• adding an instance variable to object A pointing at B and

• override the method messageA in object A so that messageA is forwarded to B.

7.4.7.2 Composition API105

Given two arbitrary objects referenced by the variables object2 and object1, we can attach
object2 to object1 at message messageA as follows:

object1 attach: object2 at: #messageA.

Once we have attached an object, we can also detach it as follows:

object1 detachAt: #messageA.

In the attached object (e.g. object2), we can access the base object (i.e. object1) as follows:

self baseObject.

Once a message has been rerouted to the attached object, we can still call the original method in
the base object from the new method in the attached object as follows (please note that this
code remains the same even if the original message has some parameters):

self baseCall.

For example, we could wrap messageA in object1 in some actions by implementing messageA
in object2 as follows:

messageA
    self someBeforeAction.
    self baseCall.
    self someAfterAction.

and attaching object2 to object1 at messageA:

object1 attach: object2 at: #messageA.

The complete code implementing the composition mechanism is shown in Sections 7.8 and 7.9.

Please note that we can compose any objects without having to modify the code of any of their
classes or clients. Also, we did not have to provide any special “hooks” in any of the objects
being composed. Thus, the composition is noninvasive and it also avoids the preplanning
problem.

7.4.7.3 Instance-Specific Extension Protocol
As stated, the implementation of the composition mechanism utilizes reflection facilities of
Smalltalk. These reflection facilities include metaobjects representing classes, methods, and
method execution contexts and the Smalltalk compiler itself.  We also use two important
methods providing access to the implementation of Smalltalk, namely class: and become:.
class: allows us to modify the class of an instance and become: replaces every reference to
the receiver by the reference to the argument of this message.106

Metaobjects provide representations for elements of a language. The interface defined by the
metaobjects of a language is referred to as a metaobject protocol (MOP) [KRB91]. By allowing a
write access to metaobjects, as in Smalltalk, we can modify the default semantics of the
language. Indeed, in [KRB91], this has been recognized as one fundamental approach to
language design. Instead of designing a fixed language, we can design a default language and a
MOP which allows the user to customize the default language according to his needs. In other
words, a reflective language such as Smalltalk, provides a substantial part of its own
implementation as a library of metaobjects to be extended and/or modified by the programmer.

Our implementation of the composition mechanism utilizes a very simple protocol implemented
on top of the Smalltalk MOP. Specifically, the protocol we need consists of two methods: one
for adding/overriding methods to/in instances and another one for adding instance variables to
instances. We refer to this simple protocol as the instance-specific extension protocol. We will

Metaobject
protocols
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discuss its implementation in the following two sections. The code of the Smalltalk\VisualWorks
implementation of this protocol is given in Section 7.8.107

7.4.7.3.1 Defining Methods in Instances

We use the Smalltalk idiom instance-specific behavior in order to define a method in a particular
instance without affecting the code of its class. This idiom was described by Beck in
[Bec93a].108 The following sample code shows how to define a method in an instance using
Beck’s implementation:

anObjectA
    specialize:
        'whoAreYou
            ^self printString'

The method specialize:  inserts a new class between anObjectA and its class, i.e. ObjectA as
shown in Figure 118. This is possible since we can use the method class: to modify the class of
an instance. The new class is an instance of Behavior, which is a metaclass defining some
properties for all classes. For example, Behavior defines the variable methodDict which stores a
method dictionary (see Figure 119).  A method dictionary is a table which stores the methods of
a class. The methodDict variable is present in all classes in Smalltalk since classes are instances
of metaclasses and the latter are subclasses of Behavior. We use an instance of Behavior
instead of Class since Behavior incurs much less overhead. For example, aBehavior does not
even have a name. Of course, we set the superclass of aBehavior to ObjectA.

Figure 118    Adding a method to an instance

Once we made aBehavior the class of anObjectA, the string provided as a parameter to
specialize:  is treated as the source code of a new method. The string is compiled and the
resulting method is inserted in the method dictionary of aBehavior.109 In the case that the
original class ObjectA already had an implementation of whoAreYou, this original
implementation can still be accessed through super.
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anObjectA
   specialize:
      ‘whoAreYou ...’
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Finally, the standard method class is overridden in anObjectA to return its original class
ObjectA. This way the new class aBehavior is not visible to the environment. We can say that
the new class is a private class of anObjectA.

The implementation of instance-specific behavior makes use of the following reflective facilities
in Smalltalk:

• Behavior and inserting a method into its method dictionary;

• changing the class of an instance using class:;

• compiling a method from a string using Compiler and the explicit handling of methods as
instances of CompiledMethod.

7.4.7.3.2 Adding Instance Variables to Instances

The idiom adding instance variables to instances was originally described in [Cza96]. The
following sample code demonstrates the use of this idiom:

“declare a temporary variable”
| anObjectA |
“initialize the variable with an instance of ObjectA”
anObjectA := ObjectA new.
“add the new instance variable someNewInstVar to anObject”
anObjectA addInstanceVariable: ‘someNewInstVar’.
“set the value of someNewInstVar’ to 1”
anObjectA someNewInstVar: 1.
“return the value of someNewInstVar’
^anObjectA someNewInstVar

The method addInstanceVariable: adds an instance variable to an instance in four steps:

1. Insert aBehavior between the receiver and its class (just as we did it for adding a method;
see Figure 118).

2. Modify the object format contained in aBehavior (see the instance variable format in
Figure 119), so that the number of instance variables encoded in the format is increased by
one. The object format stored in a class encodes, among others, the number of instance
variables of each of its instances.

3. Mutate the receiver, so that it contains the number of instance variables encoded in format.
This is achieved by creating an new instance of aBehavior, copying the contents of the
receiver into the new instance, and replacing the receiver with the new instance using
become:.

4. Insert the accessing methods for the new instance in the method dictionary of aBehavior.

Here is the implementation of addInstanceVariable: (implemented in Object):

Object ()
    Behavior ('superclass' 'methodDict' 'format' 'subclasses')
        ClassDescription ('instanceVariables' 'organization')
            Class ('name' 'classPool' 'sharedPools')
                ... all the Metaclasses ...
            Metaclass ('thisClass')

Figure 119    Metaclass hierarchy in Smalltalk/VisualWorks. Subclasses are indented.
Instance variables defined by the corresponding class are shown in parenthesis.
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The full implementation code is included in Section 7.8.

In order to implement adding instance variables to instances, we have used the following
reflective facilities of Smalltalk:

• modifying the object format in Behavior

• modifying the identity of an object using become:;

• all the reflective facilities we also used for instance-specific behavior.

7.4.8 Kinds of Crosscutting
The stack example in Figure 108 demonstrated the crosscutting of synchronization code and
methods of one class. We also saw that method wrapping or before and after methods allow us
to separate the synchronization aspect from the stack.

But what other kinds of crosscutting are common in object-oriented programs?

First, we distinguish between crosscutting at the class level and crosscutting at the instance
level. If some aspect code crosscuts classes, it means that crosscutting the instances of the
class is controlled at the class level. For example, the synchronization code crosscuts the stack
at the class level and, in our case, it crosscuts all stack instances in the same way. Class level
crosscutting requires composition mechanisms allowing us to associate aspect code with
classes. Furthermore, at the class level, we also distinguish between aspect state shared among
all instances and per-instance aspect state.

Instance-level crosscutting means that we have to be able to associate aspect code with
individual instances. For example, different instances of a data structure could be associated
with different aspect codes implementing different synchronization strategies. We saw an
example of instance-level composition mechanism in the previous section.

Different kinds of crosscutting with respect to classes and instances are summarized in Figure
120. Each combination of one item on the left and one item on the right indicates a different kind
of crosscutting.

Message join points are quite common in OO programming. Examples of aspects amenable to
message join points are concurrency, real-time constraints, atomic transactions, precondition-
like error handling, security, profiling, monitoring, testing, caching, and historization. These
kinds of aspects can be usually implemented as objects and coupled to the primary structure

addInstanceVariable: aString
    "Add an instance variable and accessing
    methods based on the name aString"
    self specialize.
    self incrementNumberOfInstVarsInMyClassFormat.
    self mutateSelfToReflectNewClassFormat.
    self addAccessingMethodsForLastInstVarUsing: aString.

Class level vs.
instance level
crosscutting

Shared and per-
instance aspect
state

one aspect one class

many classes

one instance

many instances of
different classesmany aspect

Figure 120    Different kinds of crosscutting with
respect to classes and instances110Kinds of message

join points
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objects using some kind of message coupling mechanism such as method wrapping or message
interception. Indeed, we also have different possibilities at the method level: We can add a
before action, an after action or both to a method implementation or to a method call. The latter
actually allows us to add actions inside a method implementation by instrumenting calls to
other methods inside it. In general, we can distinguish between instrumenting the definition and
the use of some intention, e.g. instrumenting method definition vs. method calls. In addition to
methods, we can also instrument attributes of objects. This is useful if we want to monitor read
or write access to attributes.111 Future versions of AspectJ, which we discuss in Section 7.5.1,
will augment Java with composition mechanisms for addressing the different kinds of
crosscutting common in OO programs.

There are also cases of more complex crosscutting in practice. For example, domain-specific
optimizations in vector and matrix code involve crosscutting at the statement level. The usual
example for vector code is loop fusing and temporary variable elimination. In this case, the
optimizations crosscut vector expression and statement structures. We will see examples of
such optimizations in Section 10.2.6.1. An even more complex kind of crosscutting is common to
cache-based optimizations in matrix code. This kind of optimizations requires very complex
transformation. Indeed, due to the complexity of such transformations, the quality of the code
generated by such optimizers is far beyond the quality of manually optimized code. In general,
domain-specific optimizations in scientific computing require complex transformations on parse
trees.

7.5 How to Express Aspects in Programming Languages
In the previous sections, we have seen that appropriate composition mechanisms (e.g.
fragment-based composition in SOP or traversal strategies in Demeter) allow us to reduce the
complexity of conventional OO programs. But reducing complexity by untangling aspects and
relating them by an appropriate composition mechanisms is just the first step. We can further
reduce complexity by representing the aspects themselves using appropriate linguistic means.

Whatever solution we find, our goal is enable a one-to-one encoding of requirements in the
language we use. For example, the synchronization of a stack involves four synchronization
constraints (see Section 7.4.3). Ideally, we want to be able to express these constraints in the
programming language with four corresponding statements.

What different options do we have for capturing aspects? There are three possibilities:

• Encode the aspect support as a conventional library (e.g. class or procedure library). We
will see an example of this strategy in Section 7.5.2. That section discusses the
implementation of a very high level synchronization library that developers writing aspect
program can use. The library uses our dynamic composition mechanism for attaching
objects from Section 7.4.7 in order to address crosscutting.

• Design a separate language for the aspect. We will see an example of a separate
synchronization language in Section 7.5.1.

• Design a language extension for the aspect. We will discuss this option in Section 7.6.1.

The implementation technologies and the pros and cons for each of these approaches are
discussed in Section 7.6.

The following two section will demonstrate the separate language approach and the class
library approach to aspects.

7.5.1 Separating Synchronization Using AspectJ Cool
As you remember, Section 7.4.5 showed how to separate the synchronization aspect of a stack
using SOP. While the separation was quite satisfying (e.g. it allows an noninvasive replacement
of the synchronization aspect with respect to both the stack implementation and stack client
code), the representation of the synchronization aspect in Figure 115 was far from being

Domain-specific
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Cool
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intentional. In this section, we show a more intentional solution written in Cool, an aspect
language for expressing synchronization in concurrent OO programs.

Cool was originally designed by Lopes in her dissertation [Lop97] and implemented as a part of
the AspectJ112 environment developed at Xerox Palo Alto Research Center [XER98a, XER98b,
AJ].

AspectJ is an extension to Java that supports aspect-oriented programming. AspectJ version
0.2.0 includes general-purpose cross-cutting mechanisms that can be used to capture a range of
cross-cutting modularities (see Section 7.4.8), including but not limited to synchronization and
distribution control. The support for specific aspects is implemented in the form of class
libraries, much in the style we will see in Section 7.5.2.

At the time of preparing the examples for this chapter, the strategy of AspectJ (version 0.1.0)
used to be to provide a separate aspect language for each aspect it addressed. The provided
languages were Cool (i.e. the synchronization language) and Ridl. Ridl is an aspect language for
expressing remote invocation and controlling the depth of parameter transfer (see [Lop97]).
Both languages were implemented by a preprocessor which took Java source files and the
aspect source files written in these languages and generated pure Java.

The example in this section is implemented using this older version 0.1.0 of AspectJ rather than
the more general AspectJ 0.2.0. The older version allows us to demonstrate the use of
specialized aspect languages for expressing aspects. The other approach involving class
libraries and message-join-point composition mechanisms (as used by AspectJ 0.2.0) is
demonstrated later in Section 7.5.2.

Before we show you the more intentional encoding of the stack synchronization aspect using
AspectJ Cool, let us first re-state the synchronization constraints on the stack we came up with
in Section 7.4.3:

1. push is self exclusive;

2. pop is self exclusive;

3. push and pop are mutually exclusive;

4. push can only proceed if the stack is not full;

5. pop can only proceed if the stack is not empty.

The stack is full if top==stack_size-1 and is empty if top==-1. All these statements can be
represented directly in Cool as a coordinator (i.e. a synchronizing agent). Figure 122 shows the
Java implementation of the stack and the Cool implementation of the stack coordinator (for
completeness, we also include the equivalent, “tangled” implementation of the synchronized
stack in pure Java in Figure 121). We numbered the lines of the stack coordinator, so that we
can exactly describe how the above-listed synchronization requirements are reflected in the
coordinator code.

AspectJ

Ridl

Coordinators
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The name of the coordinator appearing on line 2 in Figure 122 is the same as the name of the
Java class it synchronizes, i.e. Stack. Line 3 states that push and pop are self exclusive (i.e.
requirement 1 and 2).113 Line 4 states that push and pop are mutually exclusive (i.e. requirement
3). The states of the stack are modeled by the condition variables full and empty declared on
line 5. Lines 7 and 8 say that push can only proceed if the stack is not full (i.e. requirement 4).
Line 9 starts the definition of the so-called on-exit block  of code that is to be executed just after
the execution of push of the class Stack.114 The on-exit block of push (lines 9-12) and the on-
exit block of pop (lines 15-18) define the semantics of the states full and empty. Please note that
these blocks access the stack variables s_size and top. In general, a read-only access of the
variables of the coordinated object is possible, but we are not allowed to modify them. Finally,
line 14 states that pop can only proceed if the stack is not empty (i.e. requirement 5).

This simple stack example demonstrates that the stack synchronization constraints can be quite
directly translated into Cool. Thus, the Cool representation of the synchronization aspect is
clearly more intentional than the subclass version in Figure 109 or the SOP version in Figure
115.

public class Stack
{    private int max_top;
     private int under_max_top;

     public Stack(int size)
     {    elements = new Object[size];
          top = -1;
          max_top = size-1;
          under_max_top = max_top-1;
     }
     public synchronized void push(Object element)
     {    while (top == max_top)
          {    try
               {    wait();
               }
               catch (InterruptedException e) {};
          }
          elements[++top] = element;
          if (top==0) notifyAll(); // signal if was empty
     }
     public synchronized Object pop()
     {    while (top==-1)
          {    try
               {    wait();
               }
               catch (InterruptedException e) {};
          }
          Object return_val = elements[top--];
          if (top==under_max_top) notifyAll(); // signal if was full
          return return_val;
     }

     private int top;
     private Object [] elements;
}

Figure 121    "Tangled" implementation of a synchronized stack in Java

On-exit and on-entry blocks
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The stack coordinator in Figure 122 is an example of a per-instance coordinator, i.e. each
instance of Stack will have its own coordinator instance. In addition to the per-instance
coordinators, Cool supports per-class coordinators, which can also be shared among a number
of classes. The details of the Cool language are given in [XER98b, Lop97].

7.5.2 Implementing Dynamic Cool in Smalltalk
We can also implement Cool-like synchronization using a class library and the dynamic
composition mechanism described in Section 7.4.7. Thus, composition based on reflective
facilities represents an alternative to static composition using a preprocessor (or a compiler). In
contrast to a preprocessor, dynamic composition allows us to connect and reconnect
coordinators to individual objects at runtime. A prototype implementation of a dynamic version
of Cool in Smalltalk is available at [DCOOL]. We will describe the overall architecture of this
implementation in Section 7.5.2.2. But first, we demonstrate its application with an example.

7.5.2.1 Example: Synchronizing an Assembly System
The example involves the synchronization of an assembly system simulating the production of
candies (the example was adapted from [XER97]). An assembly system consists of a number of
workers, where each worker works independently in a separate thread and consumes and
produces some materials (cf. [Lea97]).

//in a separate JCore file Stack.jcore115

public class Stack
{    private int s_size;

     public Stack(int size)
     {    elements = new Object[size];
          top = -1;
          s_size = size;
     }
     public void push(Object element)
     {    elements[++top] = element;
     }
     public Object pop()
     {    return elements[top--];
     }

     private int top;
     private Object [] elements;
}

//in a separate Cool file Stacksync.cool // line  1
coordinator Stack // line  2
{    selfex push, pop; // line  3
     mutex {push, pop}; // line  4
     condition full=false, empty=true; // line  5

// line  6
     guard push: // line  7
         requires !full; // line  8
         onexit // line  9
         {     if (empty) empty=false; // line 10
               if (top==s_size-1) full=true; // line 11
         } // line 12
     guard pop: // line 13
         requires !empty; // line 14
         onexit // line 15
         {     if (full) full=false; // line 16
               if (top==-1) empty=true; // line 17
         } // line 18
} // line 19

Figure 122    Java implementation of a stack and Cool implementation of a stack
coordinator116
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Our sample assembly system is shown in Figure 123. There are two candy makers (instances of
CandyMaker), which make candies and pass them to the packer (an instance of Packer) by
sending it the message newCandy: with a new candy as a parameter. The packer collects a
certain number of candies, packages them into a pack, and passes the new pack to a finalizer (an
instance of Finalizer) by sending it the message newPack:. The finalizer also receives labels
from a label maker (an instance of LabelMaker). Once the finalizer has a pack and a label, it
glues the label onto the pack and ships the finished pack.

As stated before, each of the workers works independently in a separate thread. However, the
workers have to synchronize their work at certain points. We have the following
synchronization constraints:

1. The method newCandy: of Packer has to be self exclusive since we have more than one
candy maker calling this method concurrently;

2. The method newCandy: can only be executed if the pack in the packer is not full, otherwise
the thread sending newCandy: is suspended (the packer needs to start a new pack before
the thread can be resumed).

3. The packer has to close a full pack by sending itself the message processPack. Thus,
processPack requires that the current pack is full.

4. newPack: is sent to the finalizer after finishing the execution of processPack. However,
newPack: can only be executed if the finalizer does not currently have a pack, otherwise
the thread sending newPack: is suspended. When newPack: exits, the packer starts with
a new, empty pack.

5. newLabel: can only be executed when the finalizer does not currently have a label,
otherwise the thread sending newLabel: is suspended.

6. The finalizer glues a label to a pack by sending glueLabelToPack to itself. However,
glueLabelToPack can only be executed if the finalizer has one pack and one label.

7. Finalizer ships a new candy pack by sending itself shipNewCandyPack. This message is
sent right after finishing the execution of glueLabelToPack. When shipNewCandyPack
exits, the finalizer has neither a pack nor a label.

We will implement these constraints in a coordinator (i.e. a coordination object), which will be
connected to some of the workers. Indeed, as we will see later, we only need to attach the
coordinator to the packer and the finalizer. In our implementation of Dynamic Cool (i.e. a
version of Cool which supports dynamic reconfiguration), we connect an object to be
synchronized to a port of a coordinator. A coordinator has one port for each object it
synchronizes. This is illustrated in Figure 124.

aCandyMaker aLabelMaker

aPacker aFinalizer

aCandyMaker

newCandy:
aCandy

newCandy:
aCandy

newPack:
aPack

newLabel:
aLabel

Figure 123    Concurrent assembly system simulating the production of candy

Coordinator ports
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Once given the configuration in Figure 123, we achieve the configuration in Figure 124 as
follows. First, we define the new class AssemblyCoordinator as a subclass of Coordinator,
which is a class provided by the implementation of Dynamic Cool. Then we have to redefine the
method defineCoordination in AssemblyCoordinator. This method defines the
synchronization constraints. We will show the contents of this method in a moment.
AssemblyCoordinator has two ports: the port #packer, for synchronizing the packer, and the
port #finalizer, for synchronizing the finalizer. Given anAssemblyCoordinator (i.e. an instance
of AssemblyCoordinator), the following code connects aPacker to the #packer port of
anAssemblyCoordinator and aFinalizer to the #finalizer port of anAssemblyCoordinator:

anAssemblyCoordinator
register: aPacker at: #packer;
register: aFinalizer at: #finalizer.

The method defineCoordination in AssemblyCoordinator implements the synchronization
constraints. The contents of this method is shown in Figure 125.

There is a close correspondence between the code in Figure 125 and the synchronization
constraints listed earlier. We indicated which sections of the code implement which constraint
in the comments (in Smalltalk, comments are enclosed in double quotation marks). Our goal was
to make sure that the notation looks as close as possible to the Cool notation (cf. Figure 122),
while its syntax is still valid Smalltalk syntax.

aCandyMaker aLabelMaker

aPacker aFinalizer

aCandyMaker

newCandy:
aCandy

newCandy:
aCandy

newPack:
aPack

newLabel:
aLabel

anAssemblyCoordinator

port-object
connection
port

Figure 124    Candy assembly system synchronized using a coordinator
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defineCoordination

    “initialize condition variables” “line 1”
    packFull := false. “packer has no full pack” “line 2”
    gotPack := false. “finalizer has no pack” “line 3”
    gotLabel := false. “finalizer has no label” “line 4”

“line 5”
    self “line 6”

“line 7”
         “define the two ports: packer and finalizer” “line 8”
         addPorts: #( packer finalizer ); “line 9”

“line 10”
         “requirement #1” “line 11”
         selfex: #( 'packer.newCandy:' ); “line 12”

“line 13”
         “requirement #2” “line 14”
         guardOn: 'packer.newCandy:' “line 15”
                requires: [ :packer | packFull not ] “line 16”
                onExit: [ :packer | “line 17”
                    packer candyPack candyCount = packer maxCandyCount ifTrue: [ packFull := true ]]; “line 18”

“line 19”
         “requirement #3” “line 20”
         guardOn: 'packer.processPack' “line 21”
                requires: [ :packer | packFull ]; “line 22”

“line 23”
         “requirement #4” “line 24”
         guardOn: 'finalizer.newPack:' “line 25”
                requires: [ :finalizer | gotPack not ] “line 26”
                onEntry: [ :finalizer | gotPack := true ] “line 27”
                onExit: [ :finalizer | packFull := false ]; “line 28”

“line 29”
         “requirement #5” “line 30”
         guardOn: 'finalizer.newLabel:' “line 31”
                requires: [ :finalizer | gotLabel not ] “line 32”
                onEntry: [ :finalizer | gotLabel := true ]; “line 33”

“line 34”
         “requirement #6” “line 35”
         guardOn: 'finalizer.glueLabelToPack' “line 36”
                requires: [ :finalizer | gotPack & gotLabel ]; “line 37”

“line 38”
         “requirement #7” “line 39”
         guardOn: 'finalizer.shipNewCandyPack' “line 40”
                onExit: [ :finalizer | gotPack := false. gotLabel := false ]. “line 41”

Figure 125   Implementation of the synchronization constraints in defineCoordination
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The three condition variables initialized in lines 2-4 were declared as instance variables of
AssemblyCoordinator. packFull indicates whether the current pack in the packer is full or not.
gotPack is true if the finalizer has a pack and otherwise false. gotLabel indicates whether the
finalizer currently has a label or not. The two ports #packer and #finalizer are defined on line 9
by sending addPorts: to self (i.e. anAssemblyCoordinator). On line 12, the set of self-
exclusive methods is declared. In our case, we only declare newCandy: of the object connected
to the port #packer as self exclusive. We refer to this method as follows: ‘packer.newCandy:’.
This qualified method name  is an element of an array which is passed as an argument to the
message selfex:, which is sent to self.117 The remaining code defines six guards on six different
methods. For example, the guard on ‘packer.newCandy:’ on line 15 is defined by sending
guardOn:requires:onExit: to self. The first argument is the qualified method name, the second
argument defines the requires-condition block , which is implemented as a Smalltalk block
returning true or false, and the third argument defines the onExit block , which is also defined as
a Smalltalk block. Both blocks receive the object connected to the port on which the guard is
being defined, i.e., in our case, the object connected to #port.118 The onExit block sets packFull
to true if the current pack in the packer contains the maximum count of candy. The remaining
guards are defined by sending either guardOn:requires: or guardOn:requires:onEntry: or
guardOn:requires:onEntrys:onExit: to self.

The order of sending the messages, except for addPorts:, is not relevant. addPorts: has to be
sent first. Of course, we can also send any of these messages later in order to modify the
synchronization constraints at some point in time.

Some of the more interesting features of the Smalltalk implementation of Dynamic Cool include
the following

• The synchronization constraints in a coordinator can be modified at any time.

• The coordinators can be connect and reconnect to objects at any time.

• One object can be connected to more than one port of different coordinators (this is shown
in Figure 126) and/or of the same coordinator. Also, one coordinator may be used to
coordinate a number of instance of different classes at the same time.

• The same method of one object can be synchronized by more than one coordinator (this is
also shown in Figure 126);

• One coordinator can be reused for coordinating instances of different classes.

• A number of objects can be synchronized by a group of cooperating coordinators.

Applications of these features include the dynamic adaptation of the synchronization aspect
(e.g. due to dynamic load balancing) and the dynamic configuration of components, where each
component contributes its own coordinator which has to be composed with other coordinators.

Requires-condition,
onEntry, and
onExit blocks



Generative Programming, K. Czarnecki220

7.5.2.2 Architecture of the Smalltalk Implementation of Dynamic Cool
The main concepts of the Smalltalk implementation of Dynamic Cool are illustrated in Figure 127.
This figure shows two coordinators and an object connected to them.

As stated before, a coordinator has one or more named ports.119 Each port contains a number of
message coordinators. There is one message coordinator for each method coordinated at a port.
A message coordinator contains all the information required to coordinate one method. In
particular, it contains the waiting-condition blocks (including the negated requires-condition
block and the condition blocks generated according to the selfex and mutex sets) and the
onEntry and onExit blocks.

One message coordinator is connected to one synchronization listener. A synchronization
listener is a special kind of a listener in the sense of Section 7.4.7. It is connected to the
synchronized object at the message it synchronizes using the mechanism also described in
Section 7.4.7. It wraps the corresponding method of the synchronized object into appropriate
synchronization code. Specifically, in the before action of this synchronization code, the
synchronization listener checks all the waiting-condition blocks of all the message coordinators
it is connected to. If any of these blocks returns true, the current thread is suspended.
Otherwise, the onEntry blocks of the connected message coordinators are executed. Next, the
original method of the synchronized object is executed. Finally, in the after action, the onExit
blocks of the connected message coordinators are executed and the waiting threads are
signaled to reevaluate their waiting-condition blocks.

As shown in Figure 127, one synchronization listener can be connected to more than one
message coordinators (however, the message coordinators have to belong to different ports).

aPacker

aCoordinatorBaCoordinatorA

anObjectA anObjectB anObjectC

Figure 126    Example of a configuration containing an object connected to two
coordinators

Message
coordinators

Synchronization
listeners
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7.6 Implementation Technologies for Aspect-Oriented
Programming
Providing support for an aspect involves two things:

• implementing abstractions for expressing the aspect, and

• implementing weaving for composing the aspect code with the primary code and/or the
code for other aspects.

We address each of these points in the rest of this chapter.

7.6.1 Technologies for Implementing Aspect-Specific Abstractions
As stated, we have three main approaches to implementing the abstractions for expressing an
aspect:

• Encode the aspect support as a conventional library (e.g. class or procedure library). We
saw an example of this approach in Section 7.5.2. If we use this approach, we still need to
provide an appropriate composition mechanism which addresses the kind of crosscutting
the aspect involves.

• Design a separate language for the aspect. This was demonstrated in Section 7.5.1. The
language can be implemented by a preprocessor, compiler, or an interpreter. Preprocessors,
while often being a simple and economical solution, have a number of problems caused by
the lack of communication between different language levels. We discuss these problems in
Section 9.4.1.

• Design a language extension for the aspect. By a language extension we mean a modular
language extension that we can plug into whatever language (or, more appropriately,
configuration of language extensions) we currently use. This solution differs from the
previous one in technology rather than at the language level. We can actually use a
“separate language” as a language extension. We will just use it in a separate module or in
some other scoping mechanism. The main question here is whether the programming
platform we use supports pluggable, modular language extensions or it confines us to

aPacker

synchronized object

coordinator port
method

coordinator

synchronizing
listener

port-object connection

method

anObjectB

aCoordinatorA aCoordinatorB

Figure 127    Main concepts of the Dynamic Cool implementation
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using one fixed language or a fixed set of separate languages. An example of an extendible
platform is the Intentional Programming system discussed in Section 6.4.3.

Using a separate language or a language extension specialized to the problem at hand has a
number of advantages over using the conventional library approach. They are summarized in
Table 12. These advantages are usually cited in the context of domain-specific languages (i.e.
specialized languages; see e.g. [DK98]).

The conventional library approach does not only have disadvantages. It also has one important
advantage: Given the currently available technologies, it is often the only choice. This should
change when tools such as the IP system become widely available.

Modular language extensions have a number of advantages over a fixed set of separate
languages:

• Language extensions are more scalable. We can plug and unplug extensions as we go. This
is particularly useful, when, during the development of a system, we have to address more
and more aspects. We can start with a smaller set of aspects and add new ones as we go
(just as we add libraries).

• Language extensions allow the reuse of compiler infrastructure and language
implementation. We do not have to write a new compiler for each new aspect language.
Also, one extension can work with many others. Except for some glue code, most of the
implementation of a larger language extension can be reused for different configurations.

Advantages of
modular language
extensions
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We often say that a language is higher level if it allows us to solve problems with less effort.
But it is not widely recognized that the “level” of a language has at least two dimensions:
specialization level and abstraction level (see Figure 128).

Specialized languages or language extensions Conventional libraries

declarative representation

Requirements can be directly translated into the
language, e.g. synchronization constraints in
Cool. Specialized languages can use whatever
domain-specific notation is appropriate, e.g. two-
dimensional mathematical symbols for matrix
code.

less direct representation

Implementing requirements in a general
programming language often involves
obscure idioms and low-level language
details. For example, the Smalltalk
implementation of the Dynamic Cool uses the
Smalltalk block syntax with the the special
characters absent in the solution using the
Cool language.

simpler analysis and reasoning

The language constructs capture the intentions
of the programmer directly in the most
appropriate form. No complex programming
pattern or cliche analysis is needed to recognize
domain abstractions since each of them has a
separate language construct.

analysis often not practicable

General purpose constructs can be combined
in a myriad of ways. The intention of why
they were combined in this and not the other
way is usually lost (or, at best, represented
as a comment). We also discussed the
related traceability problem of design
patterns in Section 7.4.6.3. The analysis
problem is being addressed in the automatic
program analysis community with relatively
small or no success. The whole area of
program reengineering is also wrestling with
this problem.

force you to capture all of the important design
information

What otherwise makes a useful comment in a
program is actually a part of the language.

design information gets lost

See comments above.

allow domain-level error checking

Since you provide all the domain knowledge in a
form that the compiler can make use of, the
compiler can do more powerful error checking
based on this knowledge.

domain-level errors cannot be found
statically

allow domain-level optimizations

Domain-knowledge allows us to provide more
powerful optimizations than what is possible at
the level of a general purpose language. We
demonstrated this fact in Section 6.4.1.

domain-level optimizations hard to achieved
(only limited to impossible)

Most of the languages currently used in the
industry do not provide any support for
static metaprogramming. Template
metaprogramming in C++ allows us to
implement only relatively simple domain-
specific optimizations.

Table 12    Advantages of specialized languages over conventional libraries

Specialization and
abstraction level
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The horizontal axis indicates the abstraction level of a language. If a language has a higher
abstraction level, it means that it does more work for you. In other words, you write less
program code, but the code does more.121 On the language implementation side, higher level
implies that the implementation does much more code expansion, the runtime libraries are larger,
etc. An assembly language is an example of a very low-level language.

The vertical axis in Figure 128 represents the specialization level of a language. More specialized
languages are applicable to smaller classes of problems. We listed the advantages of applying
specialized languages in Table 12. Examples of modeling-concern-specific languages are Cool
and Ridl (Section 7.5.1). An example of a domain-specific language is RISLA [DK98], which is a
language for defining financial products.

7.6.2 Technologies for Implementing Weaving
In addition to the specialization and the abstraction level, aspect languages address a third
dimension which is the level of crosscutting (see Figure 129). As we will see below, weaving
separated, crosscutting code modules involves merging them in a coordinated way. If you use a
compiler for the weaving, the crosscutting level tells you how much transformation work the
compiler does for you.

Conceptually, composing separated aspects involves code transformation. This is illustrated in
Figure 130. Instead of writing the low-level tangled code (on the right), we write code with well
separated aspects (on the left) and use a transformation in order to obtain the lower-level
tangled code (also referred to as the “woven” code). We can use at least two different
technologies for implementing such transformations:

• source transformation and

• dynamic reflection.

Both technologies are examples of metaprogramming. Metaprogramming involves a domain
shift: The metacode is about the base code (just as an aspect is about some component(s); see
Figure 106). A more implementation-oriented definition of metaprogramming often found in
literature characterizes it as “manipulating programs as data”.

application-specific

abstraction
level

specialization
level

domain-specific

modeling-concern-specific
e.g. synchronization,

distribution

general

low level high level very high
level

assembly C++ Java

Prolog

Cool Ridl

RISLA

AspectJ
0.2.0

Figure 128    Classifying languages according to their specialization and
abstraction levels120
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Source transformation can be implemented in a compiler, a preprocessor, or a transformation
system. Compilers and preprocessors usually provide only a low level interface for writing
transformations consisting of parse tree node creation and editing operations (we assume that
you have access to the implementation of the compiler or the preprocessor). Transformation
systems, on the other hand, give you a more convenient interface including pattern matching
facilities,  Lisp-like quoting facilities, program analysis facilities (e.g. data and control flow
analysis), etc. We discussed transformation systems in Chapter 6.

If the woven code need not have to be rearranged at runtime, we can do the program
transformation before runtime and generate efficient, statically-bound code.123 For example, the
AspectJ version described in Section 7.5.1 weaves the code before runtime using a transforming
preprocessor. Alternatively, we could also provide some generating capability at runtime (e.g.
by including some transforming component and/or the compiler in the runtime version), so that
we can optimize the code if certain aspect constellations are repeatedly needed.

The other technique for weaving aspects is to use dynamic reflection. Dynamic reflection
involves having explicit representations of some elements of the programming language being
used (i.e. the metalevel) at runtime (see [KRB91] for a stimulating discussion of this topic). As
stated before, examples of such representations are metaobjects representing classes, methods,
message sends, method-execution contexts, etc. Using such metarepresentations, we can
modify the meaning of some language elements at runtime and, this way, arrange for a
transparent transfer of control between aspects.124 We have seen a concrete example of
applying these techniques in Sections 7.4.7 and 7.5.2.

Now the question is: how do we achieve the transformation of the separated code into the
tangled code shown in Figure 130 using dynamic reflection? Instead of explicitly transforming
the high-level code with separated aspects into the tangled code, the high-level code is
interpreted at runtime and the control between the aspects is transferred so often that this
execution is effectively equivalent to executing the tangled code. Thus, we achieve the desired
effect through interpretation of the aspect rather than explicitly generating the tangled code.
However, this approach has both its advantages and disadvantages.

The positive side to dynamic reflection is the ability to dynamically reconfigure the code. For
example, the Smalltalk implementation of Dynamic Cool allows us to reattach coordinators at

application-specific

abstraction
level

specialization
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domain-specific
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general
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low cc

high cc

very high cc

Figure 129    Crosscutting level as the third dimension of languages122
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runtime. The running system could even produce new configuration and components which
were not preplanned before runtime. On the other hand, the dynamic transfer of control between
aspects incurs certain runtime overhead, e.g. dynamic method calls, dynamic reification (e.g.
requesting the object representing the execution context of a method in Smalltalk125), etc. If the
performance is critical and static configuration is sufficient, static code transformation is
certainly the better choice.

Separating relevant aspects may often require quite complicated transformations to get back to
the lower-level, tangled version. Vandevoorde [Van98] proposed an illuminating model for
visually representing some of this complexity. His idea is to show the traceability relationships
between the locations in the high-level source and the locations in the low-level code in a two-
dimensional Cartesian coordinate system (see Figure 131). The horizontal axis of this coordinate
system represents the code locations (e.g. line numbers) in the high-level source and the
vertical axis represents the code locations in the lower-level, tangled code. Next, we plot the
points which represent the correspondence between the locations in the source and the tangled
code. For example, the left diagram in Figure 131 shows a linear transformation between the
location in the source and the transformed code. The semantics of this diagram are as follows:
Given the location x in the source, the corresponding location y indicates the portion of the
transformed code that was derived from the source code at x. Next, we indicate the portions of
the source code implementing some aspects, e.g. A, B, or C. Given the transformation of
locations, we can tell which part of the transformed code implements which aspect. Of course,
the whole idea of AOP is that the location transformation is nonlinear. For example, the
transformation might look like the one in Figure 131 on the right.

source code “woven” code

transformation

aspect A

aspect B

aspect C

Figure 130    Composing separated aspects involves transformation
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The traceability relationship between the code locations in the source and the tangled code is
often a many-to-many one (see Figure 132). Of course, the diagram shows the relationship just
for one particular source. A slightly different source might result in a radically different
transformation.

The amount of transformation work we have to do depends on the level of crosscutting we are
addressing. In Section 7.4.8, we gave a whole set of important aspects of OO programs that can
be addressed by the relatively simple message-join-point composition mechanisms, which do
not involve complex transformation work. Thus, by adding a few reflective constructs such as
the different kinds of before and after methods to a language, we can already cover a large
number of aspects. However, there are also other aspects, such as domain-specific
optimizations in numerical computing, which may involve extremely complex, multi-level
transformations. But even in this case, at the different individual levels, we often deal with
crosscutting that follows some well structured patterns such as data or control flow, geometry
of the problem, etc. The kind of programming abstractions need for capturing the different kinds
of crosscutting represents an exciting area for future research.
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Figure 131    Diagrams illustrating traceability relationships between locations in source and
transformed code
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Figure 132    Traceability relationship with one-to-
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The code location traceability model we discussed above allows us to make a number of
important points [Van98]:

• Verification problem: The more non-linear the transformation is the more difficult it is to
compute it and thus more difficult to implement it. In particular, given an implementation,
e.g. using a transformation system, verifying the correctness of the generated code is
extremely difficult. This problem is basically the compiler verification problem. The
verification is the more difficult the more higher abstraction and crosscutting level the
source code is. Thus, adequate debugging support for the transformation code is crucial.

• Debugging problem: In order to be able to find errors in the transforms, we have to be able,
as in IP (see Section 6.4.3.3), to debug the generated code at various levels (i.e. source
level, intermediate transformation levels, and the lower level). The debugging support is
further complicated by the fact that the transformation may implement a many-to-many
relationship between the higher-level concepts and the lower-level concepts. As we
discussed in Section 6.4.3.3, we also need domain-specific debugging code that allows us
to compute the values of some higher-level variables, which are not directly represented in
the executable. Finally, domain-specific debugging models are required for the application
programmers using the high-level languages since the traditional stepping through the
source code is not adequate for all high-level aspects. For example, the mutual exclusion
aspect in AspectJ coordinators requires special debugging support, such as tools for
monitoring waiting threads, deadlock detection, etc. Another useful feature for the domain-
specific level is to be able to navigate from any statement to the aspect modules that affect
its semantics. For example, you could click on a method and get a menu of the coordinators
that mention this method.127

• Transformations allowing separation of some aspects only: Supposed we had a set of
exemplar programs and, after the programs were written, we came up with a number of
aspects which are tangled in these programs and we would like to separate them. Thus, we
are looking for a transformation which can transform the equivalent versions of the
programs with separated aspects into their tangled versions and, of course, one that we can
also use for weaving new aspect programs. In other words, we succeed in separating these
aspects in all these programs, only if we find the transformation for weaving them.
Unfortunately, the higher abstraction and crosscutting level the aspects are, the higher is
the chance that the transformation we are looking for is extremely difficult to compute.
Thus, in some cases, it may turn out that a less complicated transformation is more
economical, even if it just allows us to write programs where only some of the aspects are
separated.

The challenge of high-level programming is obvious: as we increase the abstraction and the
crosscutting levels of a set of aspect languages (while increasing their generality level or
keeping it constant), the complexity of the required weaving transformations usually grows
rapidly. In this context, it is interesting to realize the impact of this level increase on our
industry: The software industry employs hordes of programmers, who work as aspect weavers
by transforming high level requirements into low level code. By increasing the abstraction and
crosscutting levels of programming languages, we eliminate some of the manual, algorithmic
work performed by the programmers. One interpretation of this observation is that the advances
in programming language design and implementation compete with masses of programmers
possessing a huge spectrum of highly specialized skills and thus the automatic transformations
required for any progress are inevitably getting more and more complex. The other interpretation
is that by moving some of the manual work into the aspect weavers, we allow the programmers
to concentrate on the more creative parts of software development and enable the construction
of even more complex systems.

7.6.3 AOP and Specialized Language Extensions
Each aspect needs some appropriate linguistic support, i.e. concern-specific abstractions and
composition mechanisms addressing crosscutting. In Section 7.6.1, we discussed the
advantages of specialized languages over conventional libraries and the conclusion of Section
7.6.2 was that a fixed set of composition mechanisms cannot support all kinds of crosscutting.
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Thus, the model of modular language extensions, as exemplified by the IP system, seems to be
very appropriate for AOP. It allows a fast dissemination of new composition mechanisms and
domain-specific language features or feature frameworks supporting various aspects. Most
importantly, these extensions can be used in different constellations, each one tuned towards
some domain or domain category. Given this language extension model, the discussion whether
to support a number of aspects with one separate language per aspect or with one
comprehensive language or with some other number of languages becomes pointless.

7.6.4 AOP and Active Libraries
If we subscribe to the idea that the language extension model is well suited for AOP, IP-like
extension libraries (see Section 6.4.3.6.2) become an attractive vehicle for packaging and
distributing such extensions. Indeed, we already observe a trend towards shifting some of the
responsibilities of compilers to libraries. An example of this shift is the Blitz++ library developed
by Veldhuizen [Vel96, Vel98b, Bli] (also see Section 8.11 for other examples).

Blitz++ is a C++ array library for numeric computing. The two most important design goals of
Blitz++ are to support a high-level mathematical notation for array expressions and, at the same
time, to achieve high efficiency in terms of execution speed and memory consumption. The
library is quite successful in satisfying these design goals. For example, instead of writing

Array<float,1> A(12);
for (int i=0; i<12; ++i)
    A(i) = sin(2*M_PI / 12*i);

we can simply write

A = sin(2*M_PI / 12*i);

where i is a special placeholder variable. Blitz++ achieves an excellent performance (cf.
benchmark results in [VJ97, Vel97, Vel98a]) by applying optimizations such as loop fusing and
elimination of temporary variables. An important property of these optimizations is that they
need some knowledge of the abstractions they are applied to, e.g. the array components. Thus,
they are most appropriately packaged in the library which contains these components rather
being implemented in the compiler.

According to Veldhuizen [Vel98a], there are also strong economical reasons for putting the
domain-specific optimizations into the library rather than the compiler. First, specialized domains
such as scientific computing represent still a small segment market and major compiler vendors
focus on providing best support for the average case rather than specialized niches. Supporting
a niche is also quite expensive since the cost of compiler development is very high (according
to [Vel98a] $80 and more per line of code). Finally, compiler releases represent only an extremely
slow channel for distributing new domain-specific features. Thus, putting domain-specific
optimizations into libraries is certainly the better solution. However, it is important to note that
this solution requires some compile-time metaprogramming capabilities of the language used to
program the library. In the case of C++, this only became possible after all the C++ language
features enabling template metaprogramming became part of the language in the final standard
(see Chapter 8).

Both Blitz++ and the generative matrix computation library described in Chapter 10 are examples
of libraries that contain code which extends the compiler. We refer to such libraries as
generative libraries. The benefit of generative libraries is that we can write high-level code as
opposed to tangled code and still achieve an excellent performance. Unfortunately, there are
severe limitations to template metaprogramming, such as the lack of user-defined error reporting
and inadequate debugging support. The situation does not improve substantially if we use
preprocessors. Although they allow error reporting at the level of the preprocessed code, they
require more development effort for implementing the processing infrastructure and also
introduce a split between the preprocessor level and the compiler level. This split makes
debugging and reporting of compiler-level errors even more difficult.

Generative libraries
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As we saw in Section 6.4.3, in addition to domain-specific optimizations, we would also like to
package other responsibilities in libraries, such as domain-specific editing and displaying
capabilities (including aspect-specific views on the code), domain-specific debugging support,
domain-specific type systems, code analysis capabilities, etc. Given an extendible programming
environment such as IP, the packaging of all these capabilities becomes more economical since
we do not have to reinvent the compiler and programming infrastructure every time we need
some new language extension. Also, the problems of template metaprogramming and
preprocessors disappear. We refer to libraries extending the whole programming environment as
programming environment extension libraries.

In general, we use the term active libraries128 to refer to libraries which, in addition to the base
code implementing domain concepts to be linked to the executable of an application, also
contain metacode which can be executed at different times and in different contexts in order to
compile, optimize, adapt, debug, analyze, visualize, and edit the base concepts. Furthermore,
they can describe themselves to tools (such as compilers, profilers, code analyzers, debuggers,
etc.) in an intelligible way.

Active libraries may contain more than one generation metalevel, e.g. there could be code that
generates compilation code based on the deployment context of the active library (e.g. they
could query the hardware and the operating system about their architecture). Furthermore, the
same metarepresentations may be used at different times and in different contexts, e.g. based on
the compile-time knowledge of some context properties which remain stable during runtime,
some metarepresentations may be used to perform optimizations at compile time and other
metarepresentations may be injected into the application in order to allow optimization and
reconfiguration at runtime.129 Which metarepresentations are evaluated at which time will
depend on the target application.

This perspective outlined above forces us to redefine the conventional interaction between
compilers, libraries, and applications. In a sense, active libraries can be viewed as a kind of
knowledgeable agents, which interact with each other in order to produce more specialized
agents, i.e. applications, which allow the user to solve specific problems. All the agents need
some infrastructure supporting communication between agents, generation, transformation,
interaction with the programmers, versioning, etc. This infrastructure could be referred to as
compiler middleware or as more general programming environment middleware.

7.7 Final Remarks
The initial contribution of AOP is to focus our attention on the important deficiency of current
component technologies: the inability to adequately capture many important aspects of
software systems using generalized procedures only.

However, as we have seen in this chapter, AOP has also a profound impact on analysis and
design by introducing a new style of decomposition (we will characterize this style as a
multiparadigm decomposition style later in this section). It also motivates the development of
new kinds of composition mechanisms and new concern- and domain-specific languages. As we
go along, we will be able to componentize more kinds of aspects.

Our feeling is that, as we come up with more and more systems of aspects, they will become
qualities on their own. From the modeling perspective, we can view systems of aspects as
reusable frameworks of system decomposition. Thus, the impact of AOP on modeling methods
will be fundamental. In order to understand this impact, we have to realize that most of the
current analysis, design, and implementation  methods are centered around single paradigms,
e.g. OO methods around objects, structured methods around procedures and data structures.
The insight of AOP is that we need different paradigms for different aspects of a system we
want to build. This kind of thinking is referred to as the multiparadigm view (see e.g. [Bud94]).

We certainly do not have start from scratch. There are whole research communities who have
been working on paradigms for different aspects for decades. We refer here simply to
communities working on various aspects, e.g. synchronization, distribution, error handling, etc.

Programming
environment
extension libraries

Active libraries

Compiler
middleware,
programming
environment
middleware

Multiparadigm view
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By committing to the multiparadigm view in language design and in the development of
modeling methods, we will be able to transfer more of the research results of these communities
into practice. Thus, while the recognition of the limitations of generalized procedures will be a
true “eye opener” for our industry, this is just the beginning.

7.8 Appendix: Instance-Specific Extension Protocol
This appendix contains the implementation of the instance-specific extension protocol
described in Section 7.4.7.3 for Smalltalk\VisualWorks. 130 The protocol allows us to define
methods in instances and add instance variables to instances. This code has been tested with
VisualWorks versions 2.0, 2.5, and 3.0. 131 It is also available at [DCOOL].132

Object methods in protocol 'instance specialization':

specialize: aString
"Compile aString as a method for this instance only."

self specialize.
self basicClass compile: aString notifying: nil.

addInstanceVariable: aString
"Add an instance variable and accessing
methods based on the name aString"

self specialize.
self incrementNumberOfInstVarsInMyClassFormat.
self mutateSelfToReflectNewClassFormat.
self addAccessingMethodsForLastInstVarUsing: aString.

unspecialize
“Get rid of my private aBehavior, if any.”

self isSpecialized ifFalse: [^self].
self changeClassToThatOf: self class basicNew.

isSpecialized
“Check if I am specialized by checking if my class is aBehavior.”

^self basicClass shouldBeRegistered not

basicClass
"Answer the object which is the receiver's class."

<primitive: 111>
self primitiveFailed

Object methods in protocol 'private - instance specialization':

specialize
"Insert a private instance of Behavior between me and my class."

| class |
self isSpecialized ifTrue: [^self].
class := Behavior new

superclass: self class;
setInstanceFormat: self class format;
methodDictionary: MethodDictionary new.

self changeClassToThatOf: class basicNew.
self basicClass compile:

'class
^super class superclass'

notifying: nil.

incrementNumberOfInstVarsInMyClassFormat
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"Set the format of my class so that it defines the number
of instance variables to be higher by one than previously"

| format  newInstVarListSize |
newInstVarListSize := self basicClass instSize - self class instSize + 1.
format := ClassBuilder new

genFormat: newInstVarListSize
under: self class
format: self basicClass format.

self basicClass setInstanceFormat: format.

mutateSelfToReflectNewClassFormat
"Mutate self to get in sync with the new format of my class"

| newIVSize mappingArray newInst |
newIVSize := self basicClass instSize.
mappingArray := Array new: newIVSize.
1 to: newIVSize - 1 do: [ :i | mappingArray at: i put: i].
mappingArray at: newIVSize put: 0.
newInst := ClassBuilder new

createCopy: self
under: self basicClass
using: mappingArray.

self become: newInst.

addAccessingMethodsForLastInstVarUsing: aString
"Add getters and setters for the last instance
variable using aString for naming"

| lastIVIndex getMeth putMeth |
lastIVIndex := self basicClass instSize.
getMeth := aString, ' ^self instVarAt: ',

lastIVIndex printString.
self basicClass compile: getMeth notifying: nil.
putMeth := aString, ': aValue self instVarAt: ',

lastIVIndex printString, ' put: aValue'.
self basicClass compile: putMeth notifying: nil.

7.9 Appendix: Attaching Objects
This appendix contains the implementation of the non-invasive, dynamic composition
mechanism described in Section 7.4.7 for Smalltalk\VisualWorks. 133 This code has been tested
with VisualWorks versions 2.0, 2.5, and 3.0. 134 It is also available at [DCOOL].

Object methods in protocol 'attaching objects':

attach: anObject at: selector
"Attach anObject at selector. All messages selector
sent to self are redirected to anObject."

self makeObjectAttachable.
self redirectMessage: selector.

self listenersDictionary at: selector put: anObject.

attach: anObject at: selector1 and: selector2
"Attach anObject at selector1 and selector2. All messages selector1
and selector2 sent to self are redirected to anObject."

self makeObjectAttachable.
self redirectMessage: selector1.
self redirectMessage: selector2.

self listenersDictionary at: selector1 put: anObject.
self listenersDictionary at: selector2 put: anObject.

attach: anObject atSelectors: aCollection
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"Attach anObject at selectors contained in  aCollection."

self makeObjectAttachable.
aCollection do: [ :selector |

self redirectMessage: selector.
self listenersDictionary at: selector put: anObject ].

attach: anObject at: selector1 sending: selector2
"Attach anObject at selector1. All messages selector1
sent to self are converted to selector2 and redirected to anObject.
selector2 has to be an unary message selector, i.e. expects no arguments."

self makeObjectAttachable.
self redirectMessage: selector1 as: selector2.

self listenersDictionary at: selector1 put: anObject.

detachAt: selector
"Stop redirecting messages of the form ‘selector’."

self basicClass removeSelector: selector.
self listenersDictionary removeKey: selector.

baseCall
"This method is intended to be invoked directly or indirectly by a redirected message.
baseCall calls the base method, i.e. the method which would have been called
if it the message was not redirected."

| baseContext selector baseMethod na args |
baseContext := self baseContext.

"find out the selector of the originally dispatched method"
selector := baseContext receiver basicClass

selectorAtMethod: baseContext
method ifAbsent: [ self error: 'method not found - should not happen' ].

"retrieve the arguments of the originally dispatched method"
na := selector numArgs.
args := Array new: na.
1 to: na do: [ :i | args at: i put: (baseContext localAt: i) ].

"look up the base method; if not found, report an error"
baseMethod := baseContext receiver class findSelector: selector.
baseMethod isNil ifTrue: [

Object messageNotUnderstoodSignal
raiseRequestWith: (Message selector: selector arguments: args)
errorString: 'superCall: Message not understood by the base object: ' , selector. ].

baseMethod := baseMethod at: 2.

"execute the base method"
^baseContext receiver performMethod: baseMethod arguments: args

baseContext
"Return the initial method context of the redirected message.
Override this method if you have a direct reference to baseObject in a sublass.

In that case, test if receiver == baseObject instead of isObjectAttachable.”

| ctx |
ctx := thisContext.
[ ctx == nil or: [

ctx receiver isObjectAttachable and: [ ctx receiver ~~ self]]] whileFalse: [ ctx := ctx sender ].
ctx == nil ifTrue: [ self error: 'base context not found' ].
^ctx

baseObject
"Return the original receiver of the redirected message."

^self baseContext receiver
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Object methods in protocol 'private - attaching objects':

makeObjectAttachable
"Prepare this object for redirecting messages."

self isObjectAttachable ifTrue: [ ^self ].

self
addInstanceVariable: 'listenersDictionary';
listenersDictionary: IdentityDictionary new.

isObjectAttachable
"Is this object prepared to redirect messages?"

^self basicClass includesSelector: #listenersDictionary

redirectMessage: selector
"Redirect messages of the form ‘selector’ to self to the appropriate listener object."

self redirectMessage: selector as: nil

redirectMessage: selector1 as: selector2OrNil
"Redirect messages of the form ‘selector1’ to self to the appropriate listener object.
If selector2OrNil is not nil, convert the message to selector2OrNil."

| dispatchMeth aStream selectorWithArguments newSelector |

(self messageIsRedirected: selector1) ifTrue: [ ^self ].
selectorWithArguments := self insertArgumentsInto: selector1.
newSelector := selector2OrNil isNil

ifTrue: [ selectorWithArguments ]
ifFalse: [ selector2OrNil ].

aStream := WriteStream on: (String new: 100).
aStream

nextPutAll: selectorWithArguments;
nextPutAll: ' ^(self listenersDictionary at: #';
nextPutAll: selector1;
nextPutAll: ') ';
nextPutAll: newSelector.

dispatchMeth := aStream contents.
self basicClass compile: dispatchMeth notifying: nil.

messageIsRedirected: selector

^self basicClass includesSelector: selector

insertArgumentsInto: selector
"self insertArgumentsInto: 'messageArg1:with:' returns 'messageArg1: t1 with: t2' "

| aStream numArgs |
aStream := WriteStream on: (String new: 60).
(numArgs := selector numArgs) = 0

ifTrue: [ aStream nextPutAll: selector ]
ifFalse: [

selector keywords with: (1 to: numArgs) do: [ :word :i |
aStream nextPutAll: word; nextPutAll: ' t'; print: i; space ]].

^aStream contents

7.10 Appendix: Strategy Pattern With Parameterized Binding
Mode
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#include <iostream.h>

template<class StrategyType>
class Context
{

public:
Context(StrategyType *s)

: strategy(s)
{}
void doWork()
{

strategy->doAlgorithm();
}
void setStrategy(StrategyType *newStrategy)
{

strategy=newStrategy;
}

private:
StrategyType *strategy;

};

class DynamicStrategy
{

public:
virtual void doAlgorithm() = 0;

};

class StaticStrategy
{};

template<class ParentStrategy>
class StrategyA : public ParentStrategy
{

public:
void doAlgorithm()
{ cout << "Strategy A: doAlgorithm()\n";
}

};

template<class ParentStrategy>
class StrategyB : public ParentStrategy
{

public:
void doAlgorithm()
{ cout << "Strategy B: doAlgorithm()\n";
}

};

void main()
{

cout << "test context with a static strategy:\n";
StrategyA<StaticStrategy> statStrategyA;
Context<StrategyA<StaticStrategy> > context_with_static_strategy(&statStrategyA);
context_with_static_strategy.doWork();

cout << "\n";
cout << "test context with a dynamic strategy:\n";
StrategyA<DynamicStrategy> dynStrategyA;
StrategyB<DynamicStrategy> dynStrategyB;

Context<DynamicStrategy> context_with_dynamic_strategy(&dynStrategyB);
context_with_dynamic_strategy.doWork();
context_with_dynamic_strategy.setStrategy(&dynStrategyA);
context_with_dynamic_strategy.doWork();

}
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Chapter 8 Static Metaprogramming in C++

8.1 What Is Static Metaprogramming?
In linguistics, a metalanguage is defined as follows [Dict]:

“any language or symbolic system used to discuss, describe, or analyze another language
or symbolic system”

This definition characterizes the main idea of metaprogramming, which involves writing
programs related by the meta-relationship, i.e. the relationship of “being about”. A program that
manipulates another program is clearly an instance of metaprogramming. In Section 7.4.7, we
saw other instances of metaprogramming which do not necessarily involve program
manipulation (e.g. before and after methods135); however, in this chapter we focus on generative
metaprograms, i.e. programs manipulating and generating other programs.

generative metaprogram= algorithm + program representation

Metaprograms can run in different contexts and at different times. In this chapter, however, we
only focus on static metaprograms. These metaprograms run before the load time of the code
they manipulate.136

The most common examples of systems involving metaprogramming are compilers and
preprocessors. These systems manipulate representations of input programs (e.g. abstract
syntax trees) in order to transform them into other languages (or the same language as the input
language but with a modified program structure). In the usual case, the only people writing
metaprograms for these systems are compiler developers who have the full access to their
sources.

The idea of an open compiler is to make metaprogramming more accessible to a broader
audience by providing well-defined, high-level interfaces for manipulating various internal
program representations (see e.g. [LKRR92]). A transformation system is an example of an open
compiler which provides an interface for writing transformations on abstract syntax trees
(ASTs). We discussed them in Section 6.3. An open compiler may also provide access to the
parser, runtime libraries, or any other of its parts. The Intentional Programming System is a good
example of a widely-open programming environment. Unfortunately, currently no industrial-
strength open compilers are commercially available (at least not for the main-stream object-
oriented languages).137

8.2 Template Metaprogramming
A practicable approach to metaprogramming in C++ is template metaprogramming. Template
metaprograms consist of class templates operating on numbers and/or types as data.

Metalanguage

Metaprogramming

Generative
metaprograms

Static
metaprograms

Open compilers
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Algorithms are expressed using template recursion as a looping construct and class template
specialization as a conditional construct. Template recursion involves the direct or indirect use
of a class template in the construction of its own member type or member constant.

Here is an example of a class template138 which computes the factorial of a natural number:

template<int n>
struct Factorial
{

enum { RET = Factorial<n-1>::RET * n };
};

//the following template specialization terminates the recursion
template<>
struct Factorial<0>
{

enum { RET = 1 };
};

We can use this class template as follows:

void main()
{

cout << Factorial<7>::RET << endl; //prints 5040
}

The important point about this program is that Factorial<7> is instantiated at compile time. During
the instantiation, the compiler also determines the value of Factorial<7>::RET. Thus, the code
generated for this main() program by the C++ compiler is the same as the code generated for the
following main():

void main()
{

cout << 5040 << endl; //prints 5040
}

We can regard Factorial<> as a function which is evaluated at compile time. This particular
function takes one number as its parameter and returns another in its RET member (RET is an
abbreviation for RETURN; we use this name to mimic the return statement in a programming
language). It is important to note that we are dealing with a shift of intentionality here: The job
of the compiler is to do type inference, template instantiation, and type construction, which
involve computation. We use the fact that the compiler does computation and, by encoding
data as numbers and types, we can actually use (or abuse) the compiler as a processor for
interpreting metaprograms.

Thus, we refer to functions such as Factorial<> as metafunctions. Factorial<> is a metafunction
since, at compilation time, it computes constant data of a program which has not been generated
yet.

A more obvious example of a metafunction would be a function which returns a type, especially
a class type. Since a class type can represents computation (remember: it may contain methods),
such a metafunction actually manipulates representations of computation.

The following metafunction takes a Boolean and two types as its parameters and returns a type:

template<bool cond, class ThenType, class ElseType>
struct IF
{ typedef ThenType RET;
};

template<class ThenType, class ElseType>
struct IF<false, ThenType, ElseType>
{ typedef ElseType RET;
};

As you have probably recognized, this function corresponds to an if statement: it has a
condition parameter, a “then” parameter, and an “else” parameter. If the condition is true, it

Metafunctions
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returns ThenType in RET. This is encoded in the base definition of the template. If the condition
is false, it returns ElseType in RET. Thus, this metafunction can be viewed as a meta-control
statement.

We can use IF<> to implement other useful metafunctions. For example, the following
metafunction determines the larger of two numeric types:

#include <limits>
using namespace std;

template<class A, class B>
struct PROMOTE_NUMERIC_TYPE
{
    typedef IF<
        numeric_limits<A>::max_exponent10 < numeric_limits<B>::max_exponent10
        ||
        (numeric_limits<A>::max_exponent10==numeric_limits<B>::max_exponent10
            &&
         numeric_limits<A>::digits < numeric_limits<B>::digits),

        B,
        A>::RET RET;
};

This metafunction determines the larger numeric type as follows:

1. it returns the second type if its exponent is larger than the exponent of the first type or, in
case the exponents are equal, it returns the second type if it has a larger number of
significant digits;

2. otherwise, it returns the first type.

For example, the following expression evaluates to float:

PROMOTE_NUMERIC_TYPE<float, int>::RET

PROMOTE_NUMERIC_TYPE<> retrieves information about number types (i.e. metainformation)
such as maximum exponent and number of significant digits from the numeric_limits<> templates
provided by the standard C++ include file limits. Templates providing information about other
types are referred to as traits templates [Mye95] (cf. traits classes in Section 6.4.2.4).

The standard traits template numeric_limits<> encodes many important properties of numeric
types. The following is the base template (the base template is specialized for different numeric
types):

template<class T>
    class numeric_limits
{
  public:
    static const bool has_denorm = false;
    static const bool has_denorm_loss = false;
    static const bool has_infinity = false;
    static const bool has_quiet_NaN = false;
    static const bool has_signaling_NaN = false;
    static const bool is_bounded = false;
    static const bool is_exact = false;
    static const bool is_iec559 = false;
    static const bool is_integer = false;
    static const bool is_modulo = false;
    static const bool is_signed = false;
    static const bool is_specialized = false;
    static const bool tinyness_before = false;
    static const bool traps = false;
    static const float_round_style round_style = round_toward_zero;
    static const int digits = 0;
    static const int digits10 = 0;

Traits templates

Metainformation
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    static const int max_exponent = 0;
    static const int max_exponent10 = 0;
    static const int min_exponent = 0;
    static const int min_exponent10 = 0;
    static const int radix = 0;
    static T denorm_min() throw();
    static T epsilon() throw();
    static T infinity() throw();
    static T max() throw();
    static T min() throw();
    static T quiet_NaN() throw();
    static T round_error() throw();
    static T signaling_NaN() throw();
    };

As stated, this base template is specialized for different numeric types. Each specialization
provides concrete values for the members, e.g.:

template<>
    class numeric_limits <float>
{
  public:

//...
static const bool is_specialized = true; // yes, we have metainformation information about float

     //...
    static const int digits = 24;
    //...
    static const int max_exponent10 = 38;
    //...
};

Given the above definition, the following expression evaluates to 24:

numeric_limits<float>::digits

In general, we have three ways to provide information about a type:

• define a traits template for the type,

• provide the information directly as members of the type, or

• define a configuration repository (we discuss this approach in Section 8.7).

The first approach is the only possible one if the type is a basic type or if the type is user
defined and you do not have access to its source or cannot modify the source for some other
reason. Moreover, the traits solution is often the preferred one since it avoids putting too much
information into the type.

There are also situations however, where you find it more convenient to put the information
directly into the user-defined type. For example, later in Section 10.3.1.3, we will use templates to
describe the structure of a matrix type. Each of these templates represents some matrix parameter
or parameter value. In order to be able to manipulate matrix structure descriptions, we need some
means for testing whether two types were instantiated from the same template or not. We can
accomplish this by marking the templates with IDs. Let us take a look at an example. Assume
that we want to be able to specify the parameter temperature of some metafunction in Fahrenheit
and in Celsius (i.e. centigrade). We could do so by wrapping the specified number in the type
indicating the unit of temperature used, e.g. fahrenheit<212> or celsius<100>. Since we want to be
able to distinguish between Fahrenheit and Celsius, each of these two templates will have an ID.
We provide the IDs through a base class:

struct base_class_for_temperature_values
{

enum {
// IDs of values
celsius_id,
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fahrenheit_id };
};

And here are the two templates:

//celsius
template<int Value>
struct celsius : public base_class_for_temperature_values
{ enum {

id= celsius_id,
value= Value };

};

//fahrenheit
template<int Value>
struct fahrenheit: public base_class_for_temperature_values
{ enum {

id= fahrenheit_id,
value= Value };

};

Please note that each template “publishes” both its ID and its parameter value as enum
constants.139 Now, let us assume that some metafunction SomeMetafunction<> expects a
temperature specification in Fahrenheit or in Celsius, but internally it does its computations in
Celsius. Thus, we need a conversion metafunction, which takes a temperature specification in
Fahrenheit or in Celsius and returns a temperature value in Celsius:

template<class temperature>
struct ConvertToCelsius
{ enum {

RET=
temperature::id==temperature::fahrenheit_id ?

(temperature::value-32)*5/9                       :
 temperature::value };

};

Here is an example demonstrating how this metafunction works:

cout << ConvertToCelsius<fahrenheit<212> >::RET << endl; // prints “100”
cout << ConvertToCelsius<celsius<100> >::RET << endl; // prints “100”

Now, you can use the conversion function in SomeFunction<> as follows:

template<class temperature>
class SomeFunction
{

enum {
celsius = ConvertToCelsius<temperature>::RET,

 // do some other computations...
 //... to compute result

};
public:

enum {
RET = result };

};

The latter metafunction illustrates a number of points:

• You do some computation in the private section and return the result in the public section.

• The enum constant initialization is used as a kind of “assignment statement”.

• You can split computation over a number of “assignment statements” or move them into
separate metafunctions.

There are two more observations we can make based on the examples discussed so far:

• Metafunctions can take numbers and/or types as their arguments and return numbers or
types.
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• The equivalent of an assignment statement for types is a member typedef  declaration (see
the code for PROMOTE_NUMERIC_TYPE<> above).

8.3 Metaprograms and Code Generation
The previous examples of metafunctions demonstrated how to perform computations at compile
time. But we can also arrange metafunctions into metaprograms that generate code.

We start with a simple example. Assume that we have the following two types:

struct Type1
{

static void print()
{

cout << "Type1" << endl;
}

};

struct Type2
{

static void print()
{

cout << "Type2" << endl;
}

};

Each of them defines the static inline method print(). Now, consider the following statement:

IF< (1<2), Type1, Type2>::RET::print();

Since the condition 1<2 is true, Type1 ends up in RET. Thus, the above statement compiles into
machine code which is equivalent to the machine code obtained by compiling the following
statements:

cout << "Type1" << endl;

The reason is that print() is declared as a static inline method and the compiler can optimize away
any overhead associated with the method call. This was just a very simple example, but in
general you can imagine a metafunction that takes some parameters and does arbitrarily complex
computation in order to select some type providing the right method:

SomeMetafunction</* takes some parameters here*/>::RET::executeSomeCode();

The code in executeSomeCode() can also use different metafunctions in order to select other
methods it calls. In effect, we are able to combine code fragments at compile time based on the
algorithms embodied in the metafunctions.

As a further example of static code generation using metafunctions, we show you how to do
loop unrolling in C++. In order to do this, we will use a meta while loop available at [TM]. In
order to use the loop we need a statement and a condition. Both will be modeled as structs . The
statement has to provide the method execute() and the next statement in next. The code in
execute() is actually the code to be executed by the loop:

template <int i>
struct aStatement
{ enum { n = i };

static void execute()
{ cout << i << endl;
}
typedef aStatement<n+1> next;

};

The condition provides the constant evaluate, whose value is used to determine when to
terminate the loop.

struct aCondition
{ template <class Statement>

struct Test
{ enum { evaluate = (Statement::n <= 10) };
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};
};

Now, you can write the following code:

WHILE<Condition,aStatement<1> >::EXEC();

The compiler expands this code into:

cout << 1 << endl;
cout << 2 << endl;
cout << 3 << endl;
cout << 4 << endl;
cout << 5 << endl;
cout << 6 << endl;
cout << 7 << endl;
cout << 8 << endl;
cout << 9 << endl;
cout << 10 << endl;

You can use this technique to implement optimizations by unrolling small loops, e.g. loops for
vector assignment.

Another approach to code generation is to compose class templates. For example, assume that
we have the following two class templates:

• List<>, which implements the abstract data type list and

• ListWithLengthCounter<>, which represents a wrapper on List<> implementing a counter for
keeping track of the length of the list.

Now, based on a flag, we can decide whether to wrap List<> into ListWithLengthCounter<> or not:

typedef IF<flag==listWithCounter,
ListWithLengthCounter<List<ElementType> >
List<ElementType> >::RET list;

We will use this technique later in Section 8.7 in order to implement a simple list generator.

8.4 List Processing Using Template Metaprograms
Nested templates can be used to represent lists. We can represent many useful things using a
list “metadata structure”, e.g. a meta-case statement (which is shown later) or other control
structures (see e.g. Section 10.3.1.6). In other words, template metaprogramming uses types as
compile-time data structures. Lists are useful for doing all sorts of computations in general.
Indeed, lists are the only data structure available in Lisp and this does not impose any limitation
on its expressiveness.

In Lisp, you can write a list like this:

(1 2 3 9)

This list can be constructed by calling the list constructor cons four times:

(cons 1 (cons 2 (cons 3 (cons 9 nil))))

where nil is an empty list. Here is the list in the prefix notation:

cons(1, cons(2, cons(3, cons(9, nil))))

We can do this with nested templates, too:

Cons<1, Cons<2, Cons<3, Cons<9, End> > > >

Here is the code for End and Cons<>:

//tag marking the end of a list
const int endValue = ~(~0u >> 1); //initialize with the smallest int

struct End
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{
   enum    { head = endValue };
   typedef End Tail;
};

template<int head_, class Tail_ = End>
struct Cons
{
   enum    { head = head_ };
   typedef Tail_ Tail;
};

Please note that End and Cons<> publish head and Tail as their members.

Now, assume that we need a metafunction for determining the length of a list. Here is the code:

template<class List>
struct Length
{

// make a recursive call to Length and pass Tail of the list as the argument
enum { RET= Length<List::Tail>::RET+1 };

};

// stop the recursion if we’ve got to End
template<>
struct Length<End>
{

enum { RET= 0 };
};

We can use this function as follows:

typedef Cons<1,Cons<2,Cons<3> > > list1;
cout << Length<list1>::RET << endl; // prints “3”

The following function tests if a list is empty:

template<class List>
struct IsEmpty
{

enum { RET= 0 };
};

template<>
struct IsEmpty<End>
{

enum { RET= 1 };
};

Last<> returns the last element of a list:

template<class List>
struct Last
{

enum {
RET=IsEmpty<List::Tail>::RET ?

List::head                                 :
Last<List::Tail>::RET * 1 //multiply by 1 to make VC++ 5.0 happy

};
};

template<>
struct Last<End>
{

enum { RET= endValue };
};

Append1<> takes the list List and the number n and returns a new list which is computed by
appending n at the end of List:
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template<class List, int n>
struct Append1
{

typedef Cons<List::head, Append1<List::Tail, n>::RET> RET;
};

template<int n>
struct Append1<End, n>
{

typedef Cons<n> RET;
};

Please note that the recursion in Append1<> is terminated using partial specialization, where List
is fixed to be End whereas n remains variable.

A general Append<> for appending two lists is similar:

template<class List1, class List2>
struct Append
{

typedef Cons<List1::head, Append<List1::Tail, List2>::RET > RET;
};

template<class List2>
struct Append<End, List2>
{

typedef List2 RET;
};

The following test program tests our list metafunctions:

void main()
{

typedef Cons<1,Cons<2,Cons<3> > > list1;

cout << Length<list1>::RET << endl; // prints 3
cout << Last<list1>::RET << endl; // prints 3

typedef Append1<list1, 9>::RET list2;

cout << Length<list2>::RET << endl; // prints 4
cout << Last<list2>::RET << endl; // prints 9

typedef Append<list1, list2>::RET list3;

cout << Length<list3>::RET << endl; // prints 7
cout << Last<list3>::RET << endl; // prints 9

}

You can easily imagine how to write other functions such as Reverse(List), CopyUpTo(X,List),
RestPast(X,List), Replace(X,Y,List), etc. We can make our list functions more general by declaring
the first parameter of Cons<> to be a type rather than an int and providing a type wrapper for
numbers:

template<class head_, class Tail_ = End>
struct Cons
{
   typedef head_ head;
   typedef Tail_ Tail;

};

template <int n>
struct Int
{

enum { value=n };
};

Given the above templates, we can build lists consisting of types and numbers, e.g.
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Cons<Int<1>, Cons<SomeType, Cons<Int<3> > > >

Indeed, this technique allows us to implement a simple Lisp as a template metaprogram (see
Section 8.12).

8.5 Workarounds for Doing Without Partial Specialization
of Class Templates
As you saw in the previous section, partial specialization allows you to terminate the recursion
of a template whose some parameters remain fixed during all iterations and other parameters
vary from iteration to iteration. Unfortunately, currently only very few compilers support partial
specialization. But here is the good news: We have always been able to find a workaround. This
section gives you the necessary techniques for doing without partial specialization.

We will consider two cases: a recursive metafunction with numeric arguments and a recursive
metafunction with type parameters.

We start with a recursive metafunction with numeric arguments. A classic example of a numeric
function requiring partial specialization is raising a number to the m-th power. Here is the
implementation of the power metafunction with partial specialization:

//power
template<int n, int m>
struct Power
{

enum { RET = m>0 ? Power< n, (m>0) ? m-1:0 >::RET * n
                           : 1 };

};

// terminate recursion
template<int n>
struct Power<n, 0>
{

enum { RET = 1 };
};

This function works as follows: It takes n and m as arguments and recursively computes the
result by calling Power<n, m-1>. Thus, the first argument remains constant, while the second
argument is “consumed”. We know that the final call looks like this: Power<n, 0>. This is the
classic case for partial specialization: One argument could be anything and the other one is
fixed.

If our C++ compiler does not support partial specialization, we need another solution. The
required technique is to map the final call to one that has all of its arguments fixed, e.g. Power<1,
0>. This can be easily done by using an extra conditional operator in the first argument to the
call to Power<n, m-1>. Here is the code:

//power
template<int n, int m>
struct Power
{

enum { RET = m>0 ? Power<(m>0) ? n:1, (m>0) ? m-1:0>::RET * n
                                   : 1 };
};

template<>
struct Power<1,0>
{

enum { RET = 1 };
};

cout << "Power<2,3>::RET = " << Power<2,3>::RET << endl; // prints “8”
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We can use the same trick in order to reimplement the metafunction Append1<> (see Section 8.4)
without partial specialization. All we have to do is to map the recursion termination to a case
where both arguments are fixed:

template<class List, int n>
struct Append1
{

enum {
new_head = IsEmpty<List>::RET  ?

endValue                                     :
n

};

typedef
IF<IsEmpty<List>::RET,

Cons<n>,
Cons<List::head, Append1<List::Tail, new_head>::RET >

>::RET RET;
};

template<>
struct Append1<End, endValue>
{

typedef End RET;
};

The same technique also works with type arguments. Here is the metafunction Append<>
without partial specialization (remember that the second argument was constant during
recursion):

template<class List1, class List2>
struct Append
{

typedef
IF<IsEmpty<List1>::RET,

End,
List2

>::RET NewList2;

typedef
IF<IsEmpty<List1>::RET,

List2,
Cons<List1::head, Append<List1::Tail, NewList2>::RET >

>::RET RET;
};

template<>
struct Append<End, End>
{

typedef End RET;
};

You may ask why we worry about terminating recursion in the else branch of the second IF<> if
in the terminal case we return List2 and not the value of the recursive call. The reason why we
have to worry is that the types in both branches of a meta-if (i.e. IF<>) are actually built by the
compiler. Thus, meta-if has a slightly different behavior than an if statement in a conventional
programming language: we have always to keep in mind that both branches of a meta-if are
“evaluated” (at least on VC++ 5.0).

We have used meta-if in order to eliminate partial specialization in Append<>. But if you take a
look at the implementation of meta-if in Section 8.2, you will realize that meta-if uses partial
specialization itself. Thus, we also need to provide an implementation of meta-if without partial
specialization.

A meta-if involves returning the first of its two argument types if the condition is true and the
second one if the condition is false. Let us first provide two metafunctions Select, where each of
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them takes two parameters and the first one returns the first parameter and the second one
returns the second parameter. Additionally, we wrap the metafunctions into classes, so that we
can return them as a result of some other metafunction. Here is the code for the two
metafunctions:

struct SelectFirstType
{

template<class A, class B>
struct Select
{

typedef A RET;
};

};

struct SelectSecondType
{

template<class A, class B>
struct Select
{

typedef B RET;
};

};

Now, we implement another metafunction which takes a condition number as its parameter and
returns SelectFirstType if the condition is other than 0 and SelectSecondType if the condition is 0:

template<int condition>
struct SelectSelector
{

typedef SelectFirstType RET;
};

template<>
struct SelectSelector<0>
{

typedef SelectSecondType RET;
};

Finally, we can implement our meta-if:

template<int condition, class A, class B>
class IF
{

typedef SelectSelector<condition>::RET Selector;

public:
typedef Selector::Select<A, B>::RET RET;

};

Please note that this implementation of meta-if does not use partial specialization. Another
interesting thing to point out is that we returned metafunctions (i.e. SelectFirstType and
SelectSecondType) as a result of some other metafunction (we could use the same technique to
pass metafunctions as arguments to some other metafunctions). Thus, template
metaprogramming supports higher-order metafunctions.

8.6 Control Structures
The structure of metaprograms can be improved by using basic metafunction which provide the
functionality equivalent to the control structures used in programming languages such as if,
switch, while, for, etc.

You have already seen the meta-if in Section 8.2. A meta-switch is used as follows:

SWITCH < 5
, CASE < 1, TypeA
, CASE < 2, TypeB
, DEFAULT < TypeC > > >
>::RET                                   //returns TypeC

Higher-order
metafunctions
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As you probably recognized, this switch uses the list processing techniques we discussed in
Section 8.4. The implementation is given in Section 8.13.

You also saw the meta-while loop in Section 8.3. Other loops such as meta-for and meta-do
also exist (see [TM]).

8.7 Configuration Repositories and Code Generation
In Section 6.4.2.4, we showed how to use a configuration repository class in order to
encapsulate the horizontal parameters of a configuration and to propagate types up and down
aggregation and inheritance hierarchies. Such configuration repositories can be combined with
template metaprogramming into a very powerful static generation technique.

We will present this generation technique step by step, starting with a simple example of
configurable list components based on a configuration repository.

We start with the implementation of the base component representing a list. The component
implements methods such as head() for reading the head of the list, setHead() for setting the
head, and setTail() for setting the tail of the list. The component takes a configuration repository
class as its parameter and retrieves a number of types from it:

template<class Config_>
class List
{
   public:

// publish Config so that others can access it
  typedef Config_ Config;

   private:
      // retrieve the element type
      typedef Config::ElementType ElementType;

      // retrieve my type (i.e. the final type of the list); this is necessary since
      // we will derive from List<> later and
      // we want to use the most derived type as the type of tail_;
      // thus, we actually pass a type from the subclass
      // to its superclass
      typedef Config::ReturnType ReturnType;

   public:
      List(const ElementType& h, ReturnType *t = 0) :
      head_(h), tail_(t)
      {}

      void setHead(const ElementType& h)
      { head_ = h; }

      const ElementType& head() const
      { return head_; }

      void setTail(ReturnType *t)
      { tail_ = t; }

      ReturnType *tail() const
      { return tail_; }

   private:
    ElementType head_;
      ReturnType *tail_;
};

Next, imagine that you need to keep track of the number of elements in the list. We can
accomplish this using an inheritance-based wrapper (see Section 6.4.2.4):

template<class BaseList>
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class ListWithLengthCounter : public BaseList
{
   public:

   typedef BaseList::Config Config;

   private:
      typedef Config::ElementType ElementType;
      typedef Config::ReturnType ReturnType;

      //get the type for the length counter
      typedef Config::LengthType LengthType;

   public:
      ListWithLengthCounter(const ElementType& h, ReturnType *t = 0) :

 BaseList(h,t), length_(computedLength())
 { }

      //redefine setTail() to keep track of the length
      void setTail(ReturnType *t)
      {
        BaseList::setTail(t);
        length_ = computedLength();
      }

      //an here is the length() method
      const LengthType& length() const
      { return length_; }

   private:
      LengthType computedLength()
      {
         return tail() ? tail()->length()+1
                           : 1; }

      LengthType length_;
};

Furthermore, we might be also interested in logging all calls to head(), setHead(), and setTail(). For
this purpose, we provide yet another wrapper, which is implemented similarly to
ListWithLengthCounter<>:

template<class BaseList>
class TracedList : public BaseList
{
   public:

   typedef BaseList::Config Config;

   private:
    typedef Config::ElementType ElementType;
      typedef Config::ReturnType ReturnType;

   public:
      TracedList(const ElementType& h, ReturnType *t = 0) :

 BaseList(h,t)
 { }

      void setHead(const ElementType& h)
      {  cout << "setHead(" << h << ")"<< endl;
         BaseList::setHead(h);
      }
      const ElementType& head() const
      {  cout << "head()"<< endl;

    return BaseList::head();
      }

      void setTail(ReturnType *t)
      {  cout << "setTail(t)"<< endl;
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         BaseList::setTail(t);
      }
};

Given these three components, we can construct four different configurations:

• SimpleList: a simple list;

• ListWithCounter: a list with a counter;

• TracedList: a list with tracing;

• TracedListWithCounter: a list with a counter and with tracing.

Here is the code:

//SimpleList
struct ListConfig
{
   typedef int ElementType;
   typedef List<ListConfig> ReturnType;
};
typedef ListConfig::ReturnType SimpleList;

// ListWithCounter
struct CounterListConfig
{
   typedef int ElementType;
   typedef int LengthType;
   typedef ListWithLengthCounter<List<CounterListConfig> > ReturnType;
};
typedef CounterListConfig::ReturnType ListWithCounter;

// TracedList
struct TracedListConfig
{
   typedef int ElementType;
   typedef TracedList<List<TracedListConfig> > ReturnType;
};
typedef TracedListConfig::ReturnType TracedList;

// TracedListWithCounter
struct TracedCounterListConfig
{
   typedef int ElementType;
   typedef int LengthType;
   typedef TracedList<ListWithLengthCounter<List<TracedCounterListConfig> > > ReturnType;
};
typedef TracedCounterListConfig::ReturnType TracedListWithCounter;

The problem with this solution is that we have to provide an explicit configuration repository for
each of these four combinations. This is not a big problem in our small example. However, if we
have thousands of different combinations (e.g. the matrix components described in Chapter 10
can be configured in over 140 000 different ways), writing all these configuration repository
classes becomes unpractical (remember that for larger configurations each of the configuration
repository classes is much longer than in this example).

A better solution is to generate the required configuration repository using template
metaprogramming. For this purpose, we define the metafunction LIST_GENERATOR<> which takes
a number of parameters describing the list type we want to generate and returns the generated
list type.

Here is the declaration of this metafunction:

template<class ElementType, int counterFlag, int tracingFlag, class LengthType>
class LIST_GENERATOR;



Generative Programming, K. Czarnecki256

The semantics of the parameters is as follows:

• ElementType: This is the element type of the list.

• counterFlag: This flag specifies whether the generated list should have a counter or not.
Possible values are with_counter or no_counter.

• tracingFlag: This flag specifies whether the generated list should have a counter or not.
Possible values are with_tracing or no_tracing.

• LengthType: This is the type of the length counter (if any).

We first need to provide the values for the flags:

enum {with_counter, no_counter};
enum {with_tracing, no_tracing};

And here is the code of the list generator metafunction:

template<
class ElementType_ = int,
int counterFlag = no_counter,
int tracingFlag = no_tracing,
class LengthType_ = int

>
class LIST_GENERATOR
{

public:
     // provide the type of the generator as Generator

typedef LIST_GENERATOR<ElementType_, counterFlag, tracingFlag, LengthType_> Generator;

private:
//define a simple list; please note that we pass Generator as a parameter
typedef List<Generator> list;

     // wrap into ListWithLengthCounter if specified
typedef

IF<counterFlag==with_counter,
ListWithLengthCounter<list>,
list

>::RET list_with_counter_or_not;

// wrap into TracedList if specified
typedef

IF<tracingFlag==with_tracing,
TracedList<list_with_counter_or_not>,
list_with_counter_or_not

>::RET list_with_tracing_or_not;

public:
// return finished type
typedef list_with_tracing_or_not RET;

// provide Config; Config is retrieved by List<> from Generator and passed on to its wrappers
struct Config
{

typedef ElementType_ ElementType;
typedef LengthType_ LengthType;
typedef RET ReturnType;

};
};

Please note that we passed Generator to List<> rather than Config. This is not a problem since
List<> can retrieve Config from Generator. Thus, we need to change two lines in List<>:
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template<class Generator>
class List
{
   public:

//publish Config so that others can access it
  typedef Generator::Config Config;

// the rest of the code remains the same as above
//...

};

Using the list generator, we can produce each of the four list types as follows:

typedef LIST_GENERATOR<>::RET SimpleList;
typedef LIST_GENERATOR<int, with_counter>::RET ListWithCounter;
typedef LIST_GENERATOR<int, no_counter, with_tracing>::RET TracedList;
typedef LIST_GENERATOR<int, with_counter, with_tracing>::RET TracedListWithCounter;

The list generator is an example of a very simple generator. In Section 10.3.1.5, we show you an
advanced matrix generator, which performs parsing, computing default values for parameters,
and assembling components.

8.8 Template Metaprograms and Expression Templates
The main idea behind the technique of expression templates [Vel95b] is the following: if you
implement binary operators to be used in an expression, e.g. A+B+C, where A, B, and C are
vectors, each operator does not return the resulting vector (or whatever the result is), but an
object representing the expression itself. Thus, the operators are actually type constructors and
if you implement them as overloaded template operators, they will derive the exact type of the
expression at compile time. This type encodes the structure of the expression and you can pass
it to a template metafunction which analyzes it and generates efficient code for it using the
techniques presented in Section 8.3.

The arguments to the expressions could be abstract data types generated using a generator
such as the one described in the previous section (i.e. LIST_GENERATOR<>). In this case, the
configuration repositories contain all the metainformation about the ADTs they belong to.
Please note that you can access the configuration repository at compile time, e.g.:

TracedListWithCounter::Config

Furthermore, you can provide traits about the types of the expression objects. These traits
could define the algebraic properties of the involved operators. The ADT metainformation and
the operator metainformation can then be used by the code generating metafunction to perform
a complex analysis of the whole expression type and to generate highly-optimized code.

Section 10.3.1.7 will demonstrate some of these techniques.

8.9 Relationship Between Template Metaprogramming and
Other Metaprogramming Approaches
As we stated at the beginning of this chapter, generative metaprograms manipulate program
representations. Compilers and transformation systems usually manipulate abstract syntax trees
(ASTs). Lisp allows us to write metaprograms which manipulate language constructs, more
precisely, lists representing functions. Smalltalk and CLOS allow us to (dynamically) manipulate
classes. Template metaprograms can manipulate (e.g. compose) program representations such
as template classes and methods.

An important question is whether metaprograms have to be written in a different language than
the programs being manipulated. This is often the case with transformation systems which
usually provide a specialized transformation API which is independent of the structures being
transformed. In the case of Lisp, CLOS, and Smalltalk, both the metaprograms and the programs
being manipulated are part of the same language in a reflective way, i.e. base programs can call
metaprograms and metaprograms can call base programs. In the case of template
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metaprogramming, we use a “metaprogramming sublanguage” of C++, which can manipulate
types (e.g. compose class templates, select functions for inlining), but it has no access to their
metainformation other than what was explicitly encoded using techniques such as traits. Also,
template metaprograms run before the programs they generate and the base code cannot call the
metacode.

In this context, we can view C++ as a two-level language. Two-level languages contain static
code (which is evaluated at compile-time) and dynamic code (which is compiled, and later
executed at run-time). Multi-level languages [GJ97] can provide a simpler approach to writing
program generators (see e.g., the Catacomb system [SG97]).

8.10 Limitations of Template Metaprogramming
Template metaprogramming has a number of limitations which are discussed in Section 10.3.1.8.

Table 116 (in Section 10.3.2) compares the applicability of template metaprogramming and of the
Intentional Programming System for implementing algorithmic libraries.

8.11 Historical Notes
The first documented template metaprogram was written by Unruh [Unr94]. The program
generated prime numbers as compiler warnings. To our knowledge, the first publication on
template metaprogramming was the article by Veldhuizen [Vel95a], who pioneered many of the
template metaprogramming techniques by applying them to numerical computing. In particular,
he’s been developing the numerical array package Blitz++ [Vel97], which we already mentioned
in Section 7.6.4.

Currently, there is a number of other libraries using template metaprogramming, e.g. Pooma
[POOMA], A++/P++ [BDQ97], MTL [SL98], and the generative matrix package described in
Chapter 10.

The contribution of Ulrich Eisenecker and the author was to provide explicit meta-control
structures. A further contribution is the combination of configuration repositories and
metafunctions into generators. The concept of a meta-if in C++ was first published in [Cza97],
but only after developing the workarounds for partial specialization (see Section 8.5), we were
able to fully develop our ideas (since we did not have a compiler supporting partial
specialization).

8.12 Appendix: A Very Simple Lisp Implementation Using
Template Metaprogramming

#include <iostream.h>
#include "IF.h"

/*
The siplest Lisp implementation requires the following
primitive expressions:

 *data types: numbers, symbols, and lists
 *primitive functions: list constructor (cons),
  list accessors (first, rest), type-testing predicates
  (numberp, symbolp, listp), equivalence test (eq),
  algebraic operations on numbers (plus, minus, times,
  divide, rem), numeric comparison (eqp, lessp, greaterp)
*/

//**************************
// Symbolic data of Lisp:
//     *Symbolic atoms: numbers and symbols
//     *Symbolic expressions (S-expressions): lists
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//

// In Lisp, we have numbers, symbols, and lists.
// We also need primitive methods for checking
// the type of a Lisp type.

//LispObject defines the interface
//for all lisp objects.
//Some of the members do not make
//sence for some subclasses.
//Yet they are required
//in order for numbers, symbols,
//and lists to be treated
//polymorphicaly by the compiler.

struct LispObject
{

enum {
N_VAL=0,
ID=-1,
IS_NUMBER=0,
IS_SYMBOL=0,
IS_LIST=0

};
typedef LispObject S_VAL;
typedef LispObject FIRST;
typedef LispObject REST;

};

struct NumberType : public LispObject
{

//the following enums should accessed by the type testing predicates
//numberp, symbolp, and listp, only.
enum {

IS_NUMBER=1,
IS_SYMBOL=0,
IS_LIST=0

};
};

struct SymbolType : public LispObject
{

enum {
IS_NUMBER=0,
IS_SYMBOL=1,
IS_LIST=0

};
};

struct ListType : public LispObject
{

enum {
IS_NUMBER=0,
IS_SYMBOL=0,
IS_LIST=1

};
};

//numbers
//Numbers are defined as "wrapped" classes.
//We need a wrapper for numbers in
//order to be able to pass number to class templates
//expecting classes. The problem is that C++
//does not allow us provide two versions of a class template
//one with class and other with number parameters.
//Unfortunately, we can only handle integral types at the moment.
template <int n>
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struct Int : NumberType
{

enum { N_VAL=n };
};

//symbols
//symbols are defined as "wrapped" classes
//We need a wrapper for classes in
//order to be able provide them with IDs.
//IDs allow us to test for equivalence.
template <class Value, int SymbolID>
struct Symbol : public SymbolType
{

typedef Value S_VAL;
enum { ID=SymbolID };

};

//lists
//Lists are represented by nesting the list contructor
//cons defined later

//but first we need an empty list
struct EmptyList : public ListType {};

//******************************************
//Primitive function
//******************************************

//List constructor cons(X,L)
//
//an example of a list:
//Cons<Int<1>,Cons<Int<2>,Cons<Symbol<SomeClass,1>,EmptyList>>>
//In Lisp syntax, this list would look like this:
//cons(1,cons(2,cons("SomeClass",()))) = (1,2,"SomeClass")
//
//In this implementation of cons, we do not define RET
//since this would unnecessary complicate our C++ Lisp syntax.
//The list type is the type of an intantiated cons.

template <class X, class List>
struct Cons : public ListType
{

typedef X FIRST;
typedef List REST;

};

//list accessors first and rest

//first(List)
// returns the first element of List
//
//first is achieved through:
//Cons<Int<1>,Cons<Int<2>,Cons<Symbol<SomeClass,1>,
//  EmptyList>>>::FIRST = Int<1>

template <class List>
struct First
{

typedef List::FIRST RET;
};

//rest(List)
// retuns the List without the first element

//rest is achieved through:
//Cons<Int<1>,Cons<Int<2>,Cons<Symbol<SomeClass,1>,
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//  EmptyList>>>::REST
//   = Cons<Int<2>,Cons<Symbol<SomeClass,1>,EmptyList>>

template <class List>
struct Rest
{

typedef List::REST RET;
};

//type testing predicates numberp, symbolp, listp

//numberp(X)
//this predicate returns true (i.e. 1) if X is a number
//otherwise false (i.e. 0)

template <class X>
struct Numberp
{

enum { RET=X::IS_NUMBER};
};

//symbolp(X)
//this predicate returns true (i.e. 1) if X is a symbol
//otherwise false (i.e. 0)

template <class X>
struct Symbolp
{

enum { RET=X::IS_SYMBOL};
};

//listp(X)
//this predicate returns true (i.e. 1) if X is a list
//otherwise false (i.e. 0)

template <class X>
struct Listp
{

enum { RET=X::IS_LIST};
};

//empty(List)
//return true List=EmptyList
//otherwise false
template <class List>
struct IsEmpty
{

enum { RET=0 };
};

struct IsEmpty<EmptyList>
{

enum { RET=1 };
};

//equivalence test

//eq(X1,X2)
//return true if X1 is equivalent to X2
//otherwise false

template <class X1, class X2> struct Eq;
template <class N1, class N2> struct EqNumbers;
template <class S1, class S2> struct EqSymbols;
template <class L1, class L2> struct EqLists;
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template <class X1, class X2>
struct Eq
{

enum {
RET=

Numberp<X1>::RET && Numberp<X2>::RET ?
EqNumbers<X1,X2>::RET :
Symbolp<X1>::RET && Symbolp<X2>::RET ?

EqSymbols<X1,X2>::RET :
Listp<X1>::RET && Listp<X2>::RET ?

EqLists<X1,X2>::RET :
//should be 0, but VC++ 4.0 does not take it
1 ?

0:
0

};
};

struct Eq<EmptyList, EmptyList>
{

enum { RET=1 };
};

struct Eq<LispObject,LispObject>
{

enum { RET=1 };
};

template <class N1, class N2> //private
struct EqNumbers
{

enum { RET=N1::N_VAL==N2::N_VAL };
};

template <class S1, class S2> //private
struct EqSymbols
{

enum { RET=S1::ID==S2::ID };
};

template <class L1, class L2> //private
struct EqLists
{

enum {
RET=

IsEmpty<L1>::RET ?
0 :
IsEmpty<L2>::RET ?

0 :
Eq<First<L1>::RET,First<L2>::RET>::RET ?

EqLists<Rest<L1>::RET,Rest<L2>::RET>::RET :
0

};
};

struct EqLists<EmptyList, EmptyList>
{

enum { RET=1 };
};
//to avoid a compile error
struct EqLists<LispObject, LispObject>
{

enum { RET=1 };
};

//arithmetic functions
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//plus
template <class N1, class N2>
struct Plus
{

enum { RET=N1::VAL+N2::VAL };
};

//minus, times, and divide are defined similarly

//lessp, greaterp
//...

//let expression corresponds to typedef or enum

//define expression corresponds to a class template
//note: a template can be passed to a template by defining it
//as member of a concrete class (corresponds to passing functions)

//****************** end of primitives ***************

//*********************************************
//convenience functions

//length(List)
template <class List>
struct Length
{

enum { RET=Length<Rest<List>::RET>::RET+1 };
};

struct Length<EmptyList>
{

enum { RET=0 };
};

//second(List)
template <class List>
struct Second
{

typedef First<Rest<List>::RET>::RET RET;
};

//third(List)
template <class List>
struct Third
{

typedef Second<Rest<List>::RET>::RET RET;
};

//n-th(n,List)
struct nil {};

template <int n, class List>
struct N_th
{

typedef
IF<n==1,

EmptyList,
Rest<List>::RET

>::RET tail;

typedef
IF<n==1,

First<List>::RET,
N_th<n-1, tail>::RET

>::RET RET;
};
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template<>
struct N_th < 0, EmptyList >
{

typedef nil RET;
};

//last(List)
template <class List>
struct Last
{

typedef N_th<Length<List>::RET,List>::RET RET;
};

//append1(List,LispObject)
template<class List, class LispObject>
struct Append1
{

typedef
IF<IsEmpty<List>::RET,

nil,
LispObject

>::RET new_object;

typedef
IF<IsEmpty<List>::RET,

nil,
Rest<List>::RET

>::RET new_list;

typedef
IF<IsEmpty<List>::RET,

Cons<LispObject, EmptyList>,
Cons<First<List>::RET, Append1<new_list, new_object>::RET >

>::RET RET;
};

template<>
struct Append1<nil, nil>
{

typedef EmptyList RET;
};

//here should come some other functions:
//append(L1, L2), reverse(List), copy_up_to(X,L), rest_past(X,L), replace(X,Y,L), etc.

// just for testing:
class SomeClass1 {};
class SomeClass2 {};

typedef Symbol<SomeClass1,1> symb1;
typedef Symbol<SomeClass2,2> symb2;

void main()
{

cout << "typedef Cons<Int<1>,Cons<Int<2>,Cons<Int<3>,EmptyList> > > l1;" << endl;
typedef Cons<Int<1>,Cons<Int<2>,Cons<Int<3>,EmptyList> > > l1;
cout << "typedef Cons<Int<1>,Cons<Int<2>,Cons<Int<3>,EmptyList> > > l2;" << endl;
typedef Cons<Int<1>,Cons<Int<2>,Cons<Int<3>,EmptyList> > > l2;
cout << "typedef Cons<Int<1>,Cons<Int<2>,Cons<Int<3>,Cons<Int<5>,EmptyList> > > > l3;" << endl;
typedef Cons<Int<1>,Cons<Int<2>,Cons<Int<3>,Cons<Int<5>,EmptyList> > > > l3;
cout << "typedef Cons<symb1,Cons<Int<2>,Cons<symb2,EmptyList> > > l4;" << endl;
typedef Cons<symb1,Cons<Int<2>,Cons<symb2,EmptyList> > > l4;

cout << "EqNumbers<Int<1>,Int<1> >::RET =" << endl;
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cout << EqNumbers<Int<1>,Int<1> >::RET << endl;

cout << "EqSymbols<symb1,symb2 >::RET =" << endl;
cout << EqSymbols<symb1,symb2 >::RET << endl;

cout << "Eq<Int<1>,Int<1> >::RET =" << endl;
cout << Eq<Int<1>,Int<1> >::RET << endl;

cout << "Eq<symb1,symb2>::RET =" << endl;
cout << Eq<symb1,symb2>::RET << endl;

cout << "Third<l3>::RET::N_VAL =" << endl;
cout << Third<l3>::RET::N_VAL << endl;

cout << "N_th<4, l3>::RET::N_VAL =" << endl;
cout << N_th<4, l3>::RET::N_VAL << endl;

cout << "Last<l2>::RET::N_VAL =" << endl;
cout << Last<l2>::RET::N_VAL << endl;

cout << "Eq<l1,l3>::RET =" << endl;
cout << Eq<l1,l3>::RET << endl;

cout << "Length<l1>::RET =" << endl;
cout << Length<l1>::RET << endl;

cout << "typedef Append1<l1, Int<9> >::RET l5;" << endl;
typedef Append1<l1, Int<9> >::RET l5;

cout << "N_th<4, l5>::RET::N_VAL =" << endl;
cout << N_th<4, l5>::RET::N_VAL << endl;

cout << "Length<l5>::RET =" << endl;
cout << Length<l5>::RET << endl;

}

8.13 Appendix: Meta-Switch Statement
//*************************************************************
//Authors: Ulrich Eisenecker and Johannes Knaupp
//*************************************************************

#include "../if/IF.H"

const int NilValue     = ~(~0u >> 1); //initialize with the smallest int
const int DefaultValue = NilValue+1;

struct NilCase
{
   enum    { tag           = NilValue
            , foundCount   = 0
            , defaultCount  = 0
           };
   typedef NilCase RET;
   typedef NilCase DEFAULT_RET;
};

class MultipleCaseHits {};    // for error detection
class MultipleDefaults {};     // for error detection

template< int Tag, class Statement, class Next = NilCase >
struct CASE
{
   enum    { tag = Tag };
   typedef Statement statement;
   typedef Next next;
};
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template< class Statement, class Next = NilCase >
struct DEFAULT
{
   enum    { tag = DefaultValue };
   typedef Statement statement;
   typedef Next next;
};

template <int Tag, class aCase, bool acceptMultipleCaseHits = false >
struct SWITCH
{
   typedef aCase::next    NextCase;

   enum  { tag         = aCase::tag
         , nextTag       = NextCase::tag
         , found          = (tag == Tag)
         , isDefault     = (tag == DefaultValue)
         };

   typedef IF< (nextTag != NilValue)
             , SWITCH< Tag, NextCase >
             , NilCase
             >::RET NextSwitch;

   enum  { foundCount   = found     + NextSwitch::foundCount
         , defaultCount = isDefault + NextSwitch::defaultCount
         };

   typedef IF< isDefault
             , aCase::statement
             , NextSwitch::DEFAULT_RET
             >::RET DEFAULT_RET;

   typedef IF< found
             , IF< ((foundCount == 1) || (acceptMultipleCaseHits == true))
                 , aCase::statement
                 , MultipleCaseHits
                 >::RET
             , IF< (foundCount != 0)
                 , NextSwitch::RET
                 , DEFAULT_RET
                 >::RET
             >::RET ProvisionalRET;

   typedef IF< (defaultCount <= 1)
             , ProvisionalRET
             , MultipleDefaults
             >::RET RET;
};
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Chapter 9 Domain Engineering Method for
Reusable Algorithmic Libraries (DEMRAL)

9.1 What Is DEMRAL?
DEMRAL is a Domain Engineering method for developing algorithmic libraries, e.g. numerical
libraries, container libraries, image processing libraries, image recognition libraries, speech
recognition libraries, graph computation libraries, etc. The characteristics of algorithmic libraries
include the following:

• main concepts are adequately captured as abstract data types (ADTs) and algorithms that
operate on the ADTs;

• the ADTs often have container-like properties, e.g. matrices, images, graphs, etc.;

• there is usually a well developed underlying mathematical theory, e.g. linear algebra [GL96],
image algebra [RW96], graph theory [BM76];

• the ADTs and the algorithms usually come in large varieties. For example, there are many
different kinds of matrices (sparse or dense, diagonal, square, symmetric, and band
matrices, etc.) and many specialized versions of different matrix factorization algorithms
(e.g. the different specializations of the general LU include LDLT and Cholesky
factorizations with specialized versions for different matrix shapes and with and without
pivoting);

DEMRAL supports the following library design goals:

• providing the client with a high-level, intentional library interface;

- the client code specifies problems in terms of high-level domain concepts;

- the interface supports large numbers of concept variants in an effective way;

- the client code is able to specify problems at the most appropriate level of detail (of
course, which level is most appropriate depends on the problem, the client, and other
contextual issues);

• achieving high efficiency in terms of execution time and memory consumption;

- the large number of variants should not have any negative effect on the efficiency;

- possibilities of optimizations should be analyzed and useful optimizations should be
implemented;
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- unused functionality should be removed and, whenever possible, static binding
should be used;

• achieving high quality of library code;

- high adaptability and extendibility;

- minimal code duplication;

- minimal code tangling;

DEMRAL has been developed as a specialization of the ODM method (see Section 3.7.2), while
applying ODM in the development of the matrix computation library described in Chapter 10.
DEMRAL combines ideas from several areas including

• Domain Engineering (Chapter 3),

• Generators and Metaprogramming (Chapter 6),

• Aspect-Oriented Programming (Chapter 7), and

• Object-Oriented Software Development.

DEMRAL is an ongoing effort. We are currently refining the method based on our experience
with analyzing and implementing matrix algorithms. We still need to test DEMRAL on other
domains.

This chapter gives a high-level overview of the method and explains its basic concepts. Chapter
10 contains a comprehensive case study of applying DEMRAL in the development of a matrix
computation library.

9.2 Outline of DEMRAL
The major activities of DEMRAL are shown in Figure 133. Of course, the development process
is an iterative and incremental one.140 During development, the various activities may be
scheduled and rescheduled in arbitrary order. For example, identification of key concepts (1.2.1.)
and feature modeling (1.2.2.) usually require many iterations. Also, the domain definition often
needs to be revised based on insights from Domain Modeling, Domain Design, and Domain
Implementation. Similarly, feature models are usually refined and revised in Domain Design and
Implementation. Furthermore, activities may be revisited because of external changes, e.g.
changes of the stakeholder goals, environmental changes, etc. We encourage prototyping at
any time since it represents an excellent tool for gaining a better understanding of new ideas
and for evaluating alternative solutions.

Thus, the process outlined in Figure 133 should be viewed as a default process and a starting
point for the user, who should customize it to suite his needs. However, we use this default
outline to structure the documentation of the matrix computations case study in Chapter 10.

Reenskaug et al. give an excellent characterization of the role of process outlines [Ree96]:

“Documentation is by its nature linear, and must be strictly structured. Software
development processes are by their nature creative and exploratory, and cannot be
forced into the straightjacket of a fixed sequence of steps. In an insightful article, Parnas
et al. state that many have sought a software process that allows a program to be derived
systematically from a precise statement of requirements [PC86]. Their paper proposes
that although we will not succeed in designing a real product that way, we can produce
documentation that makes it appear as if the software was designed by such a process.

The sequences of steps we describe in the following sections and in the rest of the book
are therefore to be construed as default work processes and suggested documentation
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structures. We also believe that you will have to develop your own preferred sequence of
steps, but you may want to take the steps proposed here as a starting point.”

The DEMRAL activities have been derived from the ODM phases and tasks (see Figure 15 and
Table 5 in Section 3.7.2.1). However, there are several differences:

• Different divisions into top-level activities: DEMRAL subscribes to the more widely
accepted division of Domain Engineering into Domain Analysis, Domain Design, and
Domain Implementation. This division does not represent any substantial difference to
ODM. The ODM phases (see Figure 15) are easily mapped to these top-level activities: Plan
Domain and Model Domain correspond to Domain Analysis. Scope Asset Base and
Architect Asset Base correspond to Domain Design. Finally, Implement Asset Base
corresponds to Domain Implementation.

• Stronger focus on technical issues: A unique feature of ODM is its focus on organizational
issues. The description of DEMRAL, on the other hand, is more focused on technical
issues. Of course, whenever appropriate, DEMRAL can be extended with the organizational
tasks and workproducts of ODM.

• Only a subset of ODM tasks and workproducts: As a specialization of a very general
Domain Engineering method, DEMRAL covers only a subset of the ODM tasks and
workproducts. Additionally, the DEMRAL process outline is less detailed than the ODM
process outline. In a sense, DEMRAL can be seen as a “lightweight” specialization of
ODM.

The special features of DEMRAL as a specialization of ODM include

• focus on the two concept categories: ADTs and algorithms;

• specialized feature starter sets for ADTs and algorithms;

• application of feature diagrams for feature modeling (ODM does not prescribe any
particular feature modeling notation);

• focus on the development of DSLs.

In the remaining sections of this chapter, we describe each of the activities of DEMRAL. A
comprehensive case study of applying DEMRAL to the domain of matrix computations is
presented in Chapter 10.

1. Domain Analysis
 1.1. Domain Definition
 1.1.1. Goal and Stakeholder Analysis
 1.1.2. Domain Scoping and Context Analysis
 1.1.2.1. Analysis of application areas and existing systems (i.e. exemplars)
 1.1.2.2. Identification of domain features
 1.1.2.3. Identification of relationships to other domains
 1.2 Domain Modeling
 1.2.1. Identification of key concepts
 1.2.2. Feature modeling of the key concepts (i.e. identification of commonalities,
 variabilities, and feature dependencies/interactions)
2. Domain Design

2.2. Identification of the overall implementation architecture
 2.1. Identification and specification of domain-specific languages
3. Domain Implementation (implementation of the domain-specific languages, language
      translators, and implementation components)

Figure 133    Outline of DEMRAL
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9.3 Domain Analysis
Domain Analysis involves two main activities: Domain Definition and Domain Modeling. They
are described in the following two sections.

9.3.1 Domain Definition
The first activity of Domain Definition is the identification of goals and stakeholders. The
complexity of this activity depends on the size and the context of the project. We will not
further elaborate on this activity. We assume that the result of this activity are cross-checked,
prioritized lists of goals and stakeholders.

The next activity is to determine the scope and characterize the contents of the domain by
defining its domain features. Two important sources of domain features are

• the analysis of the application areas of the systems in the domain and

• the analysis of the existing exemplar systems.

For example, if our goal is to define the domain of matrix computation libraries, we need to
analyze the application areas of matrix computations and the features of existing matrix
computation libraries. The results of these analyses are shown in Table 13 through Table 16.
Please note that the format of the application areas tables (i.e. Table 13 and Table 14) and the
existing libraries tables (i.e. Table 15 and Table 16) is similar. The conclusion of both analyses is
that the main features of matrix computation libraries are different types of matrices and different
types of computations they implement.

The results of the analysis of the application areas and the exemplar systems are summarized in
a domain feature diagram. The domain feature diagram for the domain of matrix computation
libraries is shown in Figure 137. This diagram describes which features are part and which can
be part of a matrix computation library. For example, band matrices are optional, but at least
dense or sparse matrices have to be implemented. A matrix computation library can also
implement both dense and sparse matrices. This is indicated in the diagram by the fact that
dense and sparse matrices have been shown as or-features. Please note that alternative concept
features, e.g. dense or sparse of the concept matrix, emerge in the domain feature diagram as
or-features.

We found it useful to annotate the domain features with priorities. There are at least three
important factors influencing the priority of a domain feature:

• typicality rate of the domain feature in the analyzed application areas,

• typicality rate of the domain feature in the analyzed exemplar systems, and

• importance of the domain feature according to the stakeholder goals.

The priorities are assigned on a rather informal basis. However, they are still very useful. They
indicate the importance of the various parts of a domain and will help to decide which parts of
the domain will be implemented first. Of course, the priorities may have to be adjusted as the
goals evolve and more knowledge about the domain becomes available over time. The domain
feature diagram represents a definition of a domain from the probabilistic viewpoint (see Section
2.2.3). It is a concise and convenient style of defining a domain.

Right from the beginning of Domain Analysis, it is essential to establish a domain dictionary
(see e.g. Section 10.4) and a register of sources of domain knowledge (see e.g. Section
10.1.1.2.2). As the analysis progresses, both the dictionary and the register need to be updated.

Domain feature
diagram

Domain dictionary
and domain
knowledge



Domain Engineering Method for Reusable Algorithmic Libraries (DEMRAL) 275

Finally, we analyze related domains, such as analogy or support domains. As you remember
from Section 3.6.3, an analogy domain has significant similarities to the domain being analyzed
and thus may provide some useful insights about the latter domain. A support domain, on the
other hand, may be used to express some aspects of the domain being analyzed. Examples of
both types of related domains can be found in Section 10.1.1.2.6.

9.3.2 Domain Modeling
Domain Modeling involves two main activities: identification of key concepts and feature
modeling of the key concepts. We describe these activities in the following two sections.

9.3.2.1 Identification of Key Concepts
By definition, DEMRAL focuses on domains whose main categories of concepts are ADTs and
algorithms. Identifying the key ADTs is usually quite simple, e.g. the key ADTs in matrix
computation libraries are matrices and vectors and the key ADTs in image processing libraries
are various kinds of images.

An ADT defines a whole family of data types. Thus, a matrix ADT defines a family of matrices
(e.g. sparse, dense, diagonal, square, symmetric, etc.). Similarly, we usually have whole families
of algorithms operating on the ADTs. For example, matrix computation libraries may include
factorization algorithms and algorithms for solving eigenvalue problems. Furthermore, each
general version of a factorization algorithm may be specialized for matrices of different
properties, e.g. there is over a dozen of important specializations of the general LU factorization
(see Section 10.1.2.2.2).

We make a distinction between basic ADT operations and the algorithm families which access
the ADTs through accessing operations and the basic operations. Examples of basic operations
in matrix computations are matrix addition, subtraction, and multiplication. We analyze basic
operations together with the ADTs since they all define a cohesive kernel algebra . We usually
implement the kernel algebra in one component which is separate from the more complex
algorithm families. For example, a matrix component would include a matrix type and a vector
type and the basic operations on matrices and vectors.

It is important to note that if we model types using OO classes, we usually do not define the
basic operations directly in the class interfaces, but rather as free-standing operators or
operator templates.141 This, of course, is only possible if the programming language we use
supports free-standing operators (e.g. C++). The class interfaces should include a minimal set of
necessary methods, e.g. accessing methods for accessing directly stored state or abstract (i.e.
computed) state. This way, we avoid “fat class interfaces” and improve modularity since we can
define families of operators in separate modules. Furthermore, it is easier to add new operators.
Another reason for defining operators outside the class definitions is that they often cannot be
thought of as a conceptual part of just one class. For example, in the expression M*V, where M
is a matrix and V is a vector, the multiplication operation * is equally part of the matrix interface
and the vector interface. If dynamic binding is required, * is best implemented as a dynamic
multi-method142, otherwise we can implement it as a free-standing operator or as a (possibly
specialized) operator template. Furthermore, if expression optimizations are required, the
operators are best implemented as expression templates (see Section 8.8). Indeed, for our matrix
computation library, we will implement matrix operations using expression templates (Section
10.3.1.7).

The more complex algorithms (e.g. solving systems of linear equations) are often more
appropriately implemented as classes rather than procedures or functions (see e.g. [Wal97]).
This allows us to organize them into family hierarchies. The algorithms usually call both basic
operations and ADT accessing methods.

Analogy or support
domains

Basic ADT
operations and the
algorithm families
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9.3.2.2 Feature Modeling
The purpose of feature modeling is to develop feature models of the concepts in the domain.
Feature models define the common and variable features of concept instances and the
dependencies between the features.

We already discussed how to perform feature modeling in Chapter 5. The only addition of
DEMRAL to what we said there are the feature starter sets for ADTs and algorithms. These are
listed in Sections 9.3.2.2.1 and 9.3.2.2.2.

9.3.2.2.1 Feature Starter Set for ADTs

The following is the feature starter set for ADTs:

• Attributes: Attributes are named properties of ADT instances, such as the number of rows
in a matrix or the length of a vector. Important features of an attribute are its type and
whether it is mutable or not (i.e. if its possible to change its value). Other features concern
the implementation of an attribute, e.g. whether the attribute is stored directly or computed,
whether its value is cached or not, whether it is owned by the ADT or not (see [Eis96]). If
an attribute is owned by the ADT, the ADT is responsible for creating and destroying the
values of the attribute. Also, accessing a value owned by an ADT usually involves
copying the value. Each of the features of an attribute could be parameterized.

• Data structures: The ADT may be implemented on top of some complex data structures.
This is especially the case for container-like ADTs such as matrices or images. We will
discuss this aspect later in more detail.

• Operations: Examples of operations are accessing operations and kernel algebra operations
(i.e. basic operations used by more complex algorithms). Other operations may be added
during the analysis of algorithms. In addition to operation signatures (i.e. operation name,
operands and operand types), we need to analyze various possible implementations of
operations. In particular, possible optimizations need to be documented. For example, matrix
operations may be optimized with respect to the shape of the operands. Also the
optimization of matrix expressions based on the expression structure is possible (e.g. loop
fusing). Binding mode (e.g. static or dynamic) and binding time (e.g. compile time or
runtime) are other features of an operation (see Section 5.4.4.3). Binding mode and binding
time of an operation can be parameterized (see e.g. Section 7.10).

• Error detection, response, and handling: Error detection is often performed in the form of
pre-, intra-, and post-condition143 and invariant checking. What is an error and what is not
may depend on the usage context of an ADT. Thus, we may want to parameterize error
detection (also referred to as error checking). In certain contexts, it may be also
appropriate to switch off checking for certain error condition. For example, if the client of a
container is guaranteed to access elements using only valid indices, no bounds checking is
necessary. Once an error condition has been detected, various responses to the error
condition are possible: We can throw an exception, abort the program, issue an error report
[Eis95]. Finally, on the client side, we need to handle exceptions by performing appropriate
actions. An important aspect of error response and handling is exception safety. We say
that an ADT is exception safe if exceptions thrown by the ADT code or the client code do
not leave the ADT in an undefined, broken state. Interestingly, this important aspect has
been addressed in the Standard Template Library (STL) only in its final standardization
phase.

• Memory management: By memory management we mean approaches to allocating and
relinquishing memory and various approaches to managing virtual memory. We can
allocate memory on the stack or on the heap using standard mechanisms available in most
languages. We can also manage memory ourselves by allocating large chunks of memory
(so-called memory pool) at once and allocating objects within this customarily managed
memory. We can also use automatic memory management approaches, e.g. reference
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counting or some more sophisticated garbage collection approach (see e.g. [Wil92]). In a
multithreading environment, it may be useful to manage thread-specific memory, i.e. per-
thread memory where a thread can allocate its own objects not shared with other threads.
Other kinds of memory are memory shared among a number of processes and persistent
store. Memory management interacts with other features, e.g. exception safety: One aspect
of exception safety is making sure that exceptions do not cause memory leaks. The memory
allocation aspect of container elements in STL is parameterized in the form of memory
allocators (see [KL98]), which can be passed to a container as a template parameter.
Paging and cache behaviors often need to be tuned to the requirements of an application
(e.g. blocking in matrix algorithms; see Section 10.1.2.2.1.3.1). An important aspect of
memory management in databases is location control and clustering, i.e. where and how the
data is stored.

• Synchronization: If we want to use an ADT in a multithreaded environment, we have to
synchronize the access to shared data. This is usually done by providing appropriate
synchronization code (see Chapter 7). Synchronization variability may include not only
different synchronization constraints but also different implementation strategies. For
example, synchronization can be implemented at different levels: the interface level of an
ADT or the internal data level. The interface level locking is, as a rule, less complex than the
data level locking. On the other hand, data level locking allows more concurrency. For this
reason, data level locking is usually used in large collections, e.g. in databases. If we also
want to use an ADT in a sequential environment, it should be possible to leave out its
synchronization code entirely, or, in some cases, replace it by error checking code. Thus,
there is also an interaction between synchronization and error checking. We already saw an
example of this interaction in Section 7.4.4.

• Persistency: Some application may require the ability to store an ADT on disk (e.g. in a file
or in a database). In such cases, we need to provide mechanisms for storing appropriate
parts of the state of an ADT as well as for restoring them. This aspect is closely related to
memory management.

• Perspectives and subjectivity: Different stakeholders and different client programs usually
have different requirements on an ADT. Thus, we may consider organizing ADTs into
subjects based on the different perspectives of the stakeholders or client programs on the
ADTs. Some of the perspectives may delineate different parts of an ADT according to their
service (e.g. printing, storing, etc.) and other perspectives may require different realizations
of the same service, e.g. different attributes and operations, attribute and operation
implementations, etc. In this case, we might want to develop a model of the relevant
subjective perspectives and define ADT features that correspond to these perspectives.

If the ADT has a container-like character (e.g. matrix or image), we also should consider the
following aspects:

• Element type: What is the type of the elements managed by the ADT?

• Indexing: Are the elements to be accessed through an index (e.g. integral index, symbolic
key, or some other, user-defined key)?

• Structure: How are the elements stored? What data structures are used? For example, the
structure of a matrix has a number of subfeatures such as entry type, shape, format, and
representation (see Section 10.1.2.2.1.3).

An ADT may have a number of different interfaces. For example, a matrix will have a base
interface including the basic matrix operations as well as a configuration interface, which allows
us to select different storage formats, error checking strategies, etc. The configuration interface
may be needed at different times, e.g. compile time or runtime. Also, the base interface may be
organized into subinterfaces and be configurable (e.g. in order to model subjectivity).

Some features in the feature starter set are aspects in the AOP sense, e.g. synchronization or
memory management.
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Of course, the starter set should be extended as soon as new relevant features are identified.

9.3.2.2.2 Feature Starter Set for Algorithms

The feature starter set for algorithms includes the following feature categories:

• Computational aspect: This is the main aspect of an algorithm: the abstract, text-book
formulation of the algorithm without the more involved implementation issues. We may
specify this aspect using pseudocode. Furthermore, we have to investigate the
relationships between algorithms, e.g. specialization and use, and organize them into
families. It may also be useful to classify them according to the general algorithm categories
such as search algorithms, greedy algorithms, divide-and-conquer algorithms, etc. (see
Figure 100, Section 6.4.4). For example, iterative methods in matrix computations are search
algorithms.

• Data access: Algorithms access ADTs through accessing operations and basic operations.
Careful design of the basic operations is crucial in order to achieve both flexibility and
good performance. For example, algorithms benefit from optimizations of basic operations.
We can use different techniques in order to minimize the coupling between algorithms and
data structures, e.g. iterators [GHJV95, MS96] and data access templates (or data
accessors) [KW97].

• Optimizations: There are various opportunities for domain-specific optimizations, e.g.
optimization based on the known structure of the data, caching, in-place computation (i.e.
storing result data in the argument data to avoid copying), loop restructuring, algebraic
optimizations, etc.

• Error detection, response, and handling: We discussed this aspect in the previous
section.

• Memory management: Algorithms may also make direct calls to memory management
services for tuning purposes.

There are also more specialized domain-specific features, e.g. pivoting strategies in matrix
computations (see Section 10.1.2.2.2).

An aspect we did not discuss is parallelization, which is relevant in high-performance areas
such as scientific computing. Parallelization is a very advanced topic and we refer the interested
reader to [GO93].

9.4 Domain Design
The purpose of Domain Design in DEMRAL is to develop a library architecture consisting of a
decomposition into packages and the specifications of the user DSLs. The DSL specifications
include both abstract syntax and implementation specifications in a form which can serve as a
basis for their implementation using some appropriate language extension technology. Domain
Design builds on the results of Domain Modeling, i.e. feature models of different aspects of
ADTs and algorithm families.

Since DSLs are central to Domain Design in DEMRAL, we first review the advantages of DSLs,
the sources of DSLs, and implementation technologies for DSLs in Section 9.4.1. Then we
describe the Domain Design activities in DEMRAL in Section 9.4.2.

9.4.1 Domain-Specific Languages Revisited
A domain-specific language (DSL) is a specialized, problem-oriented language. Similarly as in
the case of domains, some DSLs are more general modeling DSLs (e.g. a DSL for expressing
synchronization)144 and others are more specialized, application-oriented DSLs (e.g. DSL for
defining financial products).
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Compared to conventional libraries, DSLs have a number of advantages. We already
summarized them in Section 7.6.1, but let us restate some main points (see Table 12 for other
advantages):

• Intentional representation: DSLs are designed to allow a direct, well-localized expression
of requirements without obscure language details. Also, they enforce the inclusion of all
relevant design information which would otherwise be lost if we used a general-purpose
language. Thus, programs written in DSLs are easier to analyze, understand, modify,
extend, reuse, and maintain.

• Error checking: DSLs enable error checking based on domain knowledge.

• Optimizations: DSLs allow optimizations based on domain knowledge. Such optimizations
are usually much more effective than low-level optimization at the level of a general-
purpose language (see Section 6.4.1). They are the key to being able to write cleanly
designed, abstract code and still have it compiled into a high-performance executable. For
example, if we implement matrix addition naively in an OO language using overloaded
binary operators, the performance of such implementation will be unacceptable. Given the
expression M1+M2+M3, the sum of the matrices M2 and M3 will be computed first and the
intermediate result will be passed as the second argument to the first plus operation in the
expression. Unfortunately, intermediate results can cause a significant overhead, especially
if the matrices are large. Therefore, such an expression is often manually implemented as a
pair of nested loops iterating through rows and columns and adding the corresponding
elements of all matrices at once, which does not require any intermediate results and an
extra pair of loops. The manual implementation, despite its better performance, is much
more difficult to maintain than the original expression M1+M2+M3. Domain specific
optimizations offer a solution to this dilemma. In our case, we have to extend the
compilation process with the matrix expression optimization computing the efficient
implementation from the abstract expression automatically. Thus, we can write abstract
expressions and get maximum performance at the same time.

The conclusion of Chapter 7 was that aspectual decomposition requires specialized language
constructs for dealing with crosscutting. Also, we concluded that language extensions are well
suited for capturing aspects in an intentional way.

Furthermore, we saw in Section 7.6.3 that the distinction between languages and language
extensions disappears if we subscribe to the idea of modular language extensions. In this case,
instead of using some (possibly extended) fixed language, we rather use configurations of
language extensions. DSLs as language extensions have three important advantages (also see
Section 7.6.1):

• Reusability: Breaking monolithic languages into modular language extensions allows us to
use them in different configurations.

• Scalability: We can develop a small system using a small configuration of necessary
language extensions. When the system grows to encompass new aspects, we can add new
language extensions addressing the new aspects to the initial configuration. Modular
language extensions avoid the well-known problems of large and monolithic DSLs that are
hard to evolve (see e.g. [DK98]).

• Fast feature turnover: Modular language extensions are a faster vehicle for distributing
new language features than closed compilers.  Also, modular language feature extensions
have to survive based on their merits since they can be loaded and unloaded at any time.
This is not the case for language features of fixed languages, in which case it is usually not
possible to get rid of questionable features once they are part of a language (since there
may be users depending on them).

An important issue is how to compose the language extensions. We could classify the
composition mechanisms into three categories:
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• Embedding: Small sections of code written in one language extension are “embedded” in
the code written in other language extensions, e.g. embedded SQL statements in a general-
purpose programming language. The boundaries between the embedded code and the
surrounding code can be usually easily identified since both codes use a different style,
paradigm, etc.

• “Seamless” integration: One language extension “naturally” extends another one. An
example of such integration is the extension of Java 1.1 with inner classes in Java 1.2.

• Referential integration: Different modules are written in different language extensions. The
modules reference each other at appropriate join points. A good example of referential
integration is the composition of Jcore and Cool modules in AspectJ (see Section 7.5.1).

It is important to note that, from the linguistic viewpoint, conventional libraries of procedures or
classes extend a programming language within its syntax since they introduce new vocabulary
(i.e. new abstractions) for describing problems at a higher level. Such extensions are adequate
as long as we do not require

• syntax extensions,

• semantic extensions or modifications of language constructs,

• domain-specific optimizations,

• domain-specific error checking, and

• domain-specific type systems.

Some languages allow implementing domain-specific optimizations, error checking, and type
systems without leaving the syntax of the language, e.g. C++ thanks to static metaprogramming.
Other languages allow us to extend their syntax and semantics by extending the libraries
defining them, e.g. Smalltalk and CLOS (see Section 7.4.7).

In general, technologies for implementing language extensions covering domain-specific
optimizations, error checking, type systems, syntactic extensions, and modifications of
language constructs include the following:

• Preprocessors: Preprocessors are popular for extending existing programming languages.
They usually expand some embedded macros into the target programming language, which
is referred to as the host language. The advantage of preprocessors is that they do not
have to understand the host language entirely and thus their development cost can be
much smaller than the cost of developing a compiler. Moreover, they can be simply
deployed in front of any favorite compiler for the host language. Unfortunately, this
advantage is also their disadvantage. Errors in the target source are reported by the
compiler in terms of the target source and not in terms of the source given to the
preprocessor. Also, debuggers for the host language do not understand the extended
language. Thus, preprocessors usually do not adequately support the programmer.
Furthermore, if a preprocessor does not completely understand the host language, macros
cannot utilize other information contained in the source (e.g. host language constants,
constant expressions, etc.) and thus many important kinds of domain-specific optimizations
cannot be implemented. This problem could be solved if the preprocessor had access to the
internal representation of the compiler. In an extreme case, we could imagine a pipeline of
preprocessors, all storing their metainformation in one repository. Indeed, such an
architecture can be viewed as a modularly extendible compiler, which we mention in the last
point.

• Languages with metaprogramming support: Some languages have built-in language
extension capabilities. Templates in C++ allow us to implement domain-specific
optimizations while staying within the C++ syntax and semantics. Reflective languages
such as Smalltalk or CLOS allow us to implement any kinds of extensions since their
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definition is accessible to the programmer as a modifiable and extendable library. However,
the languages do not provide the kind of architecture for modular extensions as modularly
extendible compilers or programming environments do.

• Modularly extendible compilers and modularly extendible programming environments:
An example of a system in this category is the Intentional Programming (IP) environment
described in Section 6.4.3. Language extensions in IP are implemented as extension libraries
which extend editors, compilers, debuggers, etc.

The latter two technologies allow us to develop active libraries, i.e. libraries which, in addition
to the runtime code, also include domain-specific optimizations, or any other kind of compiler or
programming environment extensions (see Section 7.6.4).

In the following text, whenever we use the term DSL, we actually mean a domain-specific
language extension.

9.4.2 Domain Design Activities
Domain Design in DEMRAL involves the following activities:

• identify packages,

• identify user DSLs,

• identify interactions between DSLs,

• scope DSLs, and

• specify DSLs.

These activities are described in following five sections.

9.4.2.1 Identify packages
We divide the library to be developed in a number of packages. Packages serve several of
purposes:

• defining the high-level modules of the library which helps to minimize dependencies and
improve understandability;

• assigning different packages to different developers for concurrent development;

• selective import of required packages by different applications.

The usual strategy in DEMRAL is to put each ADT and each algorithm family into a separate
package. We can use the UML package diagrams in order to represent the package view on the
library under development.

9.4.2.2 Identify User DSLs
User DSLs are the DSLs provided by the library to their users as Application Programmer’s
Interfaces (APIs). There are two important kinds of user DSLs in DEMRAL:

• Configuration DSLs: Configuration DSLs are used to configure ADTs and algorithms. We
discuss configuration DSLs in Section 9.4.3.

• Expression DSLs: Expression DSLs are DSLs for writing expressions involving ADTs and
operations on them, e.g. matrix expressions. We discuss expression DSLs in Section 9.4.4

Other, more problem-specific DSLs are also possible, e.g. a language extension for expressing
pivoting in matrix computation algorithms (see [ILG+97]).

Configuration DSLs

Expression DSLs
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9.4.2.3 Identify Interactions Between DSLs
Next, we need to address the following question: What kind of information has to be exchanged
between the implementations of the DSLs? For example, the implementation of a matrix
expression DSL will need access to different properties of matrices (e.g. element type, shape,
format, etc.), which are described by the matrix configuration DSL. This information is necessary
in order to implement the operations contained in an expression by selecting optimal algorithms
for the given matrix arguments. Furthermore, it is used to compute the matrix types for the
intermediate results.

9.4.2.4 Scope DSLs
The features to be covered by an implementation of a DSL have to be selected from the feature
models based on the priorities recorded in the feature models and the current project goals and
resources.

9.4.2.5 Specify DSLs
We specify a language by specifying its syntax and semantics. At this point, we will only
specify the abstract syntax of each DSL and leave the concrete syntax (also referred to as the
surface syntax) to Domain Implementation. The difference between abstract and concrete
syntax is shown in Figure 134. The abstract syntax of a language describes the structure of the
abstract syntax trees used to represent programs in the compiler (or another language
processor), whereas the concrete syntax describes the structure of programs displayed on the
screen. Technologies such as Intentional Programming allow us to easily implement many
alternative concrete syntaxes for one abstract syntax. We specify abstract syntax in the form of
an abstract grammar (see e.g. Figure 134) and we use the Backus-Naur Form (BNF; see e.g.
[Mey90]) for the concrete syntax.

The specification of the semantics of a language is a more complex task. Meyer describes five
fundamental approaches to specifying semantics [Mey90]:

• Attribute grammars, which extends the grammar by a set of rules for computing properties
of language constructs.

• Translational semantics, where the semantics is expressed by a translation scheme to a
simpler language.

• Operational semantics, which specifies the semantics by providing an abstract interpreter.

Abstract and
concrete syntax

If_ statement if

assignmenta

x 1

Condition

Expression

Variable

aif then

Statement

Assignment

Variable

:=

Const

Expr

x 1

concrete syntax tree abstract syntax tree

Figure 134    Concrete and abstract syntax tree for the statement if a then x:= 1
(adapted from [WM95])
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• Denotational semantics, which associates with every programming construct a set of
mathematical functions defining its meaning.

• Axiomatic semantics, which for a programming language defines a mathematical theory for
proving properties of programs written in this language.

Each of these approaches has its advantages and disadvantages. In any case, however, formal
specification of the semantics of a language is an extremely laborious enterprise.

A simple and practicable approach is to specify how to translate DSL programs into pieces and
patterns of code in some appropriate programming language or pseudo code.

Finally, we have to specify how the different DSLs should be integrated (e.g. embedding,
seamless integration, or referential integration).

Since the two most important categories of DSLs in DEMRAL are configuration DSLs and
expression DSLs, we discuss them in Sections 9.4.3 and 9.4.4, respectively.

9.4.3 Configuration DSLs
A configuration DSL allows us to specify a concrete instance of a concept, e.g. data structure,
algorithm, object, etc. Thus, it defines a family of artifacts, just as a feature model does. Indeed,
we derive a configuration DSL of a concept from a feature model by tuning it to the needs of the
reuser.

We usually implement a configuration using a generative component (see Section 6.2) or a
configurable runtime component. The  model of a generative component is shown in Figure 135.
An instance specification in a configuration DSL (e.g. specification of a matrix: complex
elements, lower-diagonal shape, stored in an array, and with bounds checking) is given to the
generative component which assembles the concrete component instance (e.g. the concrete
matrix class) from a number of implementation components (e.g. parameterized classes
implementing element containers, bounds checkers, adapters, etc.) according to the
specification. The implementation components can be connected only in certain ways. This is
specified by an implementation components configuration language (ICCL).

A configurable runtime component has the same elements as the generative component. The
only difference is that the finished configuration, the translator, and the implementation
components are all contained in one configurable runtime component. Of course, a generative
component may also generate a configurable runtime component, which implements a subset of
its original configuration DSL and thus includes a subset of its implementation components and
a smaller translator.

Implementation
components
configuration
language (ICCL)

translator
generative
component

finished
configuration

(composed
according to an

ICCL)

specification in
a configuration

DSL

implementation
components

Figure 135    Generative component implementing a configuration DSL
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Thus, the complete specification of a configuration DSL consists of a DSL grammar (see Section
10.2.3 and Figure 150), the specification of the ICCL (see Section 10.2.4), and the specification of
how to translate statements in the configuration DSL into ICCL statements (see Section 10.2.5).

Why do we need both configuration DSLs and ICCLs? The reason is that both kinds of
languages have different foci. The focus of a configuration DSL is to allow the user (or the
client program) of a component to specify his needs at a level of detail that suites him best. The
focus of an ICCL is to allow maximum flexibility and reusability of the implementation
components. Thus, the configuration DSL describes the problem space, whereas the ICCL
describes the solution space.

As stated, the configuration DSL should allow the user of a component to specify his needs at
a level of detail that suites him best. He should not be forced to specify any implementation-
dependent details if he needs not to. This way, we make sure that a client program does not
introduce any unnecessary dependencies on the implementation details of the server
component. For example, a client might just request a matrix from a generative matrix component.
The matrix component should produce a matrix with some reasonable defaults, e.g. rectangular
shape, real element values, dynamic row and column numbers, etc. In general, the client should
be able to leave out a feature in a specification, in which case the feature should be determined
by the generative component as a direct default or a computed default (i.e. a default determined
based on some other specified features and other feature defaults). The client could be more
specific and specify features stating some usage profile, e.g. need dense or sparse matrix or
need space- or speed-optimized matrix. The next possibility would be to provide more precise
specifications, e.g. the matrix density is 5% nonzero elements. Furthermore, the client should be
able to specify some implementation features directly, e.g. what available storage format the
matrix should use. Finally, it should be possible for the client to contribute its own
implementation of some features, e.g. its own storage format. The different levels of detail for
specifying a configuration are summarized in Figure 136.

The idea of the different levels of detail was inspired by the Open Implementation approach to
design [KLL+97, MLMK97]. In this approach, the configuration interface of a component is
referred to as its metainterface.

The focus of an ICCL is on the reusability and flexibility of the implementation components.
This requirement may sometimes conflict with the requirements on a configuration DSL: We
strive for small, atomic components that can be combined in as many ways as possible. We
want to avoid any code duplication by factoring out similar code sections into small,
(parameterized) components. This code duplication avoidance and the opportunities for reuse
of some implementation components (e.g. containers, bounds checkers, etc.) in other servers
may lead to implementation components that do not align well with the feature boundaries that
the user wants to use in his or her specifications. An example of a library which only provides
an ICCL is the C++ Standard Template Library (STL). The user of the STL has to configure the
STL implementation components manually (i.e. he has to hardcode ICCL statements in the client
code).
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The use of a configuration DSL and an ICCL separates the problem space and the solution
space. This separation allows a more independent evolution of the client code, which uses a
configuration DSL as the configuration interface to a component, and the component
implementation code, which implements the ICCL. Indeed, during the development of the matrix
computation library described in Chapter 10, there were cases in which we had to modify the
ICCL and these modifications had no effect on the DSL whatsoever.

The configuration DSL of a concept can be directly derived from the feature model of the
concept. The approach for this derivation involves answering the following questions:

• Which features are relevant for the DSL?  Obviously, a configuration DSL will consist of
variation points and variable features only. Other features of a feature model are not
relevant for the configuration DSL.

• Are any additional, more abstract features needed? For example, during Domain Design of
the matrix computation library described in Section 10.2.3, we added the optimization flag
with the alternative subfeatures speed and space to the original matrix feature model
created during feature modeling. The optimization flag allows us to decide which matrix
storage format to use based on the matrix shape and density features (e.g. a dense
triangular matrix is faster in access when we store its elements in an array than in a vector
since we do not have to convert the subscripts on each element access; however, using a
vector requires half the storage of an array since only the nonzero half of the matrix needs
to be stored in the vector).

• Is the nesting of features optimal for the user?  It may be useful to rearrange the feature
diagrams of a feature model according to the needs of the users (which may be different).
Also, the target implementation technology may impose some constraints on the DSL. For
example, the matrix configuration DSL described in Section 10.2.3 uses dimensions as the
only kind of variation points. This way we can easily implement it using C++ class
templates.

• Which features should have direct defaults and what are these defaults?  Some features
should be selected by default if not specified. For example, the shape of a matrix is a
dimension and should have the default value rectangular. Other dimensions of a matrix
which should have direct defaults include element type, index type, optimization flag, and
error checking flag (see Table 42).

• For which features can defaults be computed and how to compute them?  Features, for
which no direct defaults were defined should be computable from the specified features
and the direct defaults. For example, the storage format of a matrix can be determined based
on its shape, density, and optimization flag. The computed defaults can be specified using
dependency tables (see Table 24 in Section 10.2.3 and, e.g., Table 48 in Section
10.2.3.4.3).145

The implementation components may be based on different component architectures. For the
matrix package, we have used the GenVoca architecture described in Section 6.4.2. A GenVoca
component represents a parameterized layer containing a number of mixin classes (thus, the
layers are also referred to as mixin layers [SB98]). These layers can be configured according to
a predefined grammar. Thus, a GenVoca grammar and a set of GenVoca layers may describe a
whole family of OO frameworks since a configuration of a number of layers may represent a
framework. In a degenerate case, a GenVoca layer may contain one class only. Configuring such
layers corresponds to configuring a number of parameterized classes, some of which are
parameterized by their superclasses.

If we use the GenVoca architecture as our implementation components architecture, our ICCL is
obviously a GenVoca grammar (see e.g. Figure 173). In this case, we can think of our generative
component to produce whole customized class hierarchies based on specifications in a
configuration DSL.
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The generated component or the configured runtime component should keep the
metainformation describing its current configuration in an accessible form since this information
may be interesting to other components. For example, the metainformation of a matrix is needed
by the generative component implementing matrix expressions, so that it can select optimal
algorithm implementations for the given argument matrices.

We prefer to keep this metainformation in a configuration repository in the form of name-value
pairs for all features (i.e. both the  explicitly specified features and the computed defaults) rather
than the original DSL description since we do not have to parse the description on each feature
access. Each component has such a repository as its “birth certificate” (for the statically
generated component) or current “data sheet” (for the dynamically reconfigurable component).

9.4.4 Expression DSLs
An important class of DSLs in algorithmic domains are expression DSLs. An expression DSL
allows us to write algebraic expressions involving ADTs and operations on ADTs. Examples of
expressions are matrix expressions, e.g. M1+M2*M3+M4–M5, where +, *, and – are matrix
addition, multiplication, and matrix subtraction and M1 through M5 are matrices. Another
example are image algebra expressions, e.g.

( ) ( )( ) 2/122 sasa ⊕+⊕

where a is an image, s is a template (i.e. an image whose values are images),  and ⊕ is the right
linear product operator. This expression is used in the image algebraic formulation of the
Roberts edge detector (see [RW96]).

First, we need to list the operations and the ADTs they operate on. For our matrix case study in
Section 10.2.6, for example, we only consider matrix addition, subtraction, and multiplication.
The BLAS vector and matrix operations (see Section 10.1.1.2.4) provide a more comprehensive
set of basic operations for matrix algorithms. Image Algebra [RW96] defines several dozens of
basic operations.

The operations usually have some systematic relationships with the properties of their
arguments. For example, adding two lower triangular matrices results in another lower triangular
matrix, adding a lower triangular matrix and an upper triangular matrix results in a general square
matrix, adding two dense matrices results in a dense matrix, etc.

If we know that a certain property of a matrix does not change during the entire runtime, we can
encode this property in its static type. We can then use the static properties of the arguments
to derive the static properties of operation results. This corresponds to type inference. In
general, we use the configuration repositories of the argument ADTs (a configuration
repository contains all the static features of an ADT) to compute the configuration repository
of the resulting ADT. Thus, we need to specify the mapping function for computing the
features of operation results from the features of the arguments. For this purpose, we use
dependency tables, which we define in Section 10.2.3. The functions for computing result types
for matrix operations are given in Section 10.2.7.

Finally, we need to investigate opportunities for optimizations. We distinguish between two
types of optimizations:

• Optimizations of single operations: This kind of optimization is performed by selecting
specialized algorithms based on the information in the configuration repository of the
participating ADTs. For example, we use different addition and multiplication algorithms
depending on the shape of the argument matrices. The specification of such optimizations
involves specifying the different algorithms and the criteria for selecting them (see e.g.
Section 10.2.6.3).

• Optimizations of whole expressions: This kind of optimization involves the structural
analysis of the entire expression and generating customized code based on this analysis.

Configuration
repository

Dependency tables
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Examples of such optimizations are elimination of temporaries and loop fusing. The
optimizations may be performed at several levels of refinement. Sophisticated optimization
techniques for expression DSLs are described in [Big98a, Big98b].

9.5 Domain Implementation
Different parts of an algorithmic library require different implementation techniques:

• ADTs, operations, and algorithms can be adequately implemented using parameterized
functions, parameterized classes, and mixin layers (i.e. the GenVoca model). All of these
abstraction mechanisms are available in C++.

• The implementation of configuration generators and expression optimizations require static
metaprogramming capabilities. Here we can use built-in language capabilities such as
template metaprogramming in C++, custom-developed preprocessors or compilers, or
specialized metaprogramming environments and tools such as IP (Section 6.4.3) or Open
C++ [Chi95].

• Domain-specific syntax extensions require preprocessors, custom compilers, or extendible
compilers (e.g. IP). The C++ vector library Blitz++ (see Section 7.6.4), however,
demonstrates that a rich language such as C++ allows us to simulate a great deal of
mathematical notations without the need of syntax extensions.

Chapter 10 will demonstrate two implementation approaches:

• implementation in C++ in Section 10.3.1 (including implementation of a GenVoca
architecture using C++ class templates, implementation of a configuration generator using
template metaprogramming, implementation of the expression DSL using expression
templates) and

• implementation in the IP System in Section 10.3.2.

Both approaches are evaluated and compared in Sections 10.3.1.8 and 10.3.2.
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Chapter 10 Case Study: Generative Matrix
Computation Library (GMCL)

10.1 Domain Analysis

10.1.1 Domain Definition

10.1.1.1 Goals and Stakeholders
Our goal is to develop a matrix computation library. Thus, our domain is the domain of matrix
computation libraries. The most important group of stakeholders are users solving linear
algebra problems. We want the library to be highly reusable, adaptable, and very efficient (in
terms of execution speed and memory consumption) and provide a highly intentional interface
to application programmers. For our case study, we will always prefer technologically better
solutions and ignore organizational issues. In a real world setting of a software development
organization, the analysis of stakeholders and their goals, strategic project goals, and other
organizational issues may involve a significant effort.

10.1.1.2 Domain Scoping and Context Analysis

10.1.1.2.1 Characterization of the Domain of Matrix Computation Libraries

Our general domain of interest is referred to as matrix computations, which is a synonym for
applied, algorithmic linear algebra. Matrix computations is a mature domain with a history of
more than 30 years (e.g. [Wil61]). The domain includes both the well-defined mathematical
theory of linear algebra as well as the knowledge about efficient implementations of algorithms
and data structures for solving linear algebra problems on existing computer architectures. This
implementation knowledge is well documented in the literature, e.g. [GL96, JK93].

In particular, we are interested in the domain of matrix computation libraries. A matrix
computation library contains ADTs and algorithm families for matrix computations and is
intended to be used as a part of a larger application. Thus, it is an example of a horizontal
domain. Examples of vertical domains involving matrix computations would be matrix
computation environments (e.g. Matlab [Pra95]) or specialized scientific workbenches (e.g. for
electromagnetics or quantum chemistry). They are vertical domains since they contain entire
applications including GUIs, graphical visualization, persistent storage for matrices, etc.

The main concepts in matrix computations are vectors, matrices, and computational methods,
e.g. methods for solving a system of linear equations or computing the eigenvalues. A glossary
of some of the terms used in matrix computations is given in 10.4.
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10.1.1.2.2 Sources of Domain Knowledge

The following sources of domain knowledge were used in the analysis of the matrix
computation libraries domain:

• literature on matrix computations: [GL96, JK93];

• documentation, source code, and articles describing the design of existing matrix
computation libraries: [LHKK79, DDHH88, DDDH90, CHL+96] and those listed in Table 15
and Table 16;

• online repository of matrices: [MM].

10.1.1.2.3 Application Areas of Matrix Computation Libraries

In this section, we will identify features characterizing matrix computation libraries by analyzing
different application areas of matrix computations.

Table 13 and Table 14 list some typical application areas of matrix computations and the types
of matrices and computations which are required for solving the problems in the listed areas.
The application areas were grouped into two categories: one requiring dense matrices (Table 13)
and the other one requiring sparse matrices (Table 14). In general, large matrix problems usually
involve sparse matrices and large dense matrix problems are much less common.

Application area Dense matrix types Computational problems

electromagnetics (Helmholtz
equation), e.g. radar
technology, stealth (i.e.
“radar-invisible”) airplane
technology

complex, Hermitian (rarely
also non-Hermitian), e.g.
55296 by 55296

boundary integral solution
(specifically the method of
moments)

flow analysis (Laplace or
Poisson equation), e.g.
airflow past an airplane wing,
flow around ships

symmetric, e.g. 12088 by
12088

boundary integral solution
(specifically the panel
method)

diffusion of solid bodies in
liquids

block Toeplitz i. n. a.146

diffusion of light through
small particles

block Toeplitz i. n. a.

noise reduction block Toeplitz i. n. a.

quantum mechanical
scattering (computing the
scattering of elementary
particles from other particles
and atoms; involves
Schrödinger wave function)

i. n. a. dense linear systems

quantum chemistry
(Schrödinger wave function)

real symmetric, occasionally
Hermitian, small and dense
(large systems are usually
sparse)

symmetric eigenvalue
problems

material science i. n. a. unsymmetric eigenvalue
problems

real-time signal processing i. n. a. rank-revealing factorizations
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applications and the updating of
factorizations after low rank
changes

Table 13   Examples of application areas for dense matrix computations (based on examples
found in [Ede91, Ede93, Ede94,Hig96])

Application area Sparse matrix types Computational problems

static analyses in structural
engineering147, e.g. static
analysis of buildings, roofs,
bridges, airplanes, etc.

real symmetric positive
definite, pattern symmetric
indefinite, e.g. 3948 by 3948
with 60882 entries

generalized symmetric
eigenvalue problem, finite-
element modeling, linear
systems

dynamic analysis in structural
engineering, e.g. dynamic
analysis of fluids, suspension
bridges, transmission towers,
robotic control

real symmetric and positive
definite or positive semi-
definite or indefinite

symmetric eigenvalue
problems, linear systems

hydrodynamics real unsymmetric, e.g. 100 by
100 with 396 entries

eigenvalues of the Jacobi
matrix

oceanic modeling, e.g. models
of the shallow waves for the
Atlantic and Indian Oceans

real symmetric indefinite, real
skew symmetric, e.g. 1919 by
1919 with 4831 entries

finite-difference model

acoustic scattering complex symmetric i. n. a.

fluid flow modeling, fluid
dynamics, flow in networks

real unsymmetric, symmetric
structure, e.g. 511 by 511,
2796 entries and 23560 by
23560 with 484256 entries

iterative and direct methods,
eigenvalue and eigenvector
problems (in perturbation
analysis), Lanczos method

petroleum engineering, e.g. oil
recovery, oil reservoir
simulation

real unsymmetric, symmetric
structure, e.g. 2205 by 2205
with 14133 entries

i. n. a.

electromagnetic field
modeling, e.g. integrated
circuit applications, power
lines

real pattern symmetric
indefinite, real pattern
symmetric positive definite,
real unsymmetric, e.g. 1074 by
1074 with 5760 entries

finite-element modeling,
symmetric and unsymmetric
eigenvalue problem

power systems simulations,
power system networks

real unsymmetric, real
symmetric indefinite, real
symmetric positive definite,
e.g. 4929 by 10595 with 47369
entries

symmetric and unsymmetric
eigenvalue problems

circuit simulation real unsymmetric, 58 by 59
with 340 entries

i. n. a.

astrophysics, e.g. nonlinear
radiative transfer and
statistical equilibrium in
astrophysics

real unsymmetric, e.g. 765 by
765 with 24382 entries

i. n. a.

nuclear physics, plasma
physics

real unsymmetric, e.g. 1700 by
1700 with 21313 entries

Large unsymmetric
generalized eigenvalue



Generative Programming, K. Czarnecki292

problems

quantum chemistry complex symmetric indefinite,
e.g. 2534 by 2534 with 463360
entries

symmetric eigenvalue
problems

chemical engineering, e.g.
simple chemical plant model,
hydrocarbon separation
problem

real unsymmetric, e.g. 225 by
225 with 1308 entries

conjugate gradient
eigenvalue computation,
initial Jacobian approximation
for sparse nonlinear
equations

probability theory and its
applications, e.g. simulation
studies in computer systems
involving Markov modeling
techniques

real unsymmetric, e.g. 163 by
163 with 935 entries

unsymmetric eigenvalues and
eigenvectors

economic modeling

e.g. economic models of
countries, models of
economic transactions

real unsymmetric, e.g. 2529 by
2529 with 90158 entries

i. n. a.

demography, e.g. model of
inter-country migration

real unsymmetric, often
relatively large fill-in with no
pattern, e.g. 3140 by 3140 with
543162 entries

i. n. a.

surveying real unsymmetric, e.g. 480 by
480 with 17088 entries

least squares problem

air traffic control sparse real symmetric
indefinite, e.g. 2873 by 2873
with 15032 entries

conjugate gradient algorithms

ordinary and partial
differential equations

real symmetric positive
definite, real symmetric
indefinite, real unsymmetric,
e.g. 900 by 900 with 4322
entries

symmetric and unsymmetric
eigenvalue problems

Table 14   Examples of application areas for sparse matrix computations (based on examples
found in [MM])

10.1.1.2.4 Existing Matrix Computation Libraries

As of writing, the most comprehensive matrix computation libraries available are written in
Fortran. However, several object-oriented matrix computation libraries (for performance reasons,
they are written mostly in C++) are currently under development. Table 15 and Table 16 list
some of the publicly and commercially available matrix computation libraries in Fortran and in
C++ (also see [OONP]).

Matrix computations library Features

LINPACK

a matrix computation library for solving dense
linear systems; superseded by LAPACK

see [DBMS79] and
http://www.netlib.org/linpack

language: Fortran

matrix types: dense, real, complex, rectangular,
band, symmetric, triangular, and tridiagonal

computations: factorizations (Cholesky, QR),
systems of linear equations (Gaussian
elimination, various factorizations), linear least
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squares problems, and singular value
problems

EISPACK

a matrix computation library for solving dense
eigenvalue problems; superseded by
LAPACK

see [SBD+76] and
http://www.netlib.org/eispack

language: Fortran

matrix types: dense, real, complex, rectangular,
symmetric, band, and tridiagonal

computations: eigenvalues and eigenvectors,
linear least squares problems

LAPACK

a matrix computation library for dense linear
problems; supersedes both LINPACK and
EISPACK

see [ABB+94] and
http://www.netlib.org/lapack

language: Fortran

matrix types: dense, real, complex, rectangular,
band, symmetric, triangular, and tridiagonal

computations: systems of linear equations,
linear least squares problems, eigenvalue
problems, and singular value problems

ARPACK

a comprehensive library for solving real or
complex and symmetric or unsymmetric
eigenvalue problems; uses LAPACK and
BLAS (see text below Table 16)

see [LSY98] and
http://www.caam.rice.edu/software/ARPACK

language: Fortran

matrix types: provided by BLAS and
LAPACK

computations: Implicitly Restarted Arnoldi
Method (IRAM), Implicitly Restarted Lanczos
Method (IRLM), and supporting methods for
solving real or complex and symmetric or
unsymmetric eigenvalue problems

LAPACK++

a matrix computation library for general dense
linear problems; provides a subset of
LAPACK functionality in C++

see [DPW93] and
http://math.nist.gov/lapack++

language: C++

matrix types: dense, real, complex, rectangular,
symmetric, symmetric positive definite, band,
triangular, and tridiagonal

computations: factorizations (LU, Cholesky,
QR), systems of linear equations and
eigenvalue problems, and singular value
problems

ARPACK++

subset of ARPACK functionality in C++
(using templates)

see [FS97] and
http://www.caam.rice.edu/software/ARPACK/
arpack++.html

language: C++

matrix types: dense, sparse (CSC), real,
complex, rectangular, symmetric, band

computations: Implicitly Restarted Arnoldi
Method (IRAM)

SparseLib++

library with sparse matrices; intended to be
used with IML++

see [DLPRJ94] and
http://math.nist.gov/sparselib++

language: C++

matrix types: sparse

IML++ (Iterative Methods Library)

library with iterative methods; requires a
library implementing matrices, e.g.
SparseLib++

see [DLPR96] and http://math.nist.gov/iml++

language: C++

matrix types: library implementing matrices

computations: iterative methods for solving
both symmetric and unsymmetric linear
systems of equations (Richardson Iteration,
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Chebyshev Iteration, Conjugate Gradient,
Conjugate Gradient Squared, BiConjugate
Gradient, BiConjugate Gradient Stabilized,
Generalized Minimum Residual, Quasi-Minimal
Residual Without Lookahead)

Newmat, version 9

a matrix computation library for dense linear
problems; does not use C++ templates

see http://nz.com/webnz/robert/nzc_nm09.html

language: C++

matrix types: dense, real, rectangular,
diagonal, symmetric, triangular, band

computations: factorizations (Cholesky, QR,
singular value decomposition), eigenvalues of
a symmetric matrix, Fast Fourier

TNT (Template Numerical Toolkit)

a C++ matrix computation library for linear
problems; it has a template-based design;
eventually to supersede LAPACK++,
SparseLib++, and IMC++; as of writing, with
rudimentary functionality

see [Poz96] and http://math.nist.gov/tnt

language: C++, extensive use of templates

matrix types: dense, sparse, real, complex,
rectangular, symmetric, triangular

computations: factorizations (LU, Cholesky,
QR), systems of linear equations

contains an interface to LAPACK

MTL (Matrix Template Library)

a C++ matrix library; it has an STL-like
template-based design; its goal is to provide
only one version of any algorithm and adapt it
for various matrices using parameterization
and iterators; it implements register blocking
using template metaprogramming; it exhibits
an excellent performance comparable to tuned
Fortran90 code

see [SL98a, SL98b] and http://www.lsc.nd.edu/

language: C++, extensive use of templates

matrix types: dense, sparse, real, complex,
rectangular, symmetric, band

Table 15    Some of the publicly available matrix computation libraries and their features

Matrix computations library Features

Math.h++

C++ vector, matrix, and an array library in one

Rogue Wave Software, Inc., see
http://www.roguewave.com/products/math

language: C++

matrix types: dense, real, complex, rectangular

computations: LU factorization, FFT

LAPACK.h++

works on top of Math.h++; offers
functionality of the Fortran LAPACK library in
C++

Rogue Wave Software, Inc., see
http://www.roguewave.com/products/lapack

language: C++

matrix types: dense (some from Math.h++),
sparse, real, complex, symmetric, hermitian,
skew-symmetric, band, symmetric band,
hermitian band, lower triangular, and upper
triangular matrices

computations: factorizations (LU, QR, SVD,
Cholesky, Schur, Hessenberg, complete
orthogonal, tridiagonal), real/complex and



Case Study: Generative Matrix Computation Library (GMCL) 295

symmetric/unsymmetric eigenvalue problems

Matrix<LIB>

LINPACK and EISPACK functionality in C++
Matlab-like syntax

MathTools Ltd, see
http://www.mathtools.com

language: C++

matrix types: dense, real, complex

computations: factorizations (Cholesky,
Hessenberg, LU, QR, QZ, Schur and SVD),
solving linear systems, linear least squares
problems, eigenvalue/eigenvector problems

ObjectSuite™ C++: IMSL Math Module for
C++

a matrix computation library for dense linear
problems

Visual Numerics, Inc., see
http://www.vni.com/products/osuite

language: C++

matrix types: dense, real, complex, rectangular,
symmetric/Hermitian and symmetric/Hermitian
positive definite

computations: factorizations (LU, Cholesky,
QR, and Singular Value Decomposition), linear
systems, linear least squares problems,
eigenvalue and eigenvector problems, two-
dimensional FFTs

Table 16    Some of the commercially available matrix computation libraries and their features

A set of basic matrix operations and formats for high-performance architectures has been
standardized in the form of the Basic Linear Algebra Subprograms (BLAS). The operations are
organized according to their complexity into three levels:  Level-1 BLAS contain operations
requiring O(n) of storage for input data and O(n) time of work, e.g. vector/vector operations (see
[LHKK79]), Level-2 BLAS contain operations requiring O(n2) of input and O(n2) of work, e.g.
matrix-vector multiplication (see [DDHH88]), Level-3 BLAS contain operations requiring O(n2)
of input and O(n3) of work, e.g. matrix-matrix multiplication (see [DDDH90, BLAS97]). There are
also Sparse BLAS [CHL+96], which are special BLAS for sparse matrices. The Sparse BLAS
standard also defines various sparse storage formats. Different implementations of BLAS are
available from http://www.netlib.org/blas/.

10.1.1.2.5 Features of the Domain of Matrix Computation Libraries

From the analysis of application areas and existing matrix computation libraries (Table 13, Table
14, Table 15, and Table 16), we can derive a number of major matrix types and computational
method types which are common in the matrix computations practice. They are listed in Table 17
and Table 18, respectively. The types of matrices and computations represent the main features
of the domain of matrix computation libraries and can be used to describe the scope of a matrix
computation library. The rationale for including each of these features in a concrete matrix
computation library implementation are also given in Table 17 and Table 18. Some features such
as dense matrices and factorizations are basic features required by many other features and
they should be included in any matrix computation library implementation. Some other features
such as complex matrices and methods for computing eigenvalues are — unless directly
required by some stakeholders — optional and their implementation may be deferred.
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Matrix type Rationale for inclusion

dense matrices Dense matrices are ubiquitous in linear algebra
computations and are mandatory for any matrix
computation library.

sparse matrices In practice, large linear systems are usually sparse.

real matrices Real matrices are very common in linear algebra problems.

complex matrices Complex matrices are less common than real matrices but
still very important for a large class of problems.

rectangular, symmetric, diagonal,
and triangular matrices

Rectangular, symmetric, diagonal, and triangular matrices
are very common in linear algebra problems and are
mandatory for any matrix computation library.

band matrices Band matrices are common in many practical problems, e.g.
a large percentage of the matrices found in [MM] are band
matrices.

other matrix shapes (e.g. Toeplitz,
tridiagonal, symmetric band)

There is a large number of other matrix shapes which are
specialized for various problems. In general, providing all
possible shapes in a general purpose matrix computation
library is not possible since new applications may require
new specialized shapes.

Table 17    Major matrix types and the rationale for their inclusion in the implemented feature
set
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Figure 137 summarizes the features of a matrix computation library in a feature diagram. The
priorities express the typicality rate of the variable features. These typicality rates are informal
and are intuitively based on the analysis of application areas and existing matrix computation
libraries.

Another important feature of a matrix computation library, which will not be considered here, is
its target computer architecture, e.g. hierarchical memory, multiple processors with distributed
memory or shared memory, etc.

Computational methods Rationale for inclusion

factorizations (decompositions) Factorizations are needed for direct methods
and matrix analysis and are mandatory for any
matrix computation library.

direct methods for solving linear systems Direct methods (e.g. using the LU
factorization) are standard methods for
solving linear systems.

least squares methods The least squares approach is concerned with
the solution of overdetermined systems of
equations. It represents the standard scientific
method to reduce the influence of errors when
fitting models to given observations.

symmetric and unsymmetric eigenvalue and
eigenvector methods

Eigenvalue methods have numerous
applications in science and engineering.

iterative methods for linear systems Iterative methods for linear systems are the
methods of choice for some large sparse
systems. There are iterative methods for
solving linear systems and for computing
eigenvalues.

Table 18    Major matrix computational methods types and the rationale for their inclusion in
the implemented feature set
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10.1.1.2.6 Relationship to Other Domains

The domain of array libraries is an example of an analogy domain (see Section 3.6.3) of the
domain of matrix computation libraries. Array libraries implement arrays (including two-
dimensional arrays) and numerical computations on arrays. Thus, there are significant
similarities between array libraries and matrix computation libraries. But there are also several
differences:

• Array libraries, in contrast to matrix computation libraries, also cover arrays with more than
two dimensions.

• Array operations are primarily elementwise operations. For example, in an array library *
means elementwise multiply, whereas in a matrix computation library * designates matrix
multiplication.

• Arrays usually support a wide range of element types, e.g. int, float, char, bool, and user
defined types, whereas the type of matrix elements is either real or complex numbers.

• Array libraries usually do not provide a comprehensive set of algorithms for solving
complicated linear problems. They rather focus on other areas, e.g. signal processing.

• Array libraries usually do not provide any special support for different shapes and
densities.

band matrices

diagonal matrices

symmetric matrices

triangular matrices

rectangular matrices

complex matrices

sparse matrices

real matrices

dense matrices

iterative methods

eigenvalues

least squares

linear systems

factorizations

matrix computation
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matrix package
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Figure 137    Feature diagram of a matrix computation library
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Blitz++ [Vel97] is an example of an array library. Math.h++ (see Table 16) combines aspects of
both an array and a matrix computation library in one.

An example of another analogy domain is the domain of image processing libraries. Images are
somewhat similar to matrices. However, there are also several differences:

• The elements of an image are binary, gray scale, or color pixel values. Binary and color pixel
values require a different representation than matrix elements. For example, color pixels may
be represented using three values and a collection of binary pixels is usually represented
by one number.

• The operations and algorithms required in image processing are different than those used
for solving linear problems.

An example of a support domain is the domain of container libraries. A container library, e.g.
the Standard Template Library (STL; [MS96, Bre98]) could be used to implement storage for
matrix elements in a matrix computation library.

10.1.2 Domain Modeling

10.1.2.1 Key Concepts of the Domain of Matrix Computation Libraries
The key concepts of the domain of matrix computation libraries are

• abstract data types: vectors and matrices;

• algorithm families: factorizations, solving systems of linear equations, solving least
squares problems, solving eigenvalue and eigenvector problems, and iterative methods.

10.1.2.2 Feature Modeling of the Key Concepts

10.1.2.2.1 Features of Vectors and Matrices

This section describes the features of vectors and matrices. Since the vector features represent
a subset of the matrix features, we only list the matrix features and indicate if a feature does not
apply to vectors. Please note that vectors can be adequately represented as matrices with
number of rows equal one or number of columns equal one.

We have the following matrix features:

• element type: type of the matrix elements;

• subscripts: subscripts of the matrix elements;

• structure: the arrangement and the storage of matrix elements:

• entry type: whether an entry is a scalar or a matrix;

• density: whether the matrix is sparse or dense;

• shape: the arrangement pattern of the nonzero matrix elements (this feature does not apply
to vectors);

• representation: the data structures used to store the elements;

• format: the layout of the elements in the data structures;

• memory management: allocating and relinquishing memory;

• operations: operations on matrices (including their implementations);
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• attributes: matrix attributes, e.g. number of rows and columns;

• concurrency and synchronization: concurrent execution of algorithms and operations and
synchronization of memory access;

• persistency: persistent storage of a matrix instance;

• error handling: error detection and notification, e.g. bounds checking, compatibility
checking for vector-vector, matrix-vector, and matrix-matrix operations.

10.1.2.2.1.1 Element Type
The only element types occurring in linear algebra (and also in the application areas listed in
Table 13 and Table 14) are real and complex numbers. Existing libraries (Table 15 and Table 16)
typically support single and double precision real and complex element types. Other element
types (e.g. bool, user defined types, etc.) are covered by array libraries (see Section 10.1.1.2.6).

10.1.2.2.1.2 Subscripts (Indices)
The following are the subfeatures concerning subscripts:

• index type: The type of subscripts is an integral type, e.g. char, short, int, long, unsigned
short, unsigned int, or unsigned long.

• maximum index value: The choice of index type, e.g. char or unsigned long, determines the
maximum size of a matrix or vector.

• index base: There are two relevant choices for the start value of indices: C-style indexing
(or 0-base indexing), which starts at 0, and the Fortran-style indexing (or 1-base
indexing), which starts at 1. Some libraries, e.g. TNT (see Table 15), provide both styles at
the same time (TNT provides the operator “[]” for 0-base indexing and the operator “()” for
1-base indexing).

• subscript ranges: Additionally, we could also have a subscript type representing subscript
ranges. An example of range indexing is the Matlab indexing style [Pra95], e.g. 1:4 denotes
a range from 1 to 4, 0:9:3 denotes a range from 0 to 9 with stride 3. An example of a library
supporting subscript ranges is Matrix<LIB> (see Table 16).

10.1.2.2.1.3 Structure
Structure is concerned with the arrangement and the storage of matrix or vector elements. We
can exploit the arrangement of the elements in order to reduce storage requirements and to

char unsigned
long

unsigned int 0 1

index type

subscripts

index base

start
value

stridestop
value

index range

Figure 138    Subscripts
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provide specialized and faster variants of basic operations and more complex algorithms. The
subfeatures of the structure of matrices are shown in Figure 139.

10.1.2.2.1.3.1 Entry Type

The entries in a matrix are usually scalars (e.g. real or complex). These types of matrices are
referred to as point-entry matrices [CHL+96]. There are also matrices whose entries are matrices
and they are referred to as block matrices [CHL+96, GL96]. Block matrices are common in high-
performance computing since they allow us to express operations on large matrices in terms of
operations on small matrices. This formulation enables us to take advantage of the hierarchical
memory organization on modern computer architectures.

The memory of modern computer architectures is usually organized into a hierarchy: The higher
levels in the hierarchy feature memory fast in access but of limited capacity (e.g. processor
cache). As we move down the hierarchy, the memory speed decreases but its capacity increases
(e.g. main memory, disk).

When performing a matrix operation, it is advantageous to keep all the operands in cache in
order to eliminate excessive data movements between the cache and the main memory during
the operation. If the operands are matrices which entirely fit into the cache, we can use the
point-entry format. But if a matrix size exceeds the cache size, the block format should be
preferred. Operations on block matrices are performed in terms of operations on their blocks,
e.g. matrix multiplication is performed in terms of multiplications of the block submatrices. By
properly adjusting the block size, we are able to fit the arguments of the submatrix operation
into the cache.

Furthermore, we distinguish between constant blocks (i.e. blocks have equal sizes) and
variable blocks (i.e. blocks have variable sizes). The subfeatures of entry type are summarized
in Figure 140.

Blocking is used in high performance linear algebra libraries such as LAPACK (see Table 15).

10.1.2.2.1.3.2 Density

One of the major distinctions between matrices is whether a matrix is dense or sparse. A dense
matrix is a matrix with a large percentage of nonzero elements (i.e. elements not equal zero). A
sparse matrix, on the other hand, contains a large percentage of zero elements (usually more
than 90%). In [Sch89], Schendel gives an example of a sparse matrix in the context of the
frequency analysis of linear networks which involves solving a system of linear equations of

entry type shape representationdensity format

structure

Figure 139    Structure

point constant blocks variable blocks

entry type

Figure 140    Entry Type
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the form A(ωi)x = b. In this example, A is a 3304-by-3304 Hermitian matrix with 60685 nonzero
elements. Thus, the nonzero elements make up only 0.6% of all elements in A (i.e. the fill-in is
0.6%). Furthermore, the LU-factorization of A yields a new matrix with an even smaller fill-in of
0.4% (see Table 14 for more examples of sparse matrices). The representation of A as a dense
matrix would require several megabytes of memory. However, it is necessary to store only the
nonzero elements, which dramatically reduces the storage requirements for sparse matrices. The
knowledge of the density of a matrix allows us not only to optimize the storage consumption,
but also the processing speed since we can provide specialized variants of operations which
take advantage of sparseness.

Most matrix computation libraries provide dense matrices and some matrix computation libraries
also implement sparse matrices (e.g. LAPACK.h++; see Table 16). Since most of the large matrix
problems are sparse (see Table 14), a general-purpose matrix computation library is much more
attractive if it implements both dense and sparse matrices.

10.1.2.2.1.3.3 Shape

Matrix computations involve matrices with different arrangement patterns of the nonzero
elements. Such arrangement patterns are referred to as shapes. Some of the more common
shapes include the following (see Figure 141):

• Rectangular and square matrices: A rectangular matrix has a different number of rows than
the number of columns. The number of rows and the number of columns in a square matrix
are equal.

• Null matrix: A null matrix consists of only zero elements. No elements have to be stored for
a null matrix but only the number of rows and columns.

• Diagonal matrix: A diagonal matrix is a square matrix with all zero elements except the
diagonal elements (i.e. elements whose row index and column index are equal). Only the
(main) diagonal elements have to be stored. If they are all equal, the matrix is referred to as a
scalar matrix and only the scalar has to be stored.

• Identity matrix: An identity matrix is a diagonal matrix whose diagonal entries are all equal
1. No elements have to be stored for an identity matrix but only the number of rows and
columns.

• Symmetric, skew-symmetric or anti-symmetric, Hermitian, and skew-Hermitian matrices:
For all elements of a symmetric matrix the following equation holds aij = aji. For a skew-
symmetric matrix, we have a slightly different equation: aij = - aji. A complex-valued matrix
with symmetric real part and skew-symmetric imaginary part is referred to as a Hermitian. If,
on the other hand, the real part is skew-symmetric and the imaginary part is symmetric, we
have a skew-Hermitian matrix. For all these four matrix types we only need to store one half
of the matrix. One possible storage format is to consecutively store all the rows (or columns
or diagonals) of one half of the matrix in a vector and use an indexing formula to access the
matrix elements.

• Upper or lower triangular or unit triangular or Hessenberg matrices: An upper triangular
matrix is a square matrix which has nonzero elements only on and above the main diagonal.
If the diagonal elements are only ones, the matrix is referred to as unit upper triangular. If
the diagonal elements are only zeros, the matrix is referred to as strictly upper triangular.
If, on the other hand, the main diagonal and also the diagonal below contains nonzeros, the
matrix is referred to as an upper Hessenberg. The lower triangular, lower unit triangular, and
lower Hessenberg matrices are defined analogously. Similarly as in the case of symmetric
matrices, only one half of the elements of a triangular matrix has to be stored.

• Upper or lower bidiagonal, and tridiagonal matrices: These matrices are diagonal
matrices with an extra nonzero diagonal above, or below, or both above and below the main
diagonal.
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• Band matrices: Band matrices have nonzero fill-in in one or more adjacent diagonals (see
Figure 141. Diagonal and triangular matrices can be regarded as a special case of band
matrices. An example of a general storage schema for band matrices would be storing the
nonzero diagonals in a smaller matrix, with one diagonal per row and accessing the
elements using an indexing formula. Special types of band matrices are upper and lower
band triangular matrices, band diagonal matrices, and symmetric band matrices.

• Toeplitz matrices: A Toeplitz matrix is a square matrix, where all elements within each of its
diagonals are equal. Thus, a Toeplitz matrix requires the same amount of storage as a
diagonal matrix.

Some of the above-listed shapes also apply to block matrices, e.g. a block matrix with null matrix
entries except for the diagonal entries is referred to as a block diagonal matrix. There are also
numerous examples of “more exotic”, usually sparse matrix types in the literature, e.g. in [Sch89]:
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Figure 141    Examples of n×n band matrices (only the gray region and the
shown diagonals may contain nonzeros)
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strip matrix, band matrix with margin (also referred to as a bordered matrix), block diagonal
matrix with margin, band matrix with step (see Figure 142).

Most matrix computation libraries provide rectangular, symmetric, diagonal, and triangular
matrices. Some libraries also provide band matrices (e.g. LAPACK, LAPACK++, ARPACK++,
Newmat, LAPACK.h++; see Table 15 and Table 16). Other shapes are less commonly
supported.

10.1.2.2.1.3.4 Representation

The elements of a matrix or a vector can be stored in a variety of data structures, e.g. arrays,
lists, binary trees, dictionaries (i.e. maps). Each data structure exhibits different performance
regarding adding, removing, enumerating, and randomly accessing the elements.

10.1.2.2.1.3.5 Memory Management in Data Structures

The data structures for storing matrix elements may use different memory allocation strategies.
We discussed different strategies in Section 9.3.2.2.1. Here, we require at least static and
dynamic memory allocation. We extend the representation feature with the memory allocation
subfeature. The resulting diagram is shown in Figure 143.

10.1.2.2.1.3.6 Format

Format describes how the elements of a matrix of certain entry type, shape, and density are
stored in concrete data structures. For the sake of simplicity, we will further investigate only
dense or sparse, point-entry matrices with the most common shapes: rectangular, symmetric,
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band matrix with
step

Figure 142    Some more exotic matrix shapes
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triangular, diagonal, and band. We first describe the common formats for rectangular dense
matrices and general sparse matrices and then discuss the special storage and access
requirements of other shapes.

10.1.2.2.1.3.6.1  Rectangular Dense Matrices

There are two major formats for storing the elements of a rectangular dense matrix:

1. row-major or C-style format: In the row-major format, the matrix elements are stored row-
wise, i.e. the neighboring elements of one row are also adjacent in memory. This format
corresponds to the way arrays are stored in C.

2. column-major or Fortran-style format: In the column-major format, the matrix elements are
stored column-wise, i.e. the neighboring elements of one column are also adjacent in
memory. This format corresponds to the array storage convention of Fortran.

Newer matrix computation libraries usually provide both formats (e.g. LINPACK++, TNT). The
column-major format is especially useful for interfacing to Fortran libraries.

10.1.2.2.1.3.6.2  General Sparse Matrices

There are several common storage formats for general sparse matrices, i.e. formats that do not
assume any specific shape. However, they are also used to represent shaped sparse matrices.
The general sparse storage formats include the following:

• coordinate format (COO): Only the nonzero matrix elements along with their coordinates
are stored. This format is usually implemented using three vectors, one containing the
nonzeros and the other two containing their row and the column indices, respectively.
Another possibility is to use one array or list with objects, where each of the objects
encapsulates a matrix element and its coordinates. Yet another possibility is to use a hash
dictionary data structure, where the keys are the coordinates and the values are the
nonzeros.

• compressed sparse column format (CSC): The nonzeros are stored column-wise, i.e. the
nonzeros of a column are stored in the order of their occurrence within the columns. One
possibility is to store the columns containing nonzeros in sparse vectors.

• compressed sparse row format (CSR): The nonzeros are stored row-wise, i.e. the nonzeros
of a row are stored in the order of their occurrence within the rows. One possibility is to
store the rows containing nonzeros in sparse vectors.

There are also several other sparse formats including sparse diagonal (DIA), ellpack/itpack
(ELL), jagged diagonal (JAD), and skyline formats (SKY) and several block matrix formats (see
[CHL+96]). Table 19 summarizes when to use which sparse format.
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10.1.2.2.1.3.6.3  Dependency Between Density, Shape, and Format

The storage and access requirements of dense or sparse, point-entry matrices with the shapes
rectangular, symmetric, triangular, diagonal, and band are set out in Table 20.

Sparse Format When to Use?

coordinate (COO) Most flexible data structure when constructing or modifying a
sparse matrix.

compressed sparse column
(CSC)

Natural data structure for many common matrix operations
including matrix multiplication and constructing or solving
sparse triangular factors.

compressed sparse row
(CSR)

Natural data structure for many common matrix operations
including matrix multiplication and constructing or solving
sparse triangular factors.

sparse diagonal (DIA) Particularly useful for matrices coming from finite difference
approximations to partial differential equations on uniform grids.

ellpack/itpack (ELL) Appropriate for finite element or finite volume approximations to
partial differential equations where elements are of the same
type, but the gridding is irregular.

jagged diagonal (JAD) Appropriate for matrices which are highly irregular or for a
general-purpose matrix multiplication where the properties of the
matrix are not known a priori.

skyline (SKY) Appropriate for band triangular matrices. Particularly well suited
for Cholesky or LU decomposition when no pivoting is required.
In this case, all fill will occur within the existing nonzero
structure.

Table 19    Choice of sparse format (adapted from [CHL+96])
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Structure Type Storage and access requirements

dense rectangular We store the full matrix in the row- or the column-major dense format.

dense symmetric We store one half of the matrix, e.g. row-, column-, or diagonal-wise in a
dense vector, and use an indexing formula to access the elements.
Alternatively, we can store the elements in a full-size two-dimensional
array using only half of it. The latter approach needs double as much
memory as the first one, but it is faster in access since we do not have to
transform the indices.

Assigning a value to the element aij with i ≠ j, automatically assigns the
same value to aj i.

dense triangular We store the nonzero half of the matrix, e.g. row-, column-, or diagonal-
wise in a dense vector. Alternatively, we can store the elements in a two-
dimensional array, which requires more space but is faster in access.

Reading an element from the other half returns 0 and setting such an
element to a value other than 0 results in an error.

dense diagonal We store only the diagonal in a dense vector.

Reading an element off the diagonal returns 0 and setting such an
element to a value other than 0 results in an error.

dense band We store the band only, e.g. diagonal-wise in a dense vector or a smaller
two-dimensional array. Alternatively, we can store the elements in a full-
size two-dimensional array, which requires more space but is faster in
access.

Reading an element off the band returns 0 and setting such an element to
a value other than 0 results in an error.

sparse rectangular We store only the nonzero elements in one of the sparse formats, e.g.
CSR, CSC, COO, ELL, JAD;

sparse symmetric We store only one half of the matrix and only the nonzero elements using
one of the sparse formats (esp. SKY or DIA).

Assigning a value to the element aij with i ≠ j, automatically assigns the
same value to aj i.

sparse triangular We use one of the sparse formats (esp. SKY or DIA) to store the nonzero
elements.

Setting an element in the zero-element half of the matrix to a value other
than 0 results in an error.

sparse diagonal We use one of the sparse matrix formats (esp. DIA) to store the nonzero
elements or we store them in a sparse vector.

Reading elements off the diagonal returns 0 and assigning a value other
than 0 to them causes an error.

sparse band We use one of the sparse formats (esp. DIA for band diagonal and DIA
or SKY for band triangular) to store the nonzero elements.

Setting an element off band to a value other than 0 results in an error.

Table 20    Storage and access requirements of matrices of different structures



Generative Programming, K. Czarnecki308

The particular shape of a matrix — especially of a sparse matrix — is application dependent and
not all of the possible shapes and formats can be provided by a matrix computation library.
Thus, it is important to allow a client program to supply specialized formats.

10.1.2.2.1.3.7 Error Checking: Checking Assignment Validity

Checking the validity of an assignment, e.g. checking whether the value assigned to an element
within the zero-element half of a triangular matrix is actually a zero, should be parameterized.

10.1.2.2.1.4 Matrix and Vector Operations
We will consider the following operations on matrices and vectors as parts of a matrix
component:

• access operations, i.e. set element and get element and

• basic mathematical operations directly based on access operations, e.g. matrix addition and
multiplication.

More complex operations, such as computing the inverse of a matrix or solving triangular
systems, will be analyzed together with the algorithm families (e.g. solving linear systems).

The basic operations can be clustered according to their arity and argument types. The unary
operations are listed in Table 21. The operation type indicates the input argument type and
result type. They are separated by an arrow.

The binary operations are set out in Table 22. An update operation stores the result in one of
its input arguments. The definitions of the operations listed in Table 21 and Table 22 can be
found in [GL96].

Operation type Operations

vector → scalar Vector norms, e.g. p-norms (1-norm, 2-norm, etc.)

vector → vector transposition

matrix → scalar matrix norms, e.g. Frobenius norm, p-norms

determinant

matrix → matrix transposition

Table 21    Unary operations
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A standard set of vector and matrix operations is defined in the form of the BLAS (see Section
10.1.1.2.4). The BLAS are a superset of the operations listed in Table 21 and Table 22. Matrix
algorithms can be expressed at different levels, e.g. at the level of operations on matrix elements
or at the Level-2 or Level-3 BLAS. Level-3 BLAS formulation of an algorithm contains matrix-
matrix operations as their smallest operations. This formulation is especially suited for block
matrices.

10.1.2.2.1.4.1 Error Checking: Bounds Checking

Invoking the get or the set operation on a matrix or vector with subscripts which are outside the
matrix dimensions or vector dimension is an error. Checking for this condition should be
parameterized.

10.1.2.2.1.4.2 Error Checking: Checking Argument Compatibility

The vectors and matrices supplied as input arguments to one of the binary operations must
have compatible dimensions. For addition and subtraction of vectors and matrices and dot and
outer product, the corresponding dimensions of both arguments must be equal. For the matrix-
matrix multiplication, the number of columns of the first matrix must be equal to the number of
rows in the second matrix. Similarly, the dimension of the vector in a matrix-vector product must
be equal to the number of columns of the matrix. Moreover, a determinant can be computed only
for square matrices. Checking argument compatibility should be parameterized. If the numbers
of rows and columns are available at compile time, the checking should be performed at compile
time.

10.1.2.2.1.5 Interaction Between Operations and Structure
The operations on matrices and vectors interact with their structures in various ways:

• There are dependencies between the shape of the arguments and the shape the result of
operations.

Operation type Operations

(scalar, vector) → vector scalar-vector multiplication

(scalar, matrix) → matrix scalar-matrix multiplication

(scalar, vector) → update vector saxpy, which is defined as follows y := ax + y. where x, y ∈
Rn and a ∈R

(vector, vector) → vector vector addition, vector difference, vector multiply (or the
Hadamard product)

(vector, vector) → scalar dot product

(vector, vector) → matrix outer product

(vector, vector) → update matrix outer product update, which is defined as follows A := A +
xyT, where x ∈ Rm, y ∈ Rn A ∈ Rm × n

(matrix, vector) → vector matrix-vector multiplication

(matrix, vector) → update vector gaxpy (i.e. generalized saxpy), which is defined as follows
y := Ax + y, where x, y ∈ Rn and A ∈ Rm × n

(matrix, matrix) → matrix matrix addition, matrix difference, matrix multiplication

Table 22    Binary operations
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• There are dependencies between the density of the arguments and the density of the result
of operations.

• The implementation algorithms of the matrix operations can be specialized based on the
shape to save floating point operations.

• The implementation of an operation’s algorithm depends on the underlying representation
and format of the arguments, e.g. dense storage provides fast random access. This is not
the case with most sparse storage formats.

The following is true about the shape of the result of an operation:

• the result of multiplying a matrix by a scalar is a matrix of the same shape;

• adding, subtracting, or multiplying two lower triangular matrices results in a lower
triangular matrix;

• adding, subtracting, or multiplying two upper triangular matrices results in an upper
triangular matrix;

• adding or subtracting two symmetric matrices results in a symmetric matrix;

• adding, subtracting, or multiplying two diagonal matrices results in a diagonal matrix.

When we consider rectangular, triangular, and diagonal matrices, the addition, subtraction, or
multiplication of two such matrices can potentially produce a matrix whose shape is equal to the
shape resulting from superimposing the shapes of the arguments, e.g. rectangular and diagonal
matrices yield rectangular matrices and lower diagonal and upper diagonal matrices also yield
rectangular matrices, but diagonal and lower triangular matrices yield lower triangular matrices.

Adding, subtracting, or multiplying two dense matrices results — in most cases — in a dense
matrix. Adding or subtracting two sparse matrices results in a sparse matrix. Multiplying two
sparse matrices can result in a sparse or a dense matrix.

The algorithms of the matrix operations can be specialized based on the shape of the arguments.
For example, the multiplication of two lower triangular matrices requires about half the floating
point operations needed to multiply two rectangular matrices. Some of the special cases are
adding, subtracting, and multiplying two diagonal matrices, two lower or upper matrices, or a
diagonal and a triangular matrix, or multiplying a matrix by a null or identity matrix.

10.1.2.2.1.6 Optimizations
In addition to specializing algorithms for different shapes of the argument matrices, we can also
optimize whole expressions. For example, more than one adjacent matrix addition operations in
an expression should be all performed using one pair of nested loops adding the matrices
elementwise without any intermediate results. Thus, this optimization involves the elimination
of temporaries and loop fusing. We already described it in Section 9.4.1.

10.1.2.2.1.7 Attributes
An important attribute of a vector is its dimension (or length), which is the number of elements
the vector contains. Since matrices are two dimensional, they have two attributes describing
their size: number of rows and number of columns. For a square matrix, the number of rows and
the number of columns are equal. Thus, we need to specify only one number, which is referred
to as the order. For band matrices, we have to specify the bandwidth (i.e. the number of
nonzero diagonals; see Figure 141). It should be possible to specify all these attributes
statically or dynamically.
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10.1.2.2.1.8 Concurrency and Synchronization
Matrix operations are well suited for parallelization (see [GL96,p. 256]). However, parallelization
of matrix algorithms constitutes a complex area on its own and we will not further investigate
this topic. A simple form of concurrent execution, however, can be achieved using threads, i.e.
lightweight processes provided by the operating system. In this case, we have to synchronize
the concurrent access to shared data structures, e.g. matrix element containers, matrix attributes.
This can be achieved through various locking mechanisms, e.g. semaphores or monitors. We
use the locking mechanisms to make all operations of a data structure mutually exclusive and to
make the writing operations self exclusive (see Section 7.4.3). In the simplest case, we could
provide a matrix synchronization wrapper, which makes get and set methods mutually exclusive
and the set method self exclusive.

10.1.2.2.1.9 Persistency
We need to provide methods for storing a matrix instance on a disk in some appropriate format
and for restoring it back to main memory.

10.1.2.2.2 Matrix Computation Algorithm Families

During Domain Definition in Section 10.1.1.2.5, we identified the main areas of matrix
computations:

• factorizations,

• solving linear systems,

• computing least squares solutions,

• eigenvalue computations, and

• iterative methods.

Each of these areas contain large families of matrix computation algorithms.

As an example, we will discuss the family of factorization algorithms. The discussion focuses on
the structure of this family rather than on explaining all the mathematical concepts behind the
algorithms. The interested reader will find detailed explanations of these concepts in [GL96].

In general, factorizations decompose matrices into factor matrices with some desired properties
by applying a number of transformations. Factorizations are used in nearly all the major areas of
matrix computations: solving linear systems of equations, computing least squares solutions,
and eigenvalue computations. For example, the LU factorization of a matrix A computes the
lower triangular matrix L and the upper triangular matrix U, such that A = L*U. The LU
factorization can be used to solve a linear system of the form A*x=b, where A is the coefficient
matrix, b is the right-hand side vector, and x is the sought-after solution vector. After factoring
A into L and U, solving the system involves solving two triangular systems: L*y=b and U*x=y,
which is very simple to do using forward  or back substitution.

In general, we can solve a linear system using either factorizations such as the LU, which are
also referred to as direct methods, or we can use so-called iterative methods. Iterative methods
generate series of approximate solutions, which hopefully converge on a single solution.
Examples of iterative methods for solving linear systems are Jacobi iterations, Gauss-Seidel
iterations, SOR iterations, and the Chebyshev semi-iterative method (see [GL96]).

There are two important categories of factorizations: the LU family and orthogonal
factorizations. Examples of the latter are Singular Value Decomposition (SVD) and the QR
factorizations (e.g. Hausholder QR, Givens QR, Fast Givens QR, Gram-Schmidt QR).
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Figure 144 explains when to use LU factorizations and when orthogonal factorizations or
iterative methods to solve a linear system. Each alternative method is annotated with the
properties of the coefficient matrix A as preconditions. These preconditions indicate when a
given method is most appropriate. For example, if A is ill-conditioned, LU factorizations should
not be used. A is ill-conditioned if it is nearly singular. Whether A is ill-conditioned or not is
determined using condition estimators (see [GL96] for details).

In the rest of this section, we will concentrate on LU factorizations. The LU factorization in its
general form, i.e. general LU, corresponds to the Gaussian elimination method. The general LU
can be specialized in order to handle systems with special properties more efficiently. For
example, if A is square and positive definite, we use the Cholesky factorization, which is a
specialization of the general LU.

There are specialized versions of LU factorizations for different matrix shapes, e.g. band
matrices or Hessenberg matrices, and for different entry types, i.e. point-entry and block-entry
variants (see [GL96]).

An important issue in factorization algorithms is pivoting. Conceptually, pivoting involves data
movements such as the interchange of two matrix rows (and columns, in some approaches).
Gaussian elimination without pivoting fails for a certain class of well-conditioned systems. In
this case, we have to use pivoting. However, if pivoting is not necessary, it should be avoided
since it degrades performance. We have various pivoting strategies, e.g. no pivoting, partial
pivoting, or complete pivoting. Some factorization algorithms have special kinds of pivoting,
e.g. symmetric pivoting or diagonal pivoting. In certain cases, e.g. when using the band version
of LU factorizations, pivoting destroys the shape of the matrix. This is problematic if we want to
factor dense matrices in place, i.e. by storing the resulting matrices in the argument matrix. In-
place computation is an important optimization technique in matrix computations allowing us to
avoid the movement of large amounts of data.

The pivoting code is usually scattered over the base algorithm causing the code tangling
problem we discussed in Chapter 7. Thus, pivoting is an example of an aspect in the AOP sense
and we need to develop mechanisms for separating the pivoting code from the base algorithm
(see e.g. [ILG+97]).

LU family iterative methodsorthogonal
factorizations

general, dense, well-
conditioned large, dense,

ill-conditioned

large, sparse

linear system solver

Figure 144    Approaches to solving linear systems
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A selection of important LU factorizations is shown in Figure 145. The algorithm variants are
annotated with matrix properties. An algorithm variant is well-suited for solving a given linear
system if the properties of the coefficient matrix of this system match the variant’s annotation.

There are also special variants of the LU factorizations for different matrix shapes (not shown in
Figure 145). For example, Golub and van Loan describe specializations of general LU, LDLT, and
Cholesky for different band matrices in [GL96]. These specializations work fine without
pivoting. Unfortunately, pivoting, when used, destroys the band shape of the factored matrix.
As stated, this is problematic if we want to factor dense matrices in place.

In addition to shape, the algorithm selection conditions also include other mathematical
properties which are not as easy to determine as shape, e.g.:

• Positive definite: Given A∈Rn×n, A is positive definite if xT*A*x > 0, for all nonzero x∈Rn.

• Positive semidefinite: Given A∈Rn×n, A is positive definite if xT*A*x ≥ 0, for all x∈Rn.

• Indefinite: Given A∈Rn×n, A is indefinite if A=AT and xT*A*x takes on both positive and
negative values for different x∈Rn.

Since all the important properties of a matrix should be encoded in its type, we need to extend
the matrix feature model from Section 10.1.2.2.1 with these new mathematical properties. The
encoding of these properties in the matrix type allows us to arrange for the automatic selection
of the most efficient algorithm variant.

One problem that we will have to address in the implementation is the type mutation in the case
of in-place computation, i.e. we want to store the results in the arguments, but the results have
different properties than the arguments. One possibility to address this problem is to divide a
matrix into an element container and a matrix wrapper which encodes the matrix properties (see
[BN94, pp. 459-464]). Given this arrangement, we can do the storing at the element container
level, then mark the old matrix wrapper as invalid, and use a new one, which encodes the new
matrix properties.
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10.2 Domain Design
Each ADT and each algorithm family should be implemented in a separate component. In the
rest of this chapter, we only present the detailed design and implementation of the matrix
component.

10.2.1 Architecture of the Matrix Component
Before we discuss the architecture of the matrix component, we first take a look at a concrete
example demonstrating how to use it. For our example, we have chosen the C++ implementation
although later in Section 10.3.2 you will see an alternative implementation of the matrix
component in the IP System. Here is the example:

The first two gray regions indicate two matrix configuration expressions and the last one a
matrix expression. The two kinds of expressions represent two important interfaces to the
matrix component:

• Matrix Configuration DSL Interface: Configuration expressions are used to define
concrete matrix types. The structure of a configuration expressions is described by the
Matrix Configuration DSL (MCDSL).

• Matrix Expression DSL Interface: Matrix expressions are expressions involving matrices
and operations on them. The structure of a matrix expressions is described by the Matrix
Expression DSL (MEDSL).

Figure 146 shows the high-level architecture of the matrix component. The matrix configuration
expressions are compiled by the MCDSL generator and the matrix expressions are compiled by
the MEDSL generator. The MCDSL generator translates a matrix configuration expression into
a matrix type by composing a number of implementation components (ICs). The MEDSL
generator translates a matrix expression into an efficient implementation, e.g. by composing
code fragments.

//define a general rectangular matrix with element type double.
typedef MATRIX_GENERATOR<

matrix< double,
structure< rect<>

 >
>

>::RET RectMatrixType;

//define a scalar matrix with 3 rows and 3 columns
//scalar value is 3.4
typedef MATRIX_GENERATOR<

matrix< double,
structure< scalar< stat_val<int_number<int, 3> >,

stat_val<float_number<double, 3400> >
>

 >
>

>::RET ScalarMatrixType;

//declare some matrices
RectMatrixType RectMatrix1(3, 3), RectMatrix2(3, 3);
ScalarMatrixType ScalarMatrix;

//initialization of a dense matrix
RectMatrix1=
 1, 2, 3,

4, 5, 6,
7, 8, 9;

//multiplication of two matrices
RectMatrix2= ScalarMatrix * (RectMatrix1+ ScalarMatrix);
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A more detailed view of the matrix component architecture is given in Figure 147. The pipeline
on the left corresponds to the MCDSL generator and compiles matrix configuration expressions.
The pipeline on the right corresponds to the MEDSL generator and compiles matrix expressions.
A matrix configuration expression is compiled by parsing it (which retrieves the values of the
features explicitly specified in the configuration expression), assigning default values to the
unspecified features (some of which are computed), and assembling the implementation
components according to the values of the features into a concrete matrix type. The matrix type
also includes a configuration repository containing the value of all its configuration DSL
features and some other types. The implementation components can be composed only into
some valid configurations. These are specified by the Implementation Components
Configuration Language (ICCL). In effect, the MCDSL generator has to translate matrix
configuration expressions into corresponding ICCL expressions.

A matrix expression is parsed and then typed by computing the type records of all
subexpressions (which requires accessing the configuration repositories of the argument
matrices), and finally the efficient implementation code is generated.

matrix configuration
expression, e.g.

matrix[float,
structure[lower_triang, sparse]]

Matrix
Expression

DSL generator

matrix
expression, e.g.

M1+M2*M3-M4

Matrix
Configuration

DSL generator

implementation
code fragments

implementation
components

matrix
component

Figure 146    High-level Architecture of the Generative Matrix Component
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The following sections contain the design specifications for

1. Matrix Configuration DSL (Section 10.2.3);

2. Matrix Implementation Components and the Matrix ICCL (Section 10.2.4);

3. Compiling Matrix Configuration DSL into ICCL (Section 10.2.5);

4. Matrix Expression DSL and Optimizing Matrix Expressions (Section 10.2.6);

5. Computing Result Type of the Expressions (Section 10.2.7).

Before we start with the Matrix Configuration DSL, we first need to define the scope of the
matrix feature model that we are going to implement.

10.2.2 Matrix Component Scoping
The matrix component will cover a subset of the feature model we came up with in Section
10.1.2.2.1. In particular, we made the following decisions:

• Element type: We only support real numbers. Complex numbers are not supported, but we
can add them later.

• Subscripts: Currently, we only support C-style indexing. Any integral type can be used as
index type.

• Entry type: We only support point-entry matrices. Blocking can be added for dense
matrices using blocking iterators, i.e. iterators that return matrices on dereferencing.
Blocking iterators are described in [SL98a]. Sparse matrices would require special blocked
formats (see [CHL+96]).

matrix
configuration
expression

parser

features specified
in the matrix
configuration
expression

compute feature
defaults

all matrix
features

component
assembler

matrix type

matrix
expression

parser

expression
structure

compute
expression type
(also for all sub-

expressions)

expression
structure and

type information

code generator

expression
implementation

code

configuration
repository

code
fragments

implementation
components

reads features of
the argument types

stores features in
the repository

requests the
generation of

matrix types for
the temporaries

Figure 147    More detailed architecture view of the matrix component
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• Density: We support both dense and sparse matrices.

• Shapes: Currently we support rectangular, scalar, diagonal, triangular, symmetric, band
diagonal, and band triangular matrices. Other shapes can be easily added.

• Formats: Dense matrices are stored in an array (row- or column-wise) or alternatively in a
vector (diagonal-wise). The supported sparse formats include CSR, CSC, COO, DIA, and
SKY.

• Representation: The elements are stored in dynamic or static, one or two dimensional
containers. Other containers could also be easily integrated using adapters.

• Error checking: We provide optional bounds checking, compatibility checking, and
memory allocation error checking.

• Concurrency and synchronization: Concurrency and synchronization are currently not
supported.

• Persistency: We provide a way to write a matrix to a file in an uncompressed ASCII format
and to read it back in.

• Operations: We only support matrix-matrix addition, subtraction, and multiplication.

10.2.3 Matrix Configuration DSL
The Matrix Configuration DSL is used to specify the features of a matrix configuration. We
designed it according to the strategies described in Section 9.4.3. In particular, the DSL should
allow the programmer to formulate matrix specifications at a level of detail which is most suitable
for the particular client code. We address this goal by providing direct and computed feature
defaults. If a configuration specification does not specify a feature for which we have a direct
default, the direct default is assumed. The remaining features are computed from the specified
features and other defaults. Furthermore, we introduced two new abstract features:
optimization flag and error checking flag. The possible values of the optimization flag are
speed and space and they allow us to specify whether the matrix should be optimized for speed
or space. The error checking flag is used to specify the default for other error checking features.
Thus, if we set the error checking flag to check for errors, the assumed default for bounds
checking, compatibility checking, and memory allocation error checking will be to check for
errors. Of course, each of the individual error checking features may be explicitly specified to
have another value.

The Matrix Configuration DSL uses parameterization as its only variability mechanism, i.e. it
only contains mandatory and alternative features. The reason for this is that we want to be able
to represent it using C++ templates. We can always convert an arbitrary feature diagram into
one that uses dimensions as its only kind of variability, although the resulting diagram will
usually be more complex. If the implementation technology does not limit us to parameterization,
we can represent a configuration DSL using the full feature diagram notation. For example, we
could implement a GUI to specify configurations using feature diagrams directly or by menus or
design some new configuration language.

The Matrix Configuration DSL specification consists of four parts:

• grammar specification,

• description of the features,

• specification of the direct feature defaults, and

• specification of the computation procedures for the computed feature defaults.
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The sample grammar in Figure 148 demonstrates the notation we will use later to specify the
Matrix Configuration DSL grammar. It describes a very simple matrix concept and is equivalent
to the feature diagram in Figure 149. We use brackets to enclose parameters (i.e. dimensions)
and a vertical bar to separate alternative parameter values. The symbols on the right are the
nonterminal symbols. The first nonterminal (i.e. Matrix) represents the concept. The remaining
nonterminals are the parameters (i.e. ElementType, Shape, Format, ArrayOrder,
OptimizationFlag). As you may remember from Section 6.4.2, we used this kind of grammars to
specify GenVoca architectures.

Our sample grammar defines 2*3*(2+1)*2 = 36 valid configuration expressions:

matrix[real,rectangular,array[cLike],speed]
matrix[real,rectangular,array[cLike],space]
matrix[real,rectangular,array[fortranLike],speed]
matrix[real,rectangular,array[fortranLike],space]
matrix[real,rectangular,vector,speed]
matrix[real,rectangular,vector,space]
matrix[real,lowerTriangular,array[cLike],speed]
matrix[real,lowerTriangular,array[cLike],space]
matrix[real,lowerTriangular,array[fortranLike],speed]
matrix[real,lowerTriangular,array[fortranLike],space]
matrix[real,lowerTriangular,vector,speed]
matrix[real,lowerTriangular,vector,space]
matrix[real,upperTriangular,array[cLike],speed]
matrix[real,upperTriangular,array[cLike],space]
matrix[real,upperTriangular,array[fortranLike],speed]
matrix[real,upperTriangular,array[fortranLike],space]
matrix[real,upperTriangular,vector,speed]
matrix[real,upperTriangular,vector,space]

Matrix: matrix[ElementType, Shape, Format, OptimizationFlag]
ElementType: real | complex
Shape: rectangular | lowerTriangular | upperTriangular
Format: array[ArrayOrder] | vector
ArrayOrder: cLike | fortranLike
OptimizationFlag: speed | space

Figure 148    Sample configuration DSL grammar

real complex
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Triangular

Matrix
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Triangular
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Figure 149    Feature diagram equivalent to the sample grammar in Figure 148
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matrix[complex,rectangular,array[cLike],speed]
matrix[complex,rectangular,array[cLike],space]
matrix[complex,rectangular,array[fortranLike],speed]
matrix[complex,rectangular,array[fortranLike],space]
matrix[complex,rectangular,vector,speed]
matrix[complex,rectangular,vector,space]
matrix[complex,lowerTriangular,array[cLike],speed]
matrix[complex,lowerTriangular,array[cLike],space]
matrix[complex,lowerTriangular,array[fortranLike],speed]
matrix[complex,lowerTriangular,array[fortranLike],space]
matrix[complex,lowerTriangular,vector,speed]
matrix[complex,lowerTriangular,vector,space]
matrix[complex,upperTriangular,array[cLike],speed]
matrix[complex,upperTriangular,array[cLike],space]
matrix[complex,upperTriangular,array[fortranLike],speed]
matrix[complex,upperTriangular,array[fortranLike],space]
matrix[complex,upperTriangular,vector,speed]
matrix[complex,upperTriangular,vector,space]

Next, we assume that the parameters of our simple grammar have the direct defaults specified in
Table 23. In general, there is usually no such thing as the “absolute” choice for a default value.
We often have a strong feeling about some defaults and some others are quite arbitrary. For
example, we choose rectangular for Shape since a rectangular matrix can also hold a triangular
matrix. This reflects a common principle: We usually choose the most general value to be the
default value. This principle, however, does not have to be followed in all cases. Even if
complex is more general than real, we still select real as the default value for ElementType.
This is so since real reflects the more common case. Of course, what is the more common case
and what not depends on the context, our knowledge, etc. Finally, we could have features for
which no reasonable defaults can be assumed at all, e.g. the static number of rows and columns
of a matrix. These features must be specified explicitly, otherwise we have an error.

Please note that we did not specify a direct default for Format. The reason is that we can
compute it based on Shape and OptimizationFlag. The default will be computed as follows. If
the value of Shape is rectangular and Format is not specified, we assume Format to be array
since (dense) rectangular matrices are optimally stored in an array. If the value of Shape is
triangular and Format is not specified, the value of Format depends on OptimizationFlag. If
OptimizationFlag is space, we assume Format to be vector since the vector format stores
only the nonzero half of the matrix (e.g. diagonal-wise). In this case, the element access
functions have to convert the two-dimensional subscripts of a matrix into the one-dimensional
subscripts of a vector. If, on the other hand, OptimizationFlag is speed, we assume Format to
be array. Storing a triangular matrix in an array wastes space but it allows a faster element
access since we do not have to convert indices. This dependency between Shape,
OptimizationFlag, and Format is specified in Table 24.

We will use tables similar to Table 24 for specifying any dependencies between features. We
refer to them as feature dependency tables.

ElementType: real

Shape: rectangular

ArrayOrder: cLike

OptimizationFlag: space

Table 23   Direct feature defaults for the sample grammar in Figure 148

Shape OptimizationFlag Format
rectangular * array

speed arraylowerTriangular
upperTriangular space vector

Table 24    Computing the DSL feature Format for the sample
grammar in Figure 148
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Each dependency table represents a function. The columns to the left of the double vertical
divider specify the arguments and the columns to the right specify the corresponding result
values. For example, Table 25 specifies how to compute the product of two numbers. A
dependency table is evaluated row-wise from top to bottom. Given some concrete Factor1 and
Factor2, you try to match them to the values specified in the first row. If they match, you
terminate the search and take the result from the last corresponding Product cell. If they do not
match, you proceed with the next row.

The argument cells of a dependency table may contain one of the following:

• one or more concrete values for the corresponding variable; multiple values are interpreted
as alternatives;

• “*”, which matches any value;

• a local variable, e.g. (factor); local variables are enclosed in parentheses and denote the
current value of the argument;

• “---”, which indicates that the corresponding argument does not apply to this row; in terms
of matching, it is equivalent to “*”;

The result cells may contain one of the following:

• a concrete value,

• an expression; an expression starts with “=” and can refer to the table arguments and local
variables;

Now there is the question how the feature defaults are used. Feature defaults allow us to leave
out some features in a configuration expression. For example, we could specify a matrix as
simply as

matrix[]

Given the defaults specified above, this expression is equivalent to

matrix[real,rectangular,array[cLike],space]

How did we come up with this expression? This is simple. We took the default values for
ElementType, Shape, and OptimizationFlag directly from Table 23 and then we determined
Format based on Table 24. Finally, we took the value for ArrayOrder from Table 23. Other
examples are shown in Table 26. Please note that we can leave out one or more parameters of a
parameter list only if they constitute the last n parameters in the list (this corresponds to the
way parameter defaults are used in C++ class templates).

Factor1 Factor2 Product
0 * 0
* 0 0
* 1 = Factor1
1 * = Factor2
(factor) (factor) =(factor)^2
25 75 1875
* * = Factor1*Factor2

Table 25    Sample specification of the product of two factors
[Neu98]
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There is also a method for not specifying a parameter in the middle of a parameter list: we use
the value unspecified. Some examples are shown in Table 27.

10.2.3.1 Grammar of the Matrix Configuration DSL
The grammar of the Matrix Specification DSL is shown in Figure 150. All the features are
explained in the following section.

Abbreviated expression Equivalent, fully expanded expression
matrix[complex] matrix[complex,rectangular,array[cLike],spac

e]
matrix[real,lowerTriangular] matrix[real,lowerTriangular, vector,space]
matrix[real,lowerTriangular, array[]] matrix[real,lowerTriangular,array[cLike],spac

e]
matrix[real,rectangular, vector] matrix[real,rectangular, vector,space]

Table 26    Examples of expressions abbreviated by leaving out trailing
parameters

Expression with unspecified Equivalent, fully expanded expression
matrix[complex,upperTriangular,unspecified,spee
d]

matrix[complex,upperTriangular,array[cLike],speed
]

matrix[complex,unspecified,unspecified,speed] matrix[complex,rectangular,array[cLike],speed]

Table 27    Examples of expressions with unspecified values



Generative Programming, K. Czarnecki322

10.2.3.2 Description of the Features of the Matrix Configuration DSL
Figure 151 through Figure 166 show the entire feature diagram for the Matrix Configuration DSL.
Each single diagram covers some part of the complete feature diagram. The partial diagrams are
followed by tables explaining the features they contain. Each feature has a traceability link back
to the section describing its purpose.

Matrix: matrix[ElementType, Structure, OptFlag, ErrFlag, BoundsChecking,
CompatChecking, IndexType]

ElementType: float | double | long double | short | int | long | unsigned short | unsigned int |
unsigned long

Structure: structure[Shape, Density, Malloc]
Shape: rect[Rows, Cols, RectFormat] | diag[Order] | scalar[Order, ScalarValue] |

ident[Order] | zero[Order] | lowerTriang[Order, LowerTriangFormat] |
upperTriang[Order, UpperTriangFormat] | symm[Order, SymmFormat] |
bandDiag[Order, Diags, BandDiagFormat] |
lowerBandTriang[Order, Diags, LowerBandTriangFormat] |
upperBandTriang[Order, Diags, UpperBandTriangFormat]

RectFormat: array[ArrOrder] | CSR | CSC | COO[DictFormat]
LowerTriangFormat: vector | array[ArrOrder] | DIA | SKY
UpperTriangFormat: vector | array[ArrOrder] | DIA | SKY
SymmFormat: vector | array[ArrOrder] | DIA | SKY
BandDiagFormat: vector | array[ArrOrder] | DIA
LowerBandTriangFormat: vector | DIA | SKY
UpperBandTriangFormat: vector | DIA | SKY
ArrOrder: cLike, fortranLike
DictFormat: hashDictionary[HashWidth] | listDictionary
Density: dense | sparse[Ratio, Growing]
Malloc: fix[Size] | dyn[MallocErrChecking]
MallocErrChecking: checkMallocErr | noMallocErrChecking
OptFlag: speed | space
ErrFlag: checkAsDefault | noChecking
BoundsChecking: checkBounds | noBoundsChecking
CompatChecking: checkCompat | noCompatChecking
IndexType: char | short | int | long | unsigned char | unsigned short | unsigned int |

unsigned long | signed char
Rows: statVal[RowsNumber] | dynVal
Cols: statVal[ColsNumber] | dynVal
Order: statVal[OrderNumber] | dynVal
Diags: statVal[DiagsNumber] | dynVal
ScalarValue: statVal[ScalarValueNumber] | dynVal
Ratio, Growing: float_number[Type, Value]
RowsNumber, ColsNumber,
OrderNumber,  DiagsNumber,
Size, HashWidth: int_number[Type, Value]
ScalarValueNumber: float_number[Type, Value] | int_number[Type, Value]

Figure 150    Grammar of the Matrix Configuration DSL
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Figure 151    Matrix features (see Table 28 for explanations)
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Feature name Description

Type of the matrix elements (see Section 10.1.2.2.1.1).ElementType

Subfeatures Possible values of ElementType include float, double, long
double, short, int, long, unsigned short, unsigned int, and
unsigned long. Other number types, if supported on the target
platform, are also possible.

Note: complex currently not supported

Structure describes shape, density, and memory allocation strategy (but also,
indirectly, format and representation) of a matrix (see Section 10.1.2.2.1.3).

Structure

Subfeatures see Figure 152

Optimization flag indicating whether the matrix should be optimized for speed or
space (see 10.2.3).

OptFlag

Subfeatures Possible values of OptFlag: speed, space

Error checking flag determines whether all error checking should be done or no
checking by default (see 10.2.3). The default is used for a specific error
checking feature (e.g. BoundsChecking or CompatChecking) only if the
feature is not specified by the user. For example, if BoundsChecking is not
specified and ErrFlag is checkAsDefault, then bounds checking is
checkBounds.

ErrFlag

Subfeatures Possible values of ErrFlag: checkAsDefault, noChecking

Bounds checking flag determines whether the validity of the indices used in
each access operation to the matrix elements is checked or not (see Section
10.1.2.2.1.4.1).

BoundsChecking

Subfeatures Possible values of BoundsChecking: checkBounds,
noBoundsChecking

Compatibility checking flag determines whether the compatibility of sizes of the
arguments to an operation is checked or not (see Section 10.1.2.2.1.4.2). (For
example, two matrices are compatible for multiplication if the number of rows of
the first matrix is equal to the number of columns of the second matrix.)

CompatChecking

Subfeatures Possible values of CompatChecking: checkCompat,
noCompatChecking

Type of the index used to address matrix elements (see Section 10.1.2.2.1.2).IndexType

Subfeatures Possible values of IndexType include char, short, int, long,
unsigned char, unsigned short, unsigned int, unsigned long, and
signed char. Other number types, if supported on the target
platform, are also possible.

Table 28    Description of matrix features
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Figure 152    Subfeatures of Structure (see Table 29 for explanations)
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Feature name Description

Shape describes matrix shape, but also, indirectly, format and representation (see
Section 10.1.2.2.1.3.3).

Shape

Subfeatures see Figure 153

Density specifies whether a matrix is sparse or dense (see Section 10.1.2.2.1.3.2).Density

Subfeatures Possible values of Density: sparse, dense

sparse has two additional subfeatures: Ratio and Growing. Ratio
specifies the estimated number of nonzero elements divided by the
total number of elements of a matrix, i.e. it is a number between 0 and
1.

Growing ratio specifies the relative density growth. The density of a
matrix grows when nonzero numbers are assigned to zero elements or
it decreases when zero is assigned to nonzero elements. Growing
specifies the relative density change per time unit and it is a float
number between 0 and +∞. 0 means no change. 1 means the doubling
of the number of the nonzero elements. For example, Growing 1
means that the number of nonzero elements grows by factor 4 over
two time units. In the matrix implementation, a time unit is the time
between points at which the element container allocates extra
memory.

Memory allocation strategy for the matrix element container (see Section
10.1.2.2.1.3.5).

Malloc

Subfeatures Possible values of Malloc: fix, dyn

fix implies static allocation. dyn implies dynamic allocation.

fix has Size as its subfeature. Size specifies the size of the memory
block which is statically allocated for the matrix elements. Size
specifies only one dimension, i.e. the actual size of the allocated
memory block is  Size *size_of(ElementType) for 1D containers and
Size * Size * size_of(ElementType) for 2D containers. If the number
of rows and the number of columns are specified statically, Size is
ignored.

dyn has two alternative subfeatures: checkMallocErr,
noMallocChecking. checkMallocErr implies checking for memory
allocation errors. noMallocChecking implies no checking.

Table 29    Description of subfeatures of Structure
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Figure 153    Subfeatures of Shape (see Table 30 for explanations)

Feature name Description

rect Rectangular matrix (see Figure 154 for subfeatures).

diag Diagonal matrix (see Figure 155 for subfeatures).

scalar Scalar matrix (see Figure 156 for subfeatures).

ident Identity matrix (see Figure 157 for subfeatures).

zero Zero matrix (see Figure 158 for subfeatures).

lowerTriang Lower triangular matrix (see Figure 159 for subfeatures).

upperTriang Upper triangular matrix (see Figure 160 for subfeatures).

symm Symmetric matrix (see Figure 161 for subfeatures).

bandDiag Band diagonal matrix (see Figure 162 for subfeatures).

lowerBandTriang Lower band triangular matrix (see Figure 163 for subfeatures).

upperBandTriang Upper band triangular matrix (see Figure 164 for subfeatures).

Table 30    Description of subfeatures of Shape (see Section 10.1.2.2.1.3.3  for explanations)
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Figure 154    Subfeatures of rect (see Table 31 for explanations)

Feature
name

Description

Rows allows us to specify the number of rows of a matrix statically or to indicate that
the number can be set at runtime (see Section 10.1.2.2.1.7).

Rows

Subfeatures Possible values of Rows: statVal, dynVal

statVal indicates that the number of rows is specified statically. The
subfeature RowsNumber specifies the number of rows.

dynVal indicates that the number of rows is specified dynamically.

Cols allows us to specify the number of columns of a matrix statically or to indicate
that the number can be set at runtime (see Section 10.1.2.2.1.7).

Cols

Subfeatures Possible values of Rows: statVal, dynVal

statVal indicates that the number of columns is specified statically.
The subfeature ColsNumber specifies the number of columns.

dynVal indicates that the number of columns is specified dynamically.

RectFormat specifies the format of a rectangular matrix (see Section 10.1.2.2.1.3.6).RectFormat

Subfeatures Possible values of RectFormat: array, CSC, CSR, COO

array implies column- or row-wise storage in a two-dimensional vector
(see Section 10.1.2.2.1.3.6.1).
CSC  implies compressed  sparse column format (see Section
10.1.2.2.1.3.6.2).
CSR  implies compressed  sparse row format (see Section
10.1.2.2.1.3.6.2).
COO coordinate format (see Section 10.1.2.2.1.3.6.2 and Table 41).

Table 31    Description of subfeatures of rect
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Figure 155    Subfeatures of diag (see
Table 32 for explanations)

Feature name Description

Order describes the number of columns and rows of a square matrix (see Section
10.1.2.2.1.7). We can specify order statically or indicate that it can be set at runtime.

Order

Subfeatures Possible values of Order: statVal, dynVal

statVal indicates that order is specified statically. The subfeature
OrderNumber specifies the order value.

dynVal indicates that order is specified dynamically.

Table 32    Description of Order, subfeature of diag, scalar, ident, zero, lowerTriang, upperTriang,
symm, bandDiag, lowerBandDiag, and upperBandDiag
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Figure 156    Subfeatures of scalar (see Table 33
for explanations)

Feature name Description

Order see Table 32

ScalarValue allows us to specify the scalar value of a scalar matrix (i.e. the value of
the diagonal elements) statically or to indicate that the value can be set at runtime
(see Section 10.1.2.2.1.3.3).

ScalarValue

Subfeatures Possible values of ScalarValue: statVal, dynVal

statVal indicates that the scalar value is specified statically. The
subfeature ScalarValueNumber specifies the scalar value.

dynVal indicates that the scalar value is specified dynamically.

Table 33    Description of subfeatures of scalar
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Figure 157    Subfeatures of ident
(see Table 32 for explanations)
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Figure 158    Subfeatures of zero
(see Table 32 for explanations)
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Figure 159    Subfeatures of lowerTriang (see Table 34 for
explanations)

Feature name Description

Order see Table 32

LowerTriangFormat specifies the format of a lower triangular matrix (see
Section 10.1.2.2.1.3.6).

LowerTriangFormat

Subfeatures Possible values of LowerTriangFormat: vector, array, DIA,
SKY

vector implies diagonal-wise storage in a vector.
array implies column- or row-wise storage in a two-
dimensional vector (see Section 10.1.2.2.1.3.6.1).
DIA  implies diagonal sparse format (see Section
10.1.2.2.1.3.6.2).
SKY  implies skyline format (see Section 10.1.2.2.1.3.6.2).

Table 34    Description of subfeatures of lowerTriang
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Figure 160    Subfeatures of upperTriang (see Table 35 for
explanations)

Feature name Description

Order see Table 32

UpperTriangFormat specifies the format of an upper triangular matrix (see
Section 10.1.2.2.1.3.6).

UpperTriangFormat

Subfeatures Possible values of UpperTriangFormat: vector, array, DIA,
SKY

vector implies diagonal-wise storage in a vector.
array implies column- or row-wise in a two-dimensional
vector (see Section 10.1.2.2.1.3.6.1).
DIA  implies diagonal sparse format (see Section
10.1.2.2.1.3.6.2).
SKY  implies skyline format (see Section 10.1.2.2.1.3.6.2).

Table 35    Description of subfeatures of upperTriang
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Figure 161    Subfeatures of symm (see Table 36 for explanations)

Feature name Description

Order see Table 32

SymmFormat specifies the format of a symmetric matrix (see Section
10.1.2.2.1.3.6).

SymmFormat

Subfeatures Possible values of SymmFormat: vector, array, DIA, SKY

vector implies diagonal-wise storage in a vector.
array implies column- or row-wise storage in a two-dimensional
vector (see Section 10.1.2.2.1.3.6.1).
DIA  implies diagonal sparse format (see Section 10.1.2.2.1.3.6.2).
SKY  implies skyline format (see Section 10.1.2.2.1.3.6.2).

Table 36    Description of subfeatures of symm
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Figure 162    Subfeatures of bandDiag (see Table 37 for explanations)

Feature name Description

Order see Table 32

Diags allows us to statically specify the bandwidth (i.e. number of nonzero
diagonals) of a band matrix or to indicate that the bandwidth can be set at
runtime (see Section 10.1.2.2.1.7).

Diags

Subfeatures Possible values of Rows: statVal, dynVal

statVal indicates that the bandwidth is specified statically. The
subfeature DiagsNumber specifies the number of nonzero
diagonals.

dynVal indicates that the bandwidth is specified dynamically.

BandDiagFormat specifies the format of a band diagonal matrix (see Section
10.1.2.2.1.3.6).

BandDiagFormat

Subfeatures Possible values of BandDiagFormat: vector, array, DIA

vector implies diagonal-wise storage in a vector.
array implies column- or row-wise storage in a two-dimensional
vector (see Section 10.1.2.2.1.3.6.1).
DIA  implies diagonal sparse format (see Section
10.1.2.2.1.3.6.2).

Table 37    Description of subfeatures of bandDiag
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Figure 163    Subfeatures of lowerBandTriang (see Table 38 for explanations)

Feature name Description

Order see Table 32

Diags see Diags in Table 37

LowerBandTriangFormat specifies the format of a lower triangular
matrix (see Section 10.1.2.2.1.3.6).

LowerBandTriangFormat

Subfeatures Possible values of LowerBandTriangFormat: vector,
DIA, SKY

vector implies diagonal-wise storage in a vector.
DIA  implies diagonal sparse format (see Section
10.1.2.2.1.3.6.2).
SKY  implies skyline format (see Section
10.1.2.2.1.3.6.2).

Table 38    Description of subfeatures of lowerBandTriang
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Figure 164    Subfeatures of upperBandTriang (see Table 39 for explanations)

Feature name Description

Order see Table 32

Diags see Diags in Table 37

UpperBandTriangFormat specifies the format of an upper band
triangular matrix (see Section 10.1.2.2.1.3.6).

UpperBandTriangFormat

Subfeatures Possible values of UpperBandTriangFormat: vector,
DIA, SKY

vector implies diagonal-wise storage in a vector.
DIA  implies diagonal sparse format (see Section
10.1.2.2.1.3.6.2).
SKY  implies skyline format (see Section
10.1.2.2.1.3.6.2).

Table 39   Description of subfeatures upperBandTriang
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Array

cLike fortranLike

ArrOrder

Figure 165    Subfeatures of Array (see
Table 40 for explanations)

Feature name Description

ArrOrder specifies whether to store elements row- or column-wise (see Section
10.1.2.2.1.3.6.1).

ArrOrder

Subfeatures Possible values of Array: cLike, fortranLike

CLike implies row-wise storage.

fortranLike implies column-wise storage.

Table 40    Description of subfeatures of Array

COO

hashDictionary

HashWidth

<int_number>

listDictonary

DictFormat

Figure 166    Subfeatures of COO (see Table
41 for explanations)
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10.2.3.3 Direct Feature Defaults
A subset of the Matrix Configuration DSL parameters have direct defaults. In Table 42, we
propose some, to our taste, reasonable default values. If necessary, they can be easily modified.
Please note that some values are specified as ---. This symbol indicates that no reasonable
default value exists for the corresponding parameter and, if the parameter is relevant in a given
configuration, it has to be specified explicitly.

Density represents a special case. If Density is specified and Format149 is not, Density is used
to compute Format. On the other hand, if Format is specified and Density is not, Format is
used to compute Density. Finally, if neither Format nor Density is specified, we use the
following default for Density (and then compute Format):

Density: dense

10.2.3.4 Computed Feature Defaults
The default values of the following parameters are computed:

Density
MallocChecking

Feature name Description

DictFormat specifies the dictionary to be used for the COO matrix format (see
Section 10.1.2.2.1.3.6.2).

DictFormat

Subfeatures Possible values of DictFormat: hashDict, listDict

hashDict implies a dictionary with a hashed key. The subfeature
HashWidth is used in the hash function.148

listDict implies a dictionary implemented using three vectors: two
index vectors (for rows and columns indices) and one value
vector.

Table 41    Description of subfeatures of COO

ElementType: double

Structure: structure

Shape: rect

Malloc: dyn

ArrOrder: cLike

DictFormat: hashDictionary

OptFlag: space

ErrFlag: checkAsDefault

IndexType: unsigned int

Rows: dynVal

Cols: dynVal

Order: dynVal

Diags: dynVal

ScalarValue: dynVal

RowsNumber: ---

ColsNumber: ---

OrderNumber: ---

DiagsNumber: ---

ScalarValueNumber: ---

Size: int_number[int, 100]

Ratio: float_number[double, 0.1]

Growing: float_number[double, 0.25]

HashWidth: int_number[IndexType, 1013]

Table 42    Direct feature defaults for the Matrix Configuration DSL [Neu98]
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BoundsChecking
CompatChecking
RectFormat
LowerTriangFormat
UpperTriangFormat
SymmFormat
BandDiagFormat
LowerBandTriangFormat
UpperBandTriang

Table 43 through Table 51 specify how to compute them. The semantics of the feature
dependencies tables are explained in Section 10.2.3.

10.2.3.4.1 Density

10.2.3.4.2 Error Checking Features

ErrFlag is used as the primary default for all error checking features (see Section 10.2.3).

Format Density
array dense
vector dense
CSR sparse
CSC sparse
COO sparse
DIA sparse
SKY sparse
* dense (from Section 10.2.3.3)

Table 43    Computing default value for Density [Neu98]

ErrFlag MallocChecking
checkAsDefault checkMallocErr
noChecking noMallocErrChecking

Table 44    Computing default value for
MallocChecking [Neu98]

ErrFlag BoundsChecking
checkAsDefault checkBounds
noChecking noBoundsChecking

Table 45    Computing default value for
BoundsChecking [Neu98]

ErrFlag CompatChecking
checkAsDefault checkCompat
noChecking noCompatChecking

Table 46    Computing default value for
CompatChecking [Neu98]



Case Study: Generative Matrix Computation Library (GMCL) 341

10.2.3.4.3 Format Features

The default format for a certain matrix shape is determined based on Density and OptFlag. We
already explained the relationship between shape, format and OptFlag in Section 10.2.3

10.2.3.5 Flat Configuration Description
A concrete matrix type is completely described by specifying the values of the DSL parameters
for which two or more alternative values are possible. We refer to the set of these DSL
parameters as the “flat” configuration description (or simply “flat” configuration) or the type
record  of a matrix. The flat configuration for the matrix component is the following set of DSL
parameters:

ElementType
Shape
Format

OptFlag Density RectFormat
* dense array
* sparse COO

Table 47    Computing default value for RectFormat [Neu98]

OptFlag Density LowerTriangFormat
or
UpperTriangFormat

speed dense array
speed sparse DIA
space dense vector
space sparse SKY

Table 48    Computing default value for LowerTriangFormat and
UpperTriangFormat [Neu98]

OptFlag Density SymmFormat
speed dense array
space dense vector
* sparse SKY

Table 49    Computing default value for SymmFormat [Neu98]

OptFlag Density BandDiagFormat
* dense array
* sparse DIA

Table 50    Computing default value for BandDiagFormat [Neu98]

OptFlag Density LowerBandTriangFormat or
UpperBandTriangFormat

* dense vector
speed sparse DIA
space sparse SKY

Table 51    Computing default value for LowerBandTriangFormat and
UpperBandTriang [Neu98]
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ArrOrder
DictFormat
Density
Malloc
MallocErrChecking
OptFlag
ErrFlag
BoundsChecking
CompatChecking
IndexType
Rows
Cols
Order
Diags
ScalarValue
Ratio
Growing
RowsNumber
ColsNumber
OrderNumber
DiagsNumber
Size
HashWidth
ScalarValueNumber

Please note that we combined all format parameters into Format since only one of them is used
at a time. Furthermore, not all parameters are relevant in all cases. For example, if Format is
vector, DictFormat is irrelevant.

The flat configuration is computed by analyzing the given matrix configuration expression and
assigning defaults to the unspecified features.

10.2.4 Matrix ICCL
We construct a concrete matrix type by composing a number of matrix implementation
components. The matrix package contains a set of parameterized implementation components,
some of which are alternative and some optional. The parameterized components can be
configured in a number of different ways. The exact specification of valid configurations is
given by a grammar. This grammar specifies the Matrix Implementations Components
Configuration Language, i.e. Matrix ICCL. In our case, the ICCL is specified by a GenVoca-
style grammar, which we will show in Section 10.2.4.8. But before that, we first give an overview
of the available matrix implementation components.

The matrix implementation components are organized into a number of generic layers (see
Figure 167; we discussed this kind of diagrams in Section 6.4.2.2). The layers provide a high-
level overview of the relationships between the components and how they are used to
construct concrete matrix types.
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We have the following layers (the names of the layers are underlined in Figure 167):

• Top layer: The top layer consists of only one component, which is Matrix. Matrix
represents the outer wrapper of every matrix configuration. Its purpose is to express their
commonality as matrices. This is useful for writing generic operations on matrices.

• Bounds checking layer: This layer contains the optional wrapper BoundsChecker, which
provides bounds checking functionality.

• Symmetry layer: This layer contains the optional wrapper Symm, which implements
symmetry. Symm turns a lower triangular format into a symmetric format.

• Formats layer: Formats layer provides components implementing various dense and sparse
storage formats.

• Dictionary layer: Dictionaries are required by the COO format.

• Basic containers layer: Any format that physically stores matrix elements uses basic
containers.

The box at the bottom of Figure 167 is the configuration repository, which we also refer to as
Config. Any component from any layer can reach down to the repository and get the
information it needs (we already explained this idea in Sections 6.4.2.4 and 8.7). In particular, the
repository is used to store some global components, the type of the matrix being constructed,
some horizontal parameters (see Section 6.4.2.2), all the abstract matrix features which were
computed from the matrix configuration description (i.e. the flat configuration, which is
contained in DSLFeatures) and the description itself.

Each of the matrix components is parameterized. The basic containers are parameterized with
Config. The dictionaries are parameterized with the basic containers. The formats are
parameterized either with Config, or with the basic containers, or with the dictionaries. More
precisely, ScalarFormat is parameterized with Config, whereas COO is parameterized with the

Top Layer Matrix

Symmetry Layer Symm

Bounds Checking Layer

Formats Layer

Dictionary Layer

Basic Containers Layer

Config

BoundsChecker

ArrFormat,
VecFormat,

CSR, CSC, DIA,
LoSKY, UpSKY

ScalarFormat

COO

Dyn1DContainer
Fix1DContainer

Dyn2DCContainer
Dyn2DFContainer

Fix2DCContainer
Fix2DFContainer

DSLFeatures, MatrixType, MallocErrorChecker,
CompatibilityChecker, CommaInitializer, Ext,

Diags, ElementType, IndexType

HashDictionary
ListDictionary

Figure 167    Layered matrix implementation component
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dictionaries and the remaining components in this layer are parameterized with the basic
containers. Symm is parameterized with the formats. Since the symmetry layer has a dashed
inner box, Symm is an optional component. Thus, BoundsChecker can be parameterized with
Symm or with the formats directly. Similarly, Matrix can be parameterized with
BoundsChecker, or with Symm, or with the formats.

The names appearing in the Config box are variables rather than components. They are
assigned concrete components when a configuration is built, so that other components can
access them as needed.

An example of a concrete matrix configuration is shown in Figure 168. As we will see later, some
formats and the dictionaries use more than one different basic containers at once. Thus, in
general, a matrix configuration can look like a tree rather than a stack of components.

Now, let us take a closer look at each group of matrix implementation components starting with
the bottom layer.

10.2.4.1 Basic Containers
Basic containers are the basic components for storing objects. They are used by the matrix
format components to store matrix elements and, in some cases, also element indices and
pointers to containers. They are also used to implement dictionaries.

We have six basic containers (see Table 52). They can all be thought of as one or two-
dimensional arrays. The containers whose names start with “Dyn” allocate their memory
dynamically and the ones starting with “Fix” use static memory allocation (i.e. the size of the
allocated memory is specified at compile time).  The next two characters in the name of a
container indicate whether the container is one or two dimensional. Finally, the two-dimensional
containers store their elements either row-wise (this is indicated with an extra C, which stands
for C-like storage) or column-wise (which is indicated by an extra F, which stands for Fortran-
like storage).

Matrix

Config

BoundsChecker

Symm

VecFormat

Fix1DContainer

formal
parameter

used as a
parameter of

Figure 168    Example of a matrix configuration
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The basic containers have the following parameters:

Dyn1DContainer[ElementType, Ratio, Growing, Config]
Fix1DContainer[ElementType, Size, Config]
Dyn2DCContainer[Config]
Dyn2DFContainer[Config]
Fix2DCContainer[Size, Config]
Fix2DFContainer[Size, Config]

ElementType is the type of the elements stored in the container. Only the one-dimensional
containers have ElementType as their explicit parameter since they are sometimes used more
than once in a configuration, e.g. to store matrix elements and matrix element indices. The two-
dimensional containers, on the other hand, are only used to store matrix elements. Thus, they
can get their element type from Config (which is the element type of the whole matrix). We
already explained Size, Ratio, Growing in Table 29. All containers get their index types from
Config.

In general, we do not really have to specify ElementType as an explicit parameter of the one-
dimensional containers. This is so since the component which gets a container as its parameter
can internally request the vector storage type from the container and specify the element type
at this time. For example, we could pass just one container to the CSR-format component, and
the component would internally request two different types from this container: one vector of
index type and one vector of element type. We illustrated this idea with some C++ code in
Figure 169.

The solution in Figure 169 has the advantage that we do not have to specify ElementType as
an explicit parameter of Dyn1Dcontainer. This leads to a much simpler description of the
possible component combinations: We would be able to replace the three productions
VerticalContainer, IndexVec, and ElemVec  later in Figure 173 with just one production:

Vec: Dyn1DContainer[Ratio, Growing, Config] | Fix1DContainer[Size, Config]

Unfortunately, we were not able to use this variant since VC++5.0 reported an internal error
when compiling this valid C++ code.

Basic Container Memory
Allocation

Number of
Dimensions

Storage Format

Dyn1Dcontainer dynamic 1 ---
Fix1Dcontainer static 1 ---
Dyn2DCContainer dynamic 2 row-wise
Dyn2DFContainer dynamic 2 column-wise
Fix2DCContainer static 2 row-wise
Fix2DFContainer static 2 column-wise

Table 52    Basic containers (adapted from [Neu98])
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10.2.4.2 Dictionaries
Dictionaries are used by the coordinate matrix format, i.e. COO. Their elements are addressed
by a pair of integral numbers. Many variant implementations of a dictionary are possible.
However, we consider here only two variants:

HashDictionary[VerticalContainer, HorizontalContainer, HashFunction]
ListDictionary[IndexVector, ElementVector]

HashDictionary uses a hashing function to index VerticalContainer, which contains
references to element buckets (see Figure 170). We substitute one of the one-dimensional basic
containers with a constant size for VerticalContainer. The buckets themselves are instantiated
from HorizontalContainer. HorizontalContainer is also a dictionary and we use ListDictionary
here. HashFunction is a component providing the hash function.

//int_number and Configuration are not shown here
...

template<class Size, class Config>
class Dyn1DContainer
{
    public:
        //export Config
        typedef Config Config;

        //components using me can request a Vector as many times as they want;
        //they can specify a different ElementType each time
        template<class ElementType>
        class Vector
        {
            ...
        };
};

template<class Container1D>
class CSR
{
    public:
        //retrieve matrix index type and matrix element type from Config
        typedef Container1D::Config Config;
        typedef Config::IndexType IndexType;
        typedef Config::ElementType ElementType;

        //the CSR component requests the index vector and the element vector
        Container1D::Vector< IndexType> indexVec;
        Container1D::Vector< ElementType> elementVec;
        ...
};

main()
{

CSR<Dyn1DContainer<int_number<long, 100>, Configuration> > myFormat;
}

Figure 169    C++ Code demonstrating how CSR could request two vectors with different
element types from a 1D container (adapted from [Neu98])
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ListDictionary  is a dictionary implementation storing element indices in two instances of
IndexVector and elements in ElementVector. Both vector parameters are substituted by one
of the one-dimensional basic containers.

10.2.4.3 Formats
We have nine matrix format components. They are summarized in Table 53.

The parameters of the format components are as follows:

ArrFormat[Ext, Diags, Array]
VecFormat[Ext, Diags, ElemVec]
ScalarFormat[Ext, ScalarValue, Config]
CSR[Ext, IndexVec, ElemVec]
CSC[Ext, IndexVec, ElemVec]
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Figure 170    Structure of a hash dictionary (from [Neu98])

Format
Component

Purpose

ArrFormat ArrFormat stores elements in a two-dimensional basic container. If the indices of
a matrix element are i and j, the same indices are used to store the element in the
container. ArrFormat is used to store dense matrices of different band shapes
(see Figure 141). It optionally checks to make sure that nonzero elements are
assigned to locations within the specified band only.

VecFormat VecFormat stores elements in a one-dimensional basic container (thus, it uses a
formula to convert matrix element indices into the container element indices). The
elements are stored diagonal-wise. It is used to store dense matrices of different
band shapes. Only the nonzero diagonals are stored. It optionally checks to make
sure that nonzero elements are assigned to locations within the specified band
only.

ScalarFormat ScalarFormat is used to represent scalar matrices (including zero and identity
matrix). The scalar value can be specified statically or dynamically. This format
does not require any storage container.

CSR CSR implements the compressed sparse row format. CSR is used for general
rectangular sparse matrices.

CSC CSC implements the compressed sparse column format. CSC is used for general
rectangular sparse matrices.

COO COO implements the coordinate format. COO is used for general sparse
rectangular matrices.

DIA DIA implements the sparse diagonal format. DIA is used for sparse band matrices
LoSKY LoSKY implements the lower skyline format. LoSKY is used for sparse lower

triangular matrices and sparse lower band triangular matrices.
UpSKY UpSKY implements the upper skyline format. UpSKY is used for sparse upper

triangular matrices and sparse upper band triangular matrices.

Table 53    Format components (see Section 10.1.2.2.1.3.6.2  for the explanation of the sparse
formats)
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COO[Ext, Dict]
DIA[Ext, Diags, Array]
LoSKY[Ext, Diags, IndexVec, ElemVec]
UpSKY[Ext, Diags, IndexVec, ElemVec]

Array is any of the two-dimensional basic containers. ElemVec  and IndexVec are any of the
one-dimensional basic containers. Ext and Diags need a bit more of explanation.

10.2.4.3.1 Extent and Diagonal Range of a Matrix

The extent of a matrix is determined by the number of rows and the number of columns. The
diagonal range specifies the valid diagonal index range for band matrices. The index of a
diagonal is explained in Figure 171. For example, the main diagonal has the index 0. The range -
1...1 means that only the diagonals -1, 0, and 1 can contain nonzero elements.

Table 54 summarizes the extent and diagonal range of some more common matrix shapes.

Ext

The parameter Ext is used to specify the extent of a matrix, i.e. the number of rows and the
number of columns and whether they are determined statically or dynamically. We have a
number of small helper components that can be used in place of Ext to specify the extent of
rectangular and square matrices. They are described in Figure 172.
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Figure 171    Numbering of the diagonals
of a m-by-n matrix (adapted from
[Neu98])

Shape Extent Diagonal range
rectangular arbitrary m and n -m...n
diagonal m = n 0...0
lower triangular m = n -m...0
upper triangular m = n 0...n
symmetric m = n -m...n (or –m...0)150

band diagonal m = n -d/2...d/2, where  denote rounding
down

lower band triangular m = n 1-d...0
upper band triangular m = n 0...d-1

Table 54    Extent and diagonal range of some more common matrix shapes (from
[Neu98]). d is the number of diagonals.



Case Study: Generative Matrix Computation Library (GMCL) 349

The extent components have the following parameters:

DynExt[IndexType]
StatExt[Rows, Cols]
StatRowsDynCols[Rows]
DynRowsStatCols[Cols]
DynSquare[IndexType]
StatSquare[Rows]

Rows specifies the number of rows and Cols the number of columns. IndexType specifies the
index type. Rows and Cols can be specified as follows:

int_number[Type, value]

Diags

The parameter Diags specifies the diagonal range of a matrix format. The helper components
which can be used in place of Diags are described in Table 55.

The Diags components have the following parameters:

DynLo[IndexType]
DynUp[IndexType]
DynBand[IndexType]
TriangLo[IndexType]
TriangUp[IndexType]
Rect[IndexType]
StatDiags[FirstDiag, LastDiag]

Extent Component Extent Number of rows / columns
DynExt rectangular both dynamic
StatExt rectangular both static
DynRowsStatCols rectangular row number dynamic, column number static
StatRowsDynCols rectangular row number static, column number dynamic
DynSquare square both dynamic
StatSquare square both static

Figure 172    Helper components for specifying the extent of a matrix (adapted from
[Neu98])

Diags Component Purpose
DynLo DynLo specifies lower band triangular shape with dynamic

bandwidth. The diagonal range is 1-d...0, where d is
specified dynamically.

DynUp DynUp specifies upper band triangular shape with dynamic
bandwidth. The diagonal range is 0...d-1, where d is
specified dynamically.

DynBand DynBand specifies band diagonal shape with dynamic
bandwidth. The diagonal range is -d/2...d/2, where d is
specified dynamically.

TriangLo TriangLo specifies lower triangular shape.
TriangUp TriangUp specifies upper triangular shape.
Rect Rect specifies rectangular shape.
StatDiags[FirstDiag, LastDiag] StatDiags allows to statically specify the band range. The

diagonal range is FirstDiag...LastDiag.
StatBand[BandWidth] StatBand specifies band diagonal shape with static

bandwidth. The diagonal range is -BandWidth /2...
BandWidth /2.

Table 55    Helper components for specifying components the diagonal range of a matrix
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10.2.4.4 Symmetry Wrapper
As described in Table 20, the elements of a symmetric matrix can be stored in a lower (or upper)
triangular matrix. Thus, we do not need a symmetric format storage component. Instead, we
implement the symmetry property using a wrapper which we can put on some other format
component. The wrapper maps any element access to it onto a corresponding element access to
the lower (or upper) half of the wrapped format component. The wrapper takes a format
component as its parameter:

Symm[Format]

The symmetry wrapper can be used with any of the available format components. However,
only the lower part of the component is actually used and thus only some combinations are
relevant. For example, we would use a lower triangular format to store a symmetric matrix and
lower band triangular format to store a symmetric band diagonal matrix.151 Putting the symmetry
wrapper on a diagonal shape is not particularly useful. Please remember that the shape of a
format component depends on the component, the extent, and the diagonal range.

10.2.4.5 Error Checking Components
Currently, we provide components for bounds checking (see Section 10.1.2.2.1.4.1),
compatibility checking (see Section 10.1.2.2.1.4.2), and memory allocation error checking (the
latter are used by the dynamic basic containers).

Bounds checking is best implemented in the form of a wrapper since it involves precondition
checking and thus we only need to wrap the element access methods of the underlying format
component. Thus, BoundsChecker takes format as its only parameter:

BoundsChecker[FormatOrSymm]

The compatibility checking and memory allocation error checking components, on the other
hand, are called from within methods of other components, i.e. they involve intracondition
checking. Thus, we do not implement them as wrappers. They are implemented as stand alone
components and we provide them to the configuration through the MallocErrorChecker and
CompatibilityChecker variables of the configuration repository (i.e. Config). Any component
that needs them can retrieve them from the repository.

The compatibility checking and memory allocation error checking components are described in
Table 56 and Table 57. They all take Config as their parameter.

CompatibilityChecker
Component

Purpose

CompatChecker CompatChecker is used to check the compatibility of
matrices for addition, subtraction, and multiplication. It is
called from the code implementing the matrix operations.

EmptyCompatChecker EmptyCompatChecker implements its error checking
methods as empty methods (please note that inlining will
eliminate any overhead). If used, no compatibility checking
is done.

Table 56    Compatibility checking components

MallocErrorChecker
Component

Purpose

MallocErrChecker MallocErrChecker is used to check for memory allocation
errors in the dynamic basic containers.

EmptyMallocErrChecker EmptyMallocErrChecker implements its error checking
methods as empty methods. If used, no memory allocation
error checking is done.

Table 57    Memory allocation error checking component
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10.2.4.6 Top-Level Wrapper
Each matrix configuration is wrapped into Matrix. This wrapper is used to express the type
commonality of all matrix configurations. This is particularly useful for generic operations so
that they can check whether the type they operate on is a matrix type or not.

10.2.4.7 Comma Initializers
Comma initializers implement matrix initialization using comma separated lists of numbers (as
implemented in the Blitz++ library [Vel97]). These components are specific to the C++
implementation.

Using a comma initializer, we can initialize a dense matrix by listing its elements (the matrix
already knows its extent), e.g.:

For sparse matrices, the initialization format is different. We specify the value of an element
followed by its indices, e.g.:

In general, a dense m-by-n matrix is initialized as follows [Neu98]:
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and a sparse m-by-n matrix:

A=

;,,

,,,

,,,

22

11

22

11

kkji

ji

ji

jia

jia

jia

kk

M

The available comma initialization components are summarized in Table 58.

The comma initializer currently used by a configuration is published in the configuration
repository in the CommaInitializer component variable.

10.2.4.8 Matrix ICCL Grammar
The complete ICCL grammar is specified in the GenVoca-like notation in Figure 173.

matrix= 3, 0, 0, 8, 7,
0, 2, 1, 2, 4,
6, 0, 2, 4, 5;

sparseMatrix= 3, 0, 0,
1, 1, 2,
2, 1, 1,
6, 2, 0,
2, 2, 2;

CommaInitializer Component Purpose
DenseCCommaInitializer DenseCCommaInitializer is used for initializing dense

matrices with row-wise storage.
DenseFCommaInitializer DenseFCommaInitializer is used for initializing dense

matrices with column-wise storage.
SparseCommaInitializer SparseCommaInitializer is used for initializing sparse

matrices.

Table 58    Comma initialization components
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Here is an example of a valid ICCL expression:

10.2.5 Mapping from Matrix Configuration DSL to Matrix ICCL
Now that we completely specified the Matrix Configuration DSL and the Matrix ICCL, we need
to specify how to translate a Matrix Configuration DSL expression into a Matrix ICCL
expression. We will use the dependency tables introduced in Section 10.2.3 for this purpose.
Each table will specify how to compute an ICCL parameter based on some DSL parameters from
the flat configuration description (Section 10.2.3.5).

MatrixType: Matrix[OptBoundsCheckedMatrix]
OptBoundsCheckedMatrix: OptSymmetricMatrix | BoundsChecker[OptSymmetricMatrix]
OptSymmetricMatrix: Format | Symm[Format]
Format: ArrFormat[Ext, Diags, Array] | VecFormat[Ext, Diags, ElemVec] |

ScalarFormat[Ext, ScalarValue, Config] | CSR[Ext, IndexVec, ElemVec] |
CSC[Ext, IndexVec, ElemVec] | COO[Ext, Dict] | DIA[Ext, Diags, Array] |
LoSKY[Ext, Diags, IndexVec, ElemVec] |
UpSKY[Ext, Diags, IndexVec, ElemVec]

Dict: HashDictionary[VerticalContainer, HorizontalContainer, HashFunction] |
ListDictionary[IndexVec, ElemVec]

Array: Dyn2DCContainer[Config] | Fix2DCContainer[Size, Config] |
Dyn2DFContainer[Config] | Fix2DFContainer[Size, Config]

HorizontalContainer: ListDictionary[IndexVector, ElementVector]
VerticalContainer: Dyn1DContainer[HorizPointer, Ratio, Growing, Config] |

Fix1DContainer[HorizPointer, Size, Config]
IndexVec: Dyn1DContainer[IndexType, Ratio, Growing, Config] |

Fix1DContainer[IndexType, Size, Config]
ElemVec: Dyn1DContainer[ElementType, Ratio, Growing, Config] |

Fix1DContainer[ElementType, Size, Config]
HashFunction: SimpleHashFunction[HashWidth]
Ext: DynExt[IndexType] | StatExt[Rows, Cols] | DynSquare[IndexType] |

StatSquare[Rows] | StatRowsDynCols[Rows] | DynRowsStatCols[Cols]
Diags: DynLo[IndexType] | DynUp[IndexType] | DynBand[IndexType] |

TriangLo[IndexType] | TriangUp[IndexType] | Rect[IndexType] |
StatDiags[FirstDiag, LastDiag] | StatBand[BandWidth]

ScalarValue: DynVal[ElementType] | StatVal[Val]
MallocErrorChecker: EmptyMallocErrChecker[Config] | MallocErrChecker[Config]
CompatibilityChecker: EmptyCompatChecker[Config] | CompatChecker[Config]
CommaInitializer: DenseCCommaInitializer[Config] | DenseFCommaInitializer[Config] |

SparseCommaInitializer[Config]
Ratio, Growing: float_number[Type, value]
Rows, Cols, FirstDiag,
LastDiag, BandWidth,
Size, HashWidth: int_number[Type, value]
Val: int_number[Type, value] | float_number[Type, value]
ElementType: float | double | long double | short | int | long | unsigned short | unsigned int |

unsigned long
IndexType: char | short | int | long | unsigned char | unsigned short | unsigned int |

unsigned long | signed char
SignedIndexType: char | short | int | long
HorizPointer: HorizontalContainer*
Config: Configuration (contains the component variables: DSLFeatures, MatrixType,

MallocErrorChecker, CompatibilityChecker, CommaInitializer, ElementType,
IndexType, Ext, Diags)

DSLFeatures: this is the “flat” configuration

Figure 173    Matrix ICCL [Neu98]

Matrix[
BoundsChecker[

ArrFormat[
DynExt[unsigned int],
Rect[unsigned int],
Dyn2DCContainer[Config]

]
]

]
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10.2.5.1 Basic Containers
We start with the basic containers. The mapping for Array is shown in Table 59. The value of
Array depends on the DSL features Malloc and ArrOrder.

Table 60 specifies how to compute IndexVec, ElemVec , and VerticalContainer.

The following parameters of the basic containers are determined directly from the DSL
parameters:

Size (ICCL) = Size (DSL)
Ratio (ICCL) = Ratio (DSL)
Growing (ICCL) = Growing (DSL)
ElementType (ICCL) = ElementType (DSL)
IndexType (ICCL) = IndexType (DSL)

Since some DSL parameters have the same name as the corresponding ICCL parameters, we
indicate whether we refer to a DSL parameter or to a ICCL parameter by an extra annotation.

The signed index type (SignedIndexType) is used for the diagonal indices in the DIA format
component. SignedIndexType is determined based on IndexType. This is specified in Table 61.
Please note that this mapping may be problematic for very large matrices with unsigned index
type and using DIA since only the have of the row (or column) index range is available for
indexing the diagonals.

10.2.5.2 Dictionaries
A dictionary component is selected based on the DSL feature DictFormat (see Table 62).

Currently, two of the parameters of HashDictionary use direct defaults:

HorizontalContainer = ListDictionary

Malloc ArrOrder Array
cLike Fix2DCContainerfix
fortranLike Fix2DFContainer
cLike Dyn2DCContainerdyn
fortranLike Dyn2DFContainer

Table 59     Table for computing the ICCL parameter Array

Malloc IndexVec, ElemVec, VerticalContainer
fix Fix1Dcontainer
dyn Dyn1Dcontainer

Table 60    Table for computing the ICCL parameters IndexVec,
ElemVec, and VerticalContainer [Neu98]

IndexType SignedIndexType
unsigned char signed char
unsigned short short
unsigned int int
unsigned long long
* =IndexType

Table 61    Table for computing the ICCL
parameter SignedIndexType [Neu98]

DictFormat Dict
hashDictionary HashDictionary
listDictionary ListDictionary

Table 62    Table for computing the ICCL
parameter Dict [Neu98]
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HashFunction = SimpleHashFunction[HashWidth]

Additionally, we have the following dependencies:

HashWidth (ICCL) = HashWidth (DSL)
HorizPointer = HorizontalContainer* (C++ notation for pointers)

10.2.5.3 Formats
The ICCL parameter Format is determined based on DSL features Shape and Format. The
mapping is given in Table 63. Please note that the DSL feature Density was already used for
computing the flat configuration DSL parameter Format (see Section 10.2.3.4.3).

The remaining tables specify the mapping for the various parameters of the format components.

Shape Format (DSL) Format (ICCL)
diag --- VecFormat
scalar --- ScalarFormat
ident --- ScalarFormat
zero --- ScalarFormat

array ArrFormat
vector VecFormat
CSR CSR
CSC CSC
COO COO

*

DIA DIA
lowerTriang
symm
lowerBandTriang

SKY LoSKY

upperTriang
upperBandTriang

SKY UpSKY

Table 63    Table for computing the ICCL parameter Format
[Neu98]

Shape Ext
Rows (DSL) Cols (DSL)
dynVal dynVal DynExt
dynVal statVal StatRowsDynCols
statVal dynVal DynRowsStatCols

rect

statVal statVal StatExt
Order
dynVal DynSquare*
statVal StatSquare

Table 64    Table for computing the ICCL parameter Ext [Neu98]
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The ICCL parameter Val is computed as follows:

Val =ScalarValueNumber

Shape Diags (DSL) Diags (ICCL)
rect --- Rect
diag --- StatBand
scalar --- StatBand
ident --- StatBand
zero --- StatBand
lowerTriang --- TriangLo
upperTriang --- TriangUp
symm --- TriangLo

dynVal DynBandbandDiag
statVal StatBand
dynVal DynLolowerBandTriang
statVal StatDiags
dynVal DynUpupperBandTriang
statVal StatDiags

Table 65    Table for computing the ICCL parameter Diags
[Neu98]

Shape Diags (DSL) FirstDiag LastDiag
lowerBandTriang statVal =1-DiagsNumber number[IndexType,0]

upperBandTriang statVal number[IndexType,0] =DiagsNumber-1

Table 66    Table for computing the ICCL parameters FirstDiag and LastDiag [Neu98]

Shape Diags (DSL) BandWidth
diag
scalar
ident
zero

--- number[IndexType,1]

bandDiag statVal DiagsNumber

Table 67    Table for computing the ICCL parameter BandWidth
[Neu98]

ScalarValue (DSL) ScalarValue (ICCL)
dynVal DynVal

statVal StatVal

Table 68    Table for computing the ICCL
parameter ScalarValue [Neu98]
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Finally, Shape determines whether we use the Symm wrapper or not.

10.2.5.4 Error Checking Components

10.2.5.5 Comma Initializer

Shape Rows (ICCL) Cols (ICCL)
rect = RowsNumber = ColsNumber

* = OrderNumber = OrderNumber

Table 69    Table for computing the ICCL parameters Rows and Cols
[Neu98]

Shape OptSymmetricMatrix
symm Symm

* = Format (ICCL)

Table 70    Table for computing the ICCL parameter
OptSymmetricMatrix [Neu98]

BoundsChecking OptBoundsCheckedMatrix
checkBounds BoundsChecker

noBoundsChecking = OptSymmetricMatrix

Table 71    Table for computing the ICCL parameter
OptBoundsCheckedMatrix [Neu98]

MallocErrChecking MallocErrorChecker
checkMallocErr MallocErrChecker

noMallocErrChecking EmptyMallocErrChecker

Table 72    Table for computing the ICCL parameter
MallocErrorChecker [Neu98]

Shape CompatibilityChecker
checkCompat CompatChecker

noCompatChecking EmptyCompatChecker

Table 73    Table for computing the ICCL parameter
CompatibilityChecker [Neu98]

Density ArrOrder CommaInitializer
cLike DenseCCommaInitializerdense

fortranLike DenseFCommaInitializer

sparse --- SparseCommaInitializer

Table 74    Table for computing the ICCL parameter CommaInitializer
[Neu98]
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10.2.6 Matrix Expression DSL
We will only consider matrix expressions containing matrix-matrix addition, subtraction, and
multiplication, e.g. A+B+C-D*E or (A-B)*(C+D+E*F). Of course, the operand matrices have to
have compatible dimensions (see Section 10.1.2.2.1.4.2).

We can assign a matrix expression to another matrix, e.g.:

R= A+B+C-D*E.

In the following sections, we discuss the question of what code should be generated for matrix
expressions and matrix assignment.

10.2.6.1 Evaluating Matrix Expressions
Let us assume that A, B, C, D, and E are matrices and that they are compatible to be used in the
following assignment statement:

E= (A + B) * (C + D)

There are two principal ways to compute this assignment [Neu98]:

Each of these two approaches has its advantages and disadvantages. The first approach is
simple to implement using overloaded binary operators. Unfortunately, the initialization of the
temporaries, the separate loops for each binary operation, and the final assignment incur a
significant overhead.

The second (i.e. lazy) approach is particularly useful if we want to compute only some of the
elements of a matrix expression (remember that the first approach computes all elements of each
subexpression). Furthermore, it is also superior if the elements of the argument matrices (or
subexpressions) are accessed only once during the whole computation. This is the case for
expressions (or subexpressions) consisting of matrix additions only. In this case, approach two
allows us to evaluate such expression very efficiently: we use two nested loops to iterate over
the nonzero region of the resulting matrix and in each iteration we assign to the current element
of the resulting matrix the sum of the corresponding elements from all the argument matrices.
Thus, we do not need any temporaries and extra loops as in the first approach.152

1. with intermediate results (i.e. with temporaries)

1.1. temp1= A + B

1.2. temp2= C + D

1.3. temp3= temp1 * temp2

1.4. E= temp3

2. without temporaries (i.e. lazy)

All elements of E are computed one after another from the corresponding elements
of A, B, C, and D, i.e.

e11= (a11 + b11) * (c11 + d11) +

(a12 + b12) * (c21 + d21) +

M

M

e21= …

M

M

emn= …
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Unfortunately, the second approach is inefficient for matrix multiplication since matrix
multiplication accesses the elements of the argument matrices more than once. This is illustrated
in Figure 174.

The elementwise computation of the multiplication of the two sample matrices requires each
element of the argument matrices to be accessed three times. If the argument matrices are
actually matrix expressions, each element of the argument expressions will be computed three
times (asumming that both matices do not have nay special shape), which causes an
unnecessary overhead.

The negative behavior of the lazy approach in the case of multiplication can be addressed in
two ways:

• Lazy with temporaries: Whenever one of the arguments to a matrix multiplication is an
expression, we create a temporary matrix and assign the expression to it. In effect, we use
the lazy approach for matrix addition only.

• Lazy with cache: Instead of creating the full temporary for the expression arguments to a
matrix multiplication at once (i.e. as above), we can create a cache matrix and compute any
element of the argument expression on first access only. In other words, we use the lazy
approach for both addition and multiplication and avoid recomputing elements of
subexpressions by storing them in a cache.

Both approaches avoid the creation of temporaries for assignment (e.g. temp3 in our original
example) and for arguments to matrix addition. However, they also have significant differences.
Compared to the first one, the second approach has the overhead of the caching (i.e. store the
computed element on first access and do the extra check whether the element has been already
computed or not on each access). The effect of this overhead depends on many factors such as
element type (i.e. precision, real or complex), number of operation per access, access time for the
storage formats used. On the other hand, the lazy-with-cache approach is superior if we want to
compute only some but not all of the expression elements. For example, if we are only interested
in elements (1,1), (1,2), and (1,3) of the result matrix in Figure 174 and the argument matrices are
actually expressions, the lazy-with-cache approach is likely to be faster than the lazy-with-
temporaries one.

In the following discussion, we will only consider the lazy-with-cache approach.

10.2.6.2 Implementing the Lazy Approach
An elegant thought model for the lazy approach is to think of the matrix expressions (and also
its subexpressions) as objects. If you need to know some element of the expression, you ask the
expression for it. An expression object implements only one matrix operation (i.e. addition,
subtraction, or multiplication) itself and delegates the rest of the work to its subexpressions.

For example, consider the matrix expression A+B+C. Its object-oriented interpretation is shown
in Figure 175. We have one addition expression object pointing to A and to another addition
expression objects, which in turn points to B and C. When we ask the top-level addition
expression for the element (i,j) by sending it the message getElement(i,j), it executes its
getElement() method code shown in the box. This execution involves sending getElement(i,j)
to its operands. The same happens for the second addition expression. Finally, each of the
argument matrices gets the message getElement(i,j).
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Figure 174    Elementwise computation of the multiplication of two sample matrices



Case Study: Generative Matrix Computation Library (GMCL) 359

If the calls to getElement() are statically bound and we use inlining, the code generated for the
top-level method getElement() looks like this:

A.getElement(i,j) + B.getElement(i,j) + C.getElement(i,j)

Now, assume that we want to assign our expression A+B+C to D:

D = A+B+C

This scenario is illustrated in Figure 176. We send the message “=” to D with A+B+C as its
parameter. The assignment code (shown in the box) iterates through all elements of D and
assigns each of them the value computed by sending getElement() to the expression.

If we use inlining, the code generated for D = A+B+C will look like this:

addition expression

Op1 Op2

addition expression

Op1 Op2

B C

getElement(i,j)

getElement(i,j)getElement(i,j)

getElement(i,j)getElement(i,j)

A

getElement(i,j)
     result = Op1.getElement(i,j)+Op2.getElement(i,j)
     return result

Figure 175    Computing A+B+C using expression objects

addition expression

Op1 Op2

addition expression

Op1 Op2

B C

getElement(i,j)

getElement(i,j)getElement(i,j)

getElement(i,j)getElement(i,j)

A

left = right
     for i=0...m
         for j=0...n
             left.setElement(i,j, right.getElement(i,j))

D=

Figure 176    Computing D = A+B+C using expression objects

for i=0...m
    for j=0...n
        D.setElement(A.getElement(i,j) + B.getElement(i,j) + C.getElement(i,j))
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This is as efficient as we can get for general matrices.

The expression objects for the matrix expression (A+B)*(C+D) are shown in Figure 177. The
getElement() method of the multiplication expression accesses Op1 and Op2 through caching
wrappers. They make sure that no element of the addition expressions is computed more than
once.

The sample code for the getElement() method and the assignment operation did not assume
any special shape of the argument matrices. However, if the arguments have some special
shape, we can usually select a faster implementation for getElement() and the assignment.

For example, if the left operand of a matrix multiplication expression has diagonal shape, we can
use the following implementation of getElement():

Please note that this code is much simpler than the one in Figure 177. First, we do not need a
loop. Second, we do not even need the caching wrappers since no element of the operands is
accessed more than once.

Similarly, if the resulting shape of an expression is smaller than rectangular (e.g. triangular or
diagonal), we only need to iterate over the nonzero region of the expression when assigning it
to another matrix. In general, we can implement the assignment by initializing the target matrix
and iterating over the nonzero part of the expression and assigning the computed elements to
the corresponding elements of the matrix.

Thus, the job of the generator for the Matrix Expression DSL will be to select the appropriate
code for the assignments and the calls to getElement() based on the computed type of the
argument expressions. The operations themselves will be glued statically by inlining.

Next we will specify the available variant implementation of assignment and getElement() and
when to select which. Finally, in Section 10.2.7, we specify how to compute the result type of a
matrix expressions.

10.2.6.3 Assignment
The available assignment variants are listed in Table 75. A variant is selected based on the
shape and the density of the source matrix in an assignment (see Table 76).

multiplication expr.

addition expression

getElement(i,j)
     for k=0...p-1
         result = Cache1[Op1].getElement(i,k)*Cache2[Op2]. getElement(k,j)
     return resultOp1 Op2

Op1 Op2

addition expression

Op1 Op2

C D

getElement(i,j)

getElement(k,j)getElement(i,k)

getElement(i,k) getElement(k,j)

getElement(k,j)

A B

getElement(i,k)

getElement(i,j)
     result = Op1.getElement(i,j)+Op2.getElement(i,j)
     return result

Figure 177    Computing (A+B)*(C+D) using expression objects

getElement(i,j)
    result = Op1.getElement(i,i) * Op2.getElement(i,j)
    return result
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10.2.6.4  getElement()
The implementation of getElement() depends on the shape of the arguments. The selection
table for matrix addition is shown in Table 77 and for matrix multiplication in Table 78.

Assignment
Component

Explanation

ZeroAssignment Implements the assignment of a zero matrix by calling
initElements on the target matrix.

DiagAssignment Implements the assignment of a diagonal matrix (see
Section 10.2.6.2).

RectAssignment Implements the assignment of a rectangular matrix (see
Section 10.2.6.2).

BandAssignment Implements the assignment of a band matrix.

SparseAssignment Implements the assignment of a sparse matrix. The
algorithm uses iterators to iterate through the nonzero
elements of the sparse source matrix.

Table 75    Available assignment algorithms

Shape Density Assignment
zero * ZeroAssignment

ident
scalar
diag

* DiagAssignment

rect dense RectAssignment

* sparse SparseAssignment

* * BandAssignment

Table 76    Selecting the assignment algorithm

Shape1 Shape2 GetElement
zero zero ZeroGetElement

ident zero IdentGetElement

zero ident IdentGetElement

zero * GetRightElement

* zero GetLeftElement

scalar
ident

scalar
ident

ScalarAddGetElement

rect rect RectGetAddElement

* * BandAddGetElement

Table 77    Selecting the implementation of getElement() for matrix
addition
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10.2.7 Computing Result Types of Operations
In order to be able to declare variables for the intermediate results (or for the caches) and also
select the optimal implementations of getElement() and assignment during the code generation
for matrix expressions, we have to be able to compute the result type of the operations based on
the operation argument types. Since a flat configuration represents an abstract and complete
description of a matrix type (see Section 10.2.3.5), we do the result type computation at the level
of flat configurations. All we have to do is to retrieve the flat configurations from the
configuration repositories of the argument matrix types and give them to a metafunction which
will compute the resulting flat configuration. Next, the resulting flat configuration can be given
to the matrix generator in order to generate the resulting matrix type.

The goal of this section is to specify how to compute the resulting flat configuration from the
flat configurations of the arguments for different operations. We only need to specify the
mapping for addition and multiplication since addition and subtraction use the almost same
mapping.153

The computation of the mathematical properties of the resulting matrix can be based on the
mathematical theory of matrices. For example, the shape of a matrix resulting from the
multiplication or the addition of two lower-triangular matrices is also lower triangular. On the
other hand, the result of combining properties such as error checking, optimization flag, etc., is
not that obvious. Our current strategy for the latter kind of properties is to return the same
property if the argument properties are equal or return unspecified otherwise (see Table 83). If
we give a flat configuration with some unspecified features to the matrix generator, it will
assume the feature defaults described in Sections 10.2.3.3 and 10.2.3.4. For example, if OptFlag
of both argument matrices is speed, OptFlag of the resulting matrix will also be speed. If, on
the other hand, one of them is speed and the other one space, then we assume the resulting
OptFlag to be unspecified_DSL_feature. According to Table 42, the generator will use space
for the resulting OptFlag.

It is worth noting that the result type computation specifies static, domain-specific type
inference. This is so since the computation operates on static descriptions of properties of the
matrices. Indeed, this inference and the flat configurations define a domain-specific type system
for matrices.

Now, we specify the result computation for each of the flat configuration DSL parameters for
addition and multiplication. Please note that the following dependency tables give one possible
solution and other solutions could be equally good or better. We certainly do not use all
possible mathematical dependencies between the features and the choices for the more arbitrary

Shape1 Shape2 GetElement
zero * ZeroGetElement

* zero ZeroGetElement

ident ident IdentGetElement

ident * GetRightElement

* ident GetLeftElement

scalar
diag

scalar
diag

DiagMultiplyGetElement

scalar
diag

* DiagXMultiplyGetElement

* scalar
diag

XDiagMultiplyGetElement

rect rect RectMultiplyGetElement

* * BandMultiplyGetElement

Table 78    Selecting the implementation of getElement() for matrix
addition
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features might be disputable. Nevertheless, these functions appear to be usable and, most
importantly, they can be extended and improved any time later.

10.2.7.1 Element Type and Index Type
ElementType and IndexType are numeric types. Thus, the resulting type has to be the larger
one. In C++, we achieve this with a type promotion metafunction which returns the type with a
larger exponent or, in case the exponents are equal, the one with larger precision. The code is
shown in Figure 178. The C++ code uses the standard C++ traits template numeric_limits<>,
which describes the properties of built-in types.

10.2.7.2 Shape

#include <limits>
using namespace std;

template<class A, class B>
struct PROMOTE_NUMERIC_TYPE
{
    typedef IF<
        numeric_limits<A>::max_exponent10 < numeric_limits<B>::max_exponent10
        ||
        (numeric_limits<A>::max_exponent10==numeric_limits<B>::max_exponent10
            &&
         numeric_limits<A>::digits < numeric_limits<B>::digits),

        B,
        A>::RET RET;
};

Figure 178    C++ meatafunction for promoting nummeric types

Shape1 Shape2 Shape Result
zero * zero

* zero zero

ident
scalar

(shape2) =(shape2)

(shape1) ident
scalar

=(shape1)

diag symm rect

symm diag rect

diag (shape2) =(shape2)

(shape1) diag =(shape1)

bandDiag bandDiag bandDiag

lowerBandTriang lowerBandTriang lowerBandTriang

upperBandTriang upperBandTriang upperBandTriang

lowerTriang
lowerBandTriang

lowerTriang
lowerBandTriang

lowerTriang

upperTriang
upperBandTriang

upperTriang
upperBandTriang

upperTriang

* * rect

Table 79   Resulting Shape for multiplication [Neu98]
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10.2.7.3 Format

10.2.7.4 Density

10.2.7.5 Malloc, OptFlag, BoundsChecking, CompatChecking,
MallocErrChecking, DictFormat, and ArrOrder

Shape1 Shape2 Shape Result
ident ident scalar

zero
ident
scalar
diag

(shape2) =(shape2)

(shape1) zero
ident
scalar
diag

=(shape1)

symm symm symm

bandDiag bandDiag bandDiag

lowerBandTriang lowerBandTriang lowerBandTriang

upperBandTriang upperBandTriang upperBandTriang

lowerTriang
lowerBandTriang

lowerTriang
lowerBandTriang

lowerTriang

upperTriang
upperBandTriang

upperTriang
upperBandTriang

upperTriang

* * rect

Table 80    Resulting Shape for addition [Neu98]

Shape
Result

Format1 Format2 Format Result

rect vect vect unspecified_DSL_feature

rect DIA DIA unspecified_DSL_feature

rect SKY SKY unspecified_DSL_feature

* (value) (value) =(value)

* * * unspecified_DSL_feature

Table 81    Resulting Format (addition and multiplication)

Density1 Density2 Density Result
sparse sparse sparse

* * dense

Table 82    Resulting Density (addition and multiplication)
[Neu98]
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10.2.7.6 Size and HashWidth

10.2.7.7 Rows and RowsNumber (Multiplication)

10.2.7.8 Cols and ColsNumber (Multiplication)

10.2.7.9 Order and OrderNumber (Multiplication)

10.2.7.10 Diags and DiagsNumber (Multiplication)

Feature1 Feature2 Result
(value) (value) =(value)

* * unspecified_DSL_feature

Table 83    General formula for computing results of non-mathematical
properties (addition and multiplication) [Neu98]

Size1 Size2 Size Result
(value1) (value2) =Max((value1),(value2))

Table 84    Resulting Size (addition and multiplication) [Neu98]

HashWidth1 HashWidth2 HashWidth Result
(value1) (value2) =Max((value1),(value2))

Table 85    Resulting HashWidth  (addition and multiplication) [Neu98]

Rows1 Order1 Rows Result RowsNumber Result
stat_val * stat_val =RowsNumber1

* stat_val stat_val =OrderNumber1

* * dyn_val unspecified_DSL_feature

Table 86    Resulting RowsNumber (multiplication) [Neu98]

Cols2 Order2 Cols Result ColsNumber Result
stat_val * stat_val =ColsNumber2

* stat_val stat_val =OrderNumber2

* * dyn_val unspecified_DSL_feature

Table 87    Resulting ColsNumber (multiplication) [Neu98]

Order1 Order2 Order Result OrderNumber Result
stat_val stat_val stat_val =OrderNumber1

* * dyn_val unspecified_DSL_feature

Table 88    Resulting OrderNumber (multiplication) [Neu98]
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10.2.7.11 ScalarValue (Multiplication)

10.2.7.12 Ratio and Growing (Multiplication)
We do not compute the result of Ratio and Growing but rather set them to
unspecified_DSL_feature. This will cause the matrix generator to assume the default values for
both parameters.

10.2.7.13 Rows, RowsNumber, Cols, and ColsNumber (Addition)

10.2.7.14 Order and OrderNumber (Addition)

Diags1 Diags2 Diags Result
stat_val stat_val stat_val

* * dyn_val

Table 89    Resulting Diags (multiplication) [Neu98]

Shape Diags Result DiagsNumber Result
lowerBandTriang
upperBandTriang
bandDiag

stat_val =DiagsNumber1 +
DiagsNumber2 - 1

* * unspecified_DSL_feature

Table 90    Resulting DiagsNumber (multiplication) [Neu98]

ScalarValue1 ScalarValue2 ScalarValue
Result

ScalarValueNumber
Result

stat_val stat_val stat_val =ScalarValueNumber1 *
ScalarValueNumber2

* * dyn_val unspecified_DSL_feature

Table 91    Resulting ScalarValue (multiplication) [Neu98]

Rows1 Rows2 Rows Result RowsNumber Result
stat_val * stat_val =RowsNumber1

* stat_val stat_val =RowsNumber2

* * dyn_val unspecified_DSL_feature

Table 92    Resulting RowsNumber (addition) [Neu98]

Cols1 Cols2 Cols Result ColsNumber Result
stat_val * stat_val =ColsNumber1

* stat_val stat_val =ColsNumber2

* * dyn_val unspecified_DSL_feature

Table 93    Resulting ColsNumber (addition) [Neu98]
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Additionally, we have to treat the following case as an exception:

Shape == rect and Order == stat_val

In this case, the values for Rows, Cols, RowsNumber, and ColsNumber computed based on
other tables have to be overridden as follows:

Rows= stat_val
Cols= stat_val
RowsNumber= OrderNumber
ColsNumber= OrderNumber

10.2.7.15 Diags and DiagsNumber (Addition)

10.2.7.16 ScalarValue (Addition)

10.2.7.17 Ratio and Growing (Addition)

Order1 Order2 Order Result OrderNumber Result
stat_val * stat_val =OrderNumber1

* stat_val stat_val =OrderNumber2

* * dyn_val unspecified_DSL_feature

Table 94    Resulting OrderNumber (addition) [Neu98]

Diags1 Diags2 Diags Result
stat_val stat_val stat_val

* * dyn_val

Table 95    Resulting Diags (addition) [Neu98]

Shape Diags DiagsNumber Result
lowerBandTriang
upperBandTriang
bandDiag

stat_val =Max(DiagsNumber1,
DiagsNumber2)

* * unspecified_DSL_feature

Table 96    Resulting DiagsNumber (addition) [Neu98]

ScalarValue1 ScalarValue2 ScalarValue
Result

ScalarValueNumber
Result

stat_val stat_val stat_val =ScalarValueNumber1 +
ScalarValueNumber2

* * dyn_val unspecified_DSL_feature

Table 97    Resulting ScalarValue (addition) [Neu98]

Ratio1 Ratio2 Ratio Result
(value1) (value2) =ArithmeticAverage((value1),(value2))

Table 98    Resulting Ratio (addition)
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10.3 Domain Implementation
This section covers the implementation of the matrix component specified in the domain
implementation section (i.e. Section 10.2). First, we discuss how to implement the component in
C++. For demonstration purpose, we will show the implementation of a very small matrix
component, which nonetheless, allows us to explain most of the relevant implementation
techniques. The full C++ implementation of the matrix component is described in Section
10.3.1.8.

In Section 10.3.2, we summarize the experience we made during the implementation of a subset
of the matrix component in the Intentional Programming System.

10.3.1 C++ Implementation

10.3.1.1 Architecture Overview
The architecture of the C++ implementation of the matrix component is shown in Figure 179. The
pipeline on the left compiles matrix configuration expressions, e.g.

matrix<double, structure<rect<dyn_val<>, dyn_val<>, CSR<> >, sparse<> > >

whereas the pipeline on the right compiles matrix expressions, e.g.

M5 = M1+M2*(M3-M4);

The compilation of a matrix configuration expression involves parsing, computing defaults for
the unspecified features, assembling the GenVoca-like components according to the feature
values, and storing the feature values in the configuration repository, which becomes part of
the produced matrix type. Features are encoded as types (numbers are encoded using
enumeration types). We group them by putting them into a class (or struct) as its member types.
This is exactly how the configuration repository is implemented.

A matrix expression is parsed using expression templates [Vel95]. We will explain this idea in
Section 10.3.1.7.1. The parsing result is a tree of expression objects (or rather the type of the tree
to be instantiated at runtime) much in the style shown in Figure 175 and Figure 177. We also
need to compute the matrix type of the expression and of all its subexpressions, so that the code
generation templates can select the appropriate implementations for the assignment and the
getElement() methods (see Section 10.2.6.2) and ask the component assembler to generate the
matrix types for the intermediate results (or matrix caches; see Section 10.2.6.1) if any needed.154

Any part of the architecture requiring compile-time execution (e.g. computing feature defaults,
assembling components, computing result types) is implemented as template metafunctions (we
discussed template metafunctions in Chapter 8).

Growing1 Growing2 Growing Result
(value1) (value2) =ArithmeticAverage((value1),(value2))

Table 99    Resulting Growing (addition)
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The whole matrix component is implemented as a C++ template library. The compilation of a
client program including this library is done entirely by a C++ compiler (i.e. we neither use
preprocessors nor any generation tools). This is possible since template metaprograms are
interpreted by the compiler at compile time. Figure 180 illustrates the compilation of some demo
client code using the matrix library.
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Figure 179    Architecture of the C++ implementation of the matrix component
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The following sections describe the C++ implementation techniques used to implement the
generator. We demonstrate theses techniques using a smaller matrix component, which we
describe as next.

10.3.1.2 Overview of the Demo Implementation
The C++ implementation of the demo matrix component consists of a number of C++ modules
listed in Table 100. The modules are grouped into five categories. The following sections cover
the implementation of each module in the order they are listed in the table. Each section
contains the full module source code. The beginning of a new module is marked by a gray side

demo.cpp

#include "../Matrix/GenerativeMatrix.h"
#include <iostream>

//define a general rectangular matrix with element type double.
typedef MATRIX_GENERATOR<

matrix<double,
structure< rect<>
>

>
>::RET RectMatrixType;

//define a scalar matrix with 3 rows and 3 columns
//scalar value is 3.4
typedef MATRIX_GENERATOR<

matrix<double,
structure< scalar<stat_val<int_number<int, 3> >,

stat_val<float_number<double, 3400> >
>

>
>

>::RET ScalarMatrixType;

void main()
{
//declare some matrices
RectMatrixType RectMatrix1(3, 3), RectMatrix2(3, 3);
ScalarMatrixType ScalarMatrix;

//initialization of a dense matrix
RectMatrix1=

1, 2, 3,
4, 5, 6,
7, 8, 9;

//multiplication of two matrices
RectMatrix2= ScalarMatrix * RectMatrix1;
//print the results
cout << "RectMatrix2 = " << endl << RectMatrix2 << endl;
}

Matrix Library

BoundsChecker.h
CommaInitializer.h
CompatChecker.h

Containers.h
Diags.h

Dictionaries.h
DSL to ICCL.h

DSL.h
DSLAssignDefaults.h

DSLParser.h
EQUAL.H

EvalDependencyTable.h
Ext.h

Formats.h
GenerativeMatrix.h

HashFunctions.h
ICCL.h
IF.h

MatrixAssignment.h
MatrixGenerator.h

MatrixLazyOperations.h
MatrixTypePromotion.h

MaxMin.h
MemoryAllocErrorNotifier.h

Promote.h
ScalarValue.h
SWITCH.h

TopWrapper.h

C++ Compiler

demo.exe

Figure 180    Compilation scenario of a matrix demo program



Case Study: Generative Matrix Computation Library (GMCL) 371

box indicating its name. The source code itself is marked by a vertical ruler to its left. This helps
to distinguish it from explanations and code examples (the latter do not have the vertical ruler).

10.3.1.3 Matrix Configuration DSL
The matrix configuration DSL that we are going to implement is shown in Figure 181 as a feature
diagram. This is an extremely simplified version of the full matrix configuration DSL described in
Section 10.2. The DSL allows us to specify matrix element type, matrix shape, storage format,
whether to optimize for speed or space, whether to do bounds checking or not, and index type.

Category Contents Modules Contents Section
Matrix
Configuration
DSL

specification and
implementation of
the Matrix
Configuration
DSL

DSL.h 10.3.1.3

ICCL.h specification of the matrix
ICCL

10.3.1.4

Containers.h basic containers 10.3.1.4.1
Formats.h formats 10.3.1.4.2
BoundsChecker.h bounds checker 10.3.1.4.3
TopWrapper.h matrix top wrapper 10.3.1.4.4

Matrix ICCL specification and
implementation of
the matrix
implementation
components

CommaInitializer.h comma initializer
MatrixGenerator.h matrix configuration

generator
10.3.1.5

DSLParser.h parse matrix configuration
DSL

10.3.1.5.1

DSLAssignDefaults.h assign defaults to
unspecified DSL features

10.3.1.5.2

Matrix
Configuration
Generator

implementation of
the matrix
configuration
generator

AssembleComponents.
h

assemble implementation
components

10.3.1.5.3

MatrixOperTemplates.h operator templates for the
matrix operations

10.3.1.7.1

MatrixExprTemplates.h matrix operation
expression class templates

10.3.1.7.2

MatrixCache.h matrix cache used for
matrix multiplication

10.3.1.7.3

GetElement.h different implementations
of getElement() method for
addition and multiplication
expressions of different
shapes

10.3.1.7.4

ComputeResultType.h compute the matrix result
type of matrix operations

10.3.1.7.5

Matrix
Operations

implementation of
the matrix
operations
(Matrix
Expression DSL)

Assignment.h different implementations
of assignment for different
matrix shapes

10.3.1.7.6

GenerativeMatrix.h general include file
Promote.h promoting numeric types 10.2.7.1
IF.h meta if 8.2
SWITCH.h meta switch 8.13

Auxiliary

equal.h auxiliary metafunction to
be used with meta if

Table 100    Overview of the C++ implementation of the demo matrix component
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The grammar specification of the configuration DSL is given in Figure 182.

We implement the DSL using nested class templates in the module DSL.h.

First thing to do is to copy the grammar definition in Figure 182 and paste it in DSL.h as  a
comment. Next, under each grammar production, we directly type in the corresponding template
declarations:

namespace MatrixDSL {

//Matrix:matrix[ElementType, Shape, Format, OptFlag, BoundsChecking, IndexType ]
template<

class ElementType, class Shape, class Format, class OptFlag, class BoundsChecking, class IndexType
>struct matrix;

//ElementType : float | double | long double | short | int | long | unsigned short |
// unsigned int | unsigned long
//built-in types – nothing to declare

//Shape: rect | upperTriang | lowerTriang | symm
template<class dummy>struct rect;
template<class dummy>struct lower_triang;
template<class dummy>struct upper_riang;
template<class dummy>struct symm;

Alternatively, we could have implemented the various shape values simply as structs rather
than struct templates. However, by implementing them as templates we keep the DSL more
extendible. This is so since we could add subfeatures to the values without having to change

float double

ElementType

array vector

Format

cLike fortranLike

ArrayOrder

speed space

OptFlag

rect

lower
Triang

upper
Triang

symm

checkBounds

noBoundsChecking

Shape BoundsChecking

int long

Matrix

IndexType

Figure 181    Configuration DSL of the demo matrix component (Please note that not all possible
element and index types are shown; cf. Figure 182)

Matrix: matrix[ElementType, Shape, Format, OptFlag, BoundsChecking, IndexType]
ElementType: float | double | long double | int | long | ...
Shape: rect | lowerTriang | upperTriang | symm
Format: array[ArrayOrder] | vector
ArrayOrder: cLike | fortranLike
OptFlag: speed | space
BoundsChecking: checkBounds | noBoundsChecking
IndexType: char | short | int | long | unsigned int | ...

Figure 182    Grammar specification of the demo matrix configuration DSL

Module: DSL.h
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existing client code. All we have to do is to make sure that each template parameter has a
default. In this case, if a client writes

rect<>

we really do not know how many parameters the rect template has.

We continue with the remaining grammar productions in a similar fashion:

//Format: array[ArrayOrder] | vector
template<class ArrOrder>struct array;
template<class dummy>struct vector;

//ArrOrder: cLike | fortranLike
template<class dummy>struct c_like;
template<class dummy>struct fortran_like;

//OptFlag : speed | space
template<class dummy>struct speed;
template<class dummy>struct space;

//BoundsChecking : checkBounds | noBoundsChecking
template<class dummy>struct check_bounds;
template<class dummy>struct no_bounds_checking;

//IndexType : char | short | int | long | unsigned char | unsigned short |
// unsigned int | unsigned long | signed char

//type denoting "value unspecified"
struct unspecified_DSL_feature;

The last struct is used as a feature value denoting “value unspecified”. We can use this feature
in matrix configuration expressions if we do not want to specify some feature in the middle of a
parameter list, e.g.

matrix<float,lower_triang,unspecified_DSL_feature,speed>

As you have probably already anticipated, we do not have to specify the last two parameters
(i.e. bounds checking and index type) since the matrix template defines appropriate defaults.

Now, let us take a look at the implementation of the DSL features. We start with the
implementation of unspecified_DSL_feature that we have just mentioned above. As stated, it is
used to denote “value unspecified”. However, this is not its only purpose. We also use it as the
superclass for all other DSL feature values. This has the following reason:
unspecified_DSL_feature defines identification numbers for all DSL features. Identification
numbers, or IDs, are used to test types for equality. This is necessary since there is no other
means in C++ to do it.

First, we define unspecified_DSL_feature:

struct unspecified_DSL_feature
{

enum {
unspecified_DSL_feature_id = -1,

// IDs of Shape values
rect_id,
lower_triang_id,
upper_triang_id,
symm_id,

//IDs of Format values
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array_id,
vector_id,

//IDs of ArrOrder values
c_like_id,
fortran_like_id,

//IDs of OptFlag values
speed_id,
space_id,

//IDs of BoundsChecking values
check_bounds_id,
no_bounds_checking_id,

//my own ID
id=unspecified_DSL_feature_id };

};

Here is the implementation of the first DSL production:

//Matrix:matrix[ElementType, Shape, Format, OptFlag, BoundsChecking, IndexType ]
template<

class ElementType = unspecified_DSL_feature,
class Shape = unspecified_DSL_feature,
class Format = unspecified_DSL_feature,
class OptFlag = unspecified_DSL_feature,
class BoundsChecking = unspecified_DSL_feature,
class IndexType = unspecified_DSL_feature >

struct matrix
{

typedef ElementType elementType;
typedef Shape shape;
typedef Format format;
typedef OptFlag optFlag;
typedef BoundsChecking boundsChecking;
typedef IndexType indexType;

};

Please note that we use unspecified_DSL_feature as the default value for each parameter. Of
course, we will assign some more useful default values later in the generator. The reason for not
assigning the defaults here is that we want to assign all defaults (i.e. both direct and computed)
in one place, which will be the matrix generator.

The next thing to point out is that matrix<> defines each parameter type as its member type. We
say that it publishes its parameters. This is so since now we can access its parameters as
follows:

matrix<Foo1,Foo2>::shape //this is equivalent to Foo2

The final detail is the reason why we use a struct and not a class: all members of matrix are
public and by using a struct we do not have to write the extra access modifier public:.

The next production consists of a number of alternative values:

//Shape : rect | lowerTriang | upperTriang | symm
template<class dummy = unspecified_DSL_feature>
struct rect : unspecified_DSL_feature
{ enum { id=rect_id };
};

template<class dummy = unspecified_DSL_feature>
struct lower_triang : unspecified_DSL_feature
{ enum { id=lower_triang_id };
};

template<class dummy = unspecified_DSL_feature>
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struct upper_triang : unspecified_DSL_feature
{ enum { id=upper_triang_id };
};

template<class dummy = unspecified_DSL_feature>
struct symm : unspecified_DSL_feature
{ enum { id=symm_id };
};

Each “dummy” parameter has unspecified_DSL_feature as its default. As you remember, the
purpose of this parameter was to make values without subfeatures templates, so that new
subfeatures can be added without having to modify existing client code. Each value
“publishes” its ID using an enum declaration. The initialization values for the IDs were defined
in unspecified_DSL_feature, the superclass of all feature values. The following example
demonstrates the use of IDs:

The approach with the IDs allows us for even a finer testing than just type equality: we can test
if two types were instantiated from the same class template even if the types are not equal (i.e.
different parameters were used):

The remaining DSL features are specified in a similar way:

//Format : array[ArrOrder] | vector
template<class ArrOrder= unspecified_DSL_feature>
struct array : unspecified_DSL_feature
{ enum {id= array_id};

typedef ArrOrder arr_order;
};

template<class dummy= unspecified_DSL_feature>
struct vector : unspecified_DSL_feature
{ enum {id= vector_id};
};

//ArrOrder: cLike | fortranLike
template<class dummy = unspecified_DSL_feature>
struct c_like : unspecified_DSL_feature
{ enum { id= c_like_id };
};

template<class dummy= unspecified_DSL_feature>
struct fortran_like : unspecified_DSL_feature
{ enum {id= fortran_like_id};
};

//OptFlag : speed | space
template<class dummy = unspecified_DSL_feature>
struct speed : unspecified_DSL_feature
{ enum { id=speed_id };
};

template<class dummy = unspecified_DSL_feature>
struct space : unspecified_DSL_feature
{ enum { id=space_id };

typedef rect<> Shape1;
typedef upper_triang<> Shape2;
typedef upper_triang<> Shape3;

cout << (Shape1::id == Shape2::id); //prints: 0
cout << (Shape2::id == Shape3::id); //prints: 1

typedef array<c_like<> > Format1; //array<> and c_like are defined below
typedef array<fortran_like<> > Format2; //fortran_like<> is defined below

cout << (Format1::id == Format2::id); //prints: 1
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};

//BoundsChecking : checkBounds | noBoundsChecking
template<class dummy = unspecified_DSL_feature>
struct check_bounds : unspecified_DSL_feature
{ enum { id=check_bounds_id };
};

template<class dummy = unspecified_DSL_feature>
struct no_bounds_checking : unspecified_DSL_feature
{ enum { id=no_bounds_checking_id };
};

} //namespace MatrixDSL

This concludes the implementation of the matrix configuration DSL.

10.3.1.4 Matrix Implementation Components and the ICCL155

Figure 183 shows the GenVoca-like component architecture implementing the functionality
scope specified in the previous section. The box at the bottom is the configuration repository
(Config), which contains all the DSL features of a configuration and some extra types to be
accessed by other components. The basic containers layer provides the containers for storing
matrix elements: Dyn1DContainer (one-dimensional), Dyn2DCContainer (two-dimensional, row-wise
storage) and Dyn2DFContainer (two-dimensional, column-wise storage). All containers allocate
memory dynamically. On the top of the containers, we have three alternative format
components: ArrFormat (used to store rectangular and triangular matrices), LoTriangVecFormat
(used for lower triangular matrices), and UpTriangVecFormat (used for upper triangular
matrices).156 Symm is an optional wrapper for implementing the symmetry property of a matrix.
BoundsChecker is another optional wrapper. It implements bounds checking. Finally, Matrix is the
top-level wrapper of all matrices.

The configurability of the matrix implementation components is specified by the ICCL grammar
in Figure 184.

Top Layer Matrix

Symmetry
Layer

Symm

Bounds Checking
Layer

Formats Layer

Basic Containers Layer

Config

BoundsChecker

Dyn1DContainer

MatrixType, CommaInitializer, ElementType,
IndexType, DSLFeatures (i.e. all the DSL features

of a configuration)

Dyn2DCContainer Dyn2DFContainer

ArrFormat
LoTriangVecFormat
UpTriangVecFormat

Figure 183    Layers of the matrix implementation components
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Each of the matrix implementation components will be implemented by a class template. But
before we show the implementation of the components, we first need a file declaring all of the
components. You can think of this file as the ICCL specification.

We start as in the case of the DSL specification by copying the ICCL grammar from Figure 184
into ICCL.h as a comment. We type in the component declarations under the corresponding
ICCL production:

namespace MatrixICCL {

//Matrix : Matrix [OptBoundsCheckedMatrix]
template<class OptBoundsCheckedMatrix>class Matrix;

//OptBoundsCheckedMatrix: OptSymmetricMatrix | BoundsChecker[OptSymmetricMatrix]
template<class OptSymmetricMatrix>class BoundsChecker;

//OptSymmetricMatrix: MatrixContainer | Symm[MatrixContainer]
template<class MatrixContainer>class Symm;

//Format: ArrFormat[Array] | LoTriangVecFormat[Vector] | UpTriangVecFormat[Vector]
template< class Array>class ArrFormat;
template< class Vector>class LoTriangVecFormat;
template< class Vector>class UpTriangVecFormat;

//Array: Dyn2DCContainer[Config] | Dyn2DFContainer[Config]
template<class Generator>class Dyn2DCContainer;
template<class Generator>class Dyn2DFContainer;

At this point, we need to explain one implementation detail. As you know, Config is the
configuration repository which is always passed to the components in the bottom layer of a
GenVoca architecture. But the two last template declarations take Generator as their parameter
instead. This is not a problem, however, since Config is a member type of Generator. This detail
has to do with some C++ compiler problems (specifically VC++5.0) which are not relevant here.
Here are the remaining declarations:

//Vector: Dyn1DContainer[Config]
template<class Generator> class Dyn1DContainer;

//CommaInitializer: DenseCCommaInitializer | DenseFCommaInitializer
template<class MatrixType>class DenseCCommaInitializer;
template<class MatrixType>class DenseFCommaInitializer;

} //namespace MatrixICCL

We use CommaInitializer to provide matrix initialization by comma-separated lists of numbers.

Now we give you the implementation of the components. Each component group is treated in a
separate section.

In case that you wonder where the Config is: Config is defined as a member class of the matrix
component assembler discussed in Section 10.3.1.5.3.

MatrixType: Matrix[OptBoundsCheckedMatrix]
OptBoundsCheckedMatrix: OptSymmetricMatrix | BoundsChecker[OptSymmetricMatrix]
OptSymmetricMatrix: Format | Symm[Format]
Format: ArrFormat[Array] | LoTriangVecFormat[Vector] |

UpTriangVecFormat[Vector]
Array: Dyn2DCContainer[Config] | Dyn2DFContainer[Config]
Vector: Dyn1DContainer[Config]
Config: Config contains: MatrixType, CommaInitializer, ElementType, IndexType, and

DSLFeatures (i.e. all the DSL parameters of a configuration)

Figure 184    ICCL grammar for the demo matrix package

Module: ICCL.h
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10.3.1.4.1 Basic Containers

As shown in Figure 183, we need to implement three containers: Dyn1DContainer,
Dyn2DCContainer, and Dyn2DFContainer. We start with Dyn1DContainer (in Containers.h):

namespace MatrixICCL{

template<class Generator>
class Dyn1DContainer
{ public:

typedef Generator::Config Config;
typedef Config::ElementType ElementType;
typedef Config::IndexType IndexType;

As already stated, Generator is expected to provide Config as its member type. Config, in turn,
provides element type and index type. All matrix components can access these types in this
fashion. Dyn1DContainer allocates the memory for storing its elements from the heap. The size is
specified in the constructor:

protected:
IndexType size_;
ElementType * pContainer;

public:
Dyn1DContainer(const IndexType& l)

: size_(l)
{ assert(size()>0);

pContainer = new ElementType [size()];
assert( pContainer != NULL );

}

~Dyn1DContainer() {delete [] pContainer;}

void setElement(const IndexType& i, const ElementType& v)
{ checkBounds( i );

pContainer[ i ] = v;
}

const ElementType & getElement(const IndexType& i) const
{ checkBounds( i );

return pContainer[ i ];
}

const IndexType& size() const {return size_;}

void initElements(const ElementType& v)
{ for( IndexType i = size(); i--; )

setElement( i, v );
}

protected:
void checkBounds(const IndexType& i) const
{ assert(i>=0 && i<size());
}

};

Dyn2DCContainer is a two dimensional container storing its elements row-wise:

template<class Generator>
class Dyn2DCContainer
{

public:
typedef Generator::Config Config;
typedef Config::ElementType ElementType;
typedef Config::IndexType IndexType;

Module:
Containers.h
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protected:
IndexType r_, c_;
ElementType* elements_;
ElementType** rows_;

public:
Dyn2DCContainer(const IndexType& r, const IndexType& c)

: r_(r), c_(c)
{

assert(r_>0);
assert(c_>0);

elements_ = new ElementType[r*c];
rows_ = new ElementType*[r];
assert(elements_ != NULL);
assert(rows_ != NULL);

ElementType* p= elements_;
for (IndexType i= 0; i<r; i++, p+= c) rows_[i]= p;

}

~Dyn2DCContainer()
{ delete [] elements_;

delete [] rows_;
}

void setElement(const IndexType& i, const IndexType& j, const ElementType& v)
{ checkBounds(i, j);

rows_[i][j] = v;
}

const ElementType& getElement(const IndexType& i, const IndexType& j) const
{ checkBounds(i, j);

return rows_[i][j];
}

const IndexType& rows() const { return r_; }
const IndexType& cols() const { return c_; }

void initElements(const ElementType& v)
{ for(IndexType i = rows(); i--;)

for(IndexType j = cols(); j--;)
setElement(i, j, v);

}

protected:
void checkBounds(const IndexType& i, const IndexType& j) const
{ assert(i>=0 && i<rows());

assert(j>=0 && j<cols());
}

};

Dyn2DFContainer is a two dimensional container storing its elements column-wise. We can easily
derive its implementation from Dyn2DCContainer by inheritance. All we have to do is to override
setElement() and getElement() to swap the argument indices and also override rows() and cols() to
call the base cols() and rows(), respectively:

template<class Generator>
class Dyn2DFContainer : public Dyn2DCContainer<Generator>
{

private:
typedef Dyn2DCContainer<Generator> BaseClass;

public:
Dyn2DFContainer(const IndexType& r, const IndexType& c)

: BaseClass(c, r)
{}
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void setElement(const IndexType& i, const IndexType& j, const ElementType& v)
{BaseClass::setElement(j, i, v);}

const ElementType & getElement(const IndexType& i, const IndexType& j) const
{return BaseClass::getElement(j, i);}

const IndexType& rows() const {return BaseClass::cols();}
const IndexType& cols() const {return BaseClass::rows();}

};

} //namespace MatrixICCL

10.3.1.4.2 Formats

For our demo matrix, we implement three formats: ArrFormat, LoTriangVecFormat, and
UpTriangVecFormat. ArrFormat stores matrix elements directly in a two-dimensional container. This
format is appropriate for storing rectangular and triangular matrices. In the latter case, only half
of the allocated container memory is used. On the other hand, accessing the elements of a
triangular matrix stored in ArrFormat does not involve any explicit index arithmetic. In case you
prefer a more space-saving variant, you can use LoTriangVecFormat for lower triangular matrices
and UpTriangVecFormat for upper triangular matrices. Each of the latter formats uses a one-
dimensional container to store its elements. The elements of a symmetric matrix are stored the
same way as the elements of a lower triangular matrix. The only difference is that, for a
symmetric matrix, we wrap the format in Symm, which maps any access to the elements above
the main diagonal to the elements of the lower half of the underlying format.

We start with ArrFormat. Since ArrFormat stores matrix elements in a two-dimensional container
directly, there is hardly any difference between storing the elements of rectangular and
triangular matrices. The only detail we have to do differently for triangular matrices is to directly
return zero for their zero halves rather than accessing the corresponding container elements.
We will encapsulate this detail in the function nonZeroRegion(), which takes the indices i and j
and returns true if they address an element within the nonzero region of a matrix and false
otherwise. We will have three different implementations of this function: one for rectangular
matrices, one for lower triangular matrices, and one for upper triangular matrices. The
implementation to be used in a given configuration of matrix components will be selected at
compile time according to the value of the shape feature stored in Config. We will implement
each variant of the function as a static function of a separate struct and use a metafunction to
select the appropriate struct based on the current shape. Here is the implementation of
nonZeroRegion for rectangular matrices (in Formats.h):

namespace MatrixICCL{

struct RectNonZeroRegion
{ template<class M>

static bool nonZeroRegion(const M* m, const M::Config::IndexType& i, const M::Config::IndexType& j)
{ return true;
}

};

nonZeroRegion() takes a number of parameters which are not relevant here: we always return true
since any of the elements of a rectangular matrix could be a nonzero element. This is different
for a lower triangular matrix:

struct LowerTriangNonZeroRegion
{ template<class M>

static bool nonZeroRegion(const M* m, const M::Config::IndexType& i, const M::Config::IndexType& j)
{ return i>=j;
}

};

The first parameter of nonZeroRegion()  is a pointer to the matrix format calling this function. We
will see the point of call later. The only purpose of this parameter is to provide type information:

Module: Formats.h
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we retrieve the index type from its Config. The nonzero region of an upper triangular matrix is just
the negation of the above:

struct UpperTriangNonZeroRegion
{ template<class M>

static bool nonZeroRegion(const M* m, const M::Config::IndexType& i, const M::Config::IndexType& j)
{ return i<=j;
}

};

The following is the metafunction selecting the appropriate implementation of nonZeroRegion()
based on the matrix shape:

template<class MatrixType>
struct FORMAT_NON_ZERO_REGION
{ typedef MatrixType::Config Config;

typedef Config::DSLFeatures DSLFeatures;
typedef DSLFeatures::Shape Shape;

typedef IF< EQUAL<Shape::id, Shape::lower_triang_id>::RET ||
EQUAL<Shape::id, Shape::symm_id>::RET,

LowerTriangNonZeroRegion,

IF<EQUAL<Shape::id, Shape::upper_triang_id>::RET,
UpperTriangNonZeroRegion,

RectNonZeroRegion>::RET>::RET RET;
};

Thus, the metafunction uses a nested meta IF to select the appropriate implementation (we
discussed metafunctions in Section 8.2). Now, we can implement ArrFormat as follows:

template<class Array>
class ArrFormat
{ public:

typedef Array::Config Config;
typedef Config::ElementType ElementType;
typedef Config::IndexType IndexType;

private:
Array elements_;

public:
ArrFormat(const IndexType& r, const IndexType& c)

: elements_(r, c)
{}

const IndexType& rows() const { return elements_.rows(); }
const IndexType& cols() const { return elements_.cols(); }

void setElement(const IndexType & i, const IndexType & j, const ElementType & v)
{ if (nonZeroRegion(i, j)) elements_.setElement(i, j, v);

else assert(v == ElementType( 0 ));
}

ElementType getElement(const IndexType & i, const IndexType & j) const
{ return nonZeroRegion(i, j) ? elements_.getElement(i, j) : ElementType(0);
}

void initElements(const ElementType & v)
{ elements_.initElements(v);
}

protected:
bool nonZeroRegion(const IndexType& i, const IndexType& j) const
{ return FORMAT_NON_ZERO_REGION<Config::MatrixType>::RET::nonZeroRegion(this,i, j);
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}
};

The last return demonstrates the call to nonZeroRegion(). The struct containing the appropriate
function implementation is returned by the metafunction FORMAT_NON_ZERO_REGION<>. Since
we declared all implementations of nonZeroRegion() as static, inline functions of the structs, the
C++ compiler should be able to inline this function to eliminate any overhead. This technique
represents the static alternative to virtual functions.

LoTriangVecFormat stores the elements of a lower triangular matrix row-wise in a vector:

template<class Vector>
class LoTriangVecFormat
{ public:

typedef Vector::Config Config;
typedef Config::ElementType ElementType;
typedef Config::IndexType IndexType;

private:
const order_; //number of rows and columns
Vector elements_;

public:
LoTriangVecFormat(const IndexType& r,const IndexType& c)

: order_(r), elements_(rows() * (rows() + 1) * 0.5)
{ assert(rows()==cols());
}

const IndexType& rows() const { return order_; }
const IndexType& cols() const { return order_; }

void setElement(const IndexType & i, const IndexType & j, const ElementType & v)
{ if (i >= j) elements_.setElement(getIndex(i, j), v);

else assert(v == ElementType( 0 ));
}

ElementType getElement(const IndexType & i, const IndexType & j) const
{ return i >= j ? elements_.getElement(getIndex(i, j))

                                   : ElementType(0);
}

void initElements(const ElementType & v)
{ elements_.initElements(v);
}

protected:
IndexType getIndex(const IndexType& i, const IndexType& j) const
{ return (i + 1) * i * 0.5 + j;
}

};

UpTriangVecFormat can be easily derived from LoTriangVecFormat. We only need to override
setElement() and getElement() in order to swap the row and column index:

template<class Vector>
class UpTriangVecFormat : public LoTriangVecFormat<Vector>
{ public:

UpTriangVecFormat(const IndexType & r,const IndexType & c)
: LoTriangVecFormat(r, c)

{}

void setElement(const IndexType & i, const IndexType & j, const ElementType & v)
{ LoTriangVecFormat::setElement(j, i, v);
}

ElementType getElement(const IndexType & i, const IndexType & j) const
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{ return LoTriangVecFormat::getElement(j, i);
}

};

Finally, we need to implement Symm. Symm takes a lower triangular format as its parameter and
turns it into a symmetric one. Symm is derived from its parameter and overrides setElement() and
getElement():

template<class Format>
class Symm : public Format
{ public:

typedef Format::Config Config;
typedef Config::ElementType ElementType;
typedef Config::IndexType IndexType;

Symm(const IndexType& rows,const IndexType& cols)
: Format(rows, cols)

{}

void setElement(const IndexType & i, const IndexType & j, const ElementType & v)
{ if( i >= j ) Format::setElement(i, j, v);

else Format::setElement(j, i, v);
}

ElementType getElement(const IndexType & i, const IndexType & j) const
{ return ( i >= j ) ?

Format::getElement(i, j) :
Format::getElement(j, i);

}
};

} //namespace MatrixICCL

10.3.1.4.3 Bounds Checking

Bounds checking is implemented by a wrapper similar to Symm discussed above. Here is the
implementation (in BoundsChecker.h):

namespace MatrixICCL{

template<class OptSymmMatrix>
class BoundsChecker : public BaseClass
{ public:

typedef BaseClass::Config Config;
typedef Config::ElementType ElementType;
typedef Config::IndexType IndexType;

BoundsChecker(const IndexType& r, const IndexType& c)
: OptSymmMatrix(r, c)

{}

void setElement(const IndexType& i, const IndexType& j, const ElementType& v)
{ checkBounds(i, j);

OptSymmMatrix::setElement(i, j, v);
}

ElementType getElement(const IndexType& i, const IndexType& j) const
{ checkBounds(i, j);

return OptSymmMatrix::getElement(i, j);
}

protected:
void checkBounds(const IndexType & i, const IndexType & j) const
{ if ( i < 0 || i >= rows() ||

j < 0 || j >= cols() )
throw "subscript(s) out of bounds";

Module:
BoundsChecker.h
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}
};

} //namespace MatrixICCL

10.3.1.4.4 Matrix Wrapper

The top-level matrix component is Matrix<>. It defines a number of useful functions for all
matrices: assignment operator for initializing a matrix using a comma-separated list of numbers,
assignment operator for assigning binary expressions, assignment operator for assigning
matrices to matrices, and a function for printing the contents of a matrix.

//declare BinaryExpression
template<class ExpressionType> class BinaryExpression;

namespace MatrixICCL{

template<class OptBoundsCheckedMatrix>
class Matrix : public OptBoundsCheckedMatrix
{ public:

typedef OptBoundsCheckedMatrix::Config Config;

typedef Config::IndexType IndexType;
typedef Config::ElementType ElementType;
typedef Config::CommaInitializer CommaInitializer;

Matrix(IndexType rows= 0, IndexType cols= 0, ElementType InitElem = ElementType(0) )
: OptBoundsCheckedMatrix(rows, cols)

{ initElements(InitElem);
}

//initialization by a comma-separated list of numbers
CommaInitializer operator=(const ElementType& v)
{ return CommaInitializer(*this, v);
}

The following assignment operator allows us to assign binary expressions to a matrix (we will
discuss the class template BinaryExpression<> later):

//assignment operator for binary expressions
template <class Expr>
Matrix& operator=(const BinaryExpression<Expr>& expr)
{ expr.assign(this);

return *this;
}

Finally, we have an assignment for assigning matrices to matrices. The implementation code
depends on the shape of the source matrix. Thus, we use a similar technique as in the case of
nonZeroRegion(): we select the appropriate implementation using a metafunction (the code for
the metafunction and for the different assignment variants is given later):

//matrix assignment
template<class A>
Matrix& operator=(const Matrix<A>& m)
{

MATRIX_ASSIGNMENT<A>::RET::assign(this, &m);
return *this;

}

//assignment operators for other kinds of expressions
//...

//print matrix to ostream
ostream& display(ostream& out) const
{ for( IndexType i = 0; i < rows(); ++i )

Module:
TopWrapper.h
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{ for( IndexType j = 0; j < cols(); ++j )
out << getElement( i, j ) << "   ";

out << endl;
}
return out;

}
};

} //namespace MatrixICCL

//output operator for printing a matrix to a stream
template <class A>
ostream& operator<<(ostream& out, const Matrix<A>& m)
{

return m.display(out);
}

10.3.1.5 Matrix Configuration Generator
The matrix configuration generator takes a matrix configuration description, e.g.
matrix<double,rect<> >, and returns a matrix type with the properties specified in the configuration
description. Given the above example configuration description, it generates the following
matrix type:

Matrix<BoundsChecker<ArrFormat<Dyn2DCContainer<MATRIX_ASSEMBLE_COMPONENTS<...> > > > >

MATRIX_ASSEMBLE_COMPONENTS<> is the Generator parameter of Dyn2DCContainer we mentioned
earlier. It has some parameters itself, but they are not relevant at this point (we indicated them
by three dots). The only thing that matters here is that it contains Config, i.e. the configuration
repository, as its member type and that Dyn2DCContainer<> can access it.

The generator performs three steps:

1. parsing the configuration description by reading out the nested DSL features;

2. assigning defaults to the unspecified DSL features;

3. assembling the matrix implementation components according to the DSL features.

These steps are shown in Figure 185. The processing steps and the corresponding
metafunctions implementing them are enclosed in ellipses and the intermediate results are
displayed in square boxes.
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Please note that the information about the matrix configuration passed between the processing
steps is encoded by the DSLFeatures struct. This class contains a member type representing
each of the DSL parameters (cf. Figure 182):

ElementType
Shape
Format
ArrayOrder
OptFlag
BoundsChecking
IndexType

This set of DSL parameters completely describes a matrix configuration. In other words,
DSLFeatures represents the type description record  of a matrix. We will use it later for selecting
operation implementation and computing type records of expressions. We often refer to the
DSLFeatures as the “flat” configuration class of a matrix.

Now we take a look at the implementation of the matrix generator. We implement it as a
metafunction which takes two parameters: the matrix configuration description and a flag
specifying what to do. The latter has the following purpose: We want to be able to pass not
only a configuration DSL expression to the generator, but also DSLFeatures with some
unspecified features and DSLFeatures with all features specified. In other words, if you take a
look at Figure 185, we want to be able to enter the generation process just before any of the
three processing steps. The reason for this is that we will sometimes already have DSLFeatures
and just need to generate the corresponding matrix type. This is the case, for example, when we
compute the type record of a matrix expression. We will see this later.

Thus, we first need to implement the flags: do_all, defaults_and_assemble, assemble_components.
They have the following meaning:

matrix configuration
expression, e.g.

matrix<double,rect<> >

parser metafunction:

MATRIX_DSL_PARSER<>

assign defaults metafunction
(assigns direct defaults to some features

and computed defaults to others):

MATRIX_DSL_ASSIGN_DEFAULTS<>

fully specified set of DSL features passed as
DSLFeatures (i.e. no feature has the value

unspecified_DSL_feature), e.g.:

struct DSLFeatures
{

typedef double ElementType;
typedef rect<> Shape;
typedef ArrFormat<c_like<> > Format;
typedef c_like<> ArrOrder;
typedef space<> OptFlag;
typedef check_bounds BoundsChecking;
typedef unsigned int IndexType;

};

DSL features from the  configuration
description; some features are unspecified;
the features are passed as DSLFeatures, e.g.:

struct DSLFeatures
{

typedef double ElementType;
typedef rect<> Shape;
typedef unspecified_DSL_feature Format;
typedef unspecified_DSL_feature ArrOrder;
typedef unspecified_DSL_feature OptFlag;
typedef unspecified_DSL_feature BoundsChecking;
typedef unspecified_DSL_feature IndexType;

};

assemble components metafunction:

MATRIX_ASSEMBLE_COMPONENTS<>

generated matrix type, e.g.:

Matrix<
BoundsChecker<

ArrFormat<
Dyn2DCContainer<

MATRIX_ASSEMBLE_COMPONENTS<...>
> > > >

Figure 185    Processing steps of the configuration generator
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• do_all: do parsing, assigning defaults, and component assembly; the generator expects a
configuration DSL expression;

• defaults_and_assemble: do assigning defaults and component assembly; the generator
expects DSLFeatures whose features do not have to be fully specified;

• assemble_components: do component assembly; the generator expects DSLFeatures whose
features have to be fully specified;

We implement the flags as integer constants (in MatrixGenerator.h):

enum {
do_all,
defaults_and_assemble,
assemble_components

};

Now, we can implement our configuration generator. As indicated in Figure 185, the generator
delegates all the work to three other metafunctions, each of them defining one processing step:

MATRIX_DSL_PARSER<>
MATRIX_DSL_ASSIGN_DEFAULTS<>
MATRIX_ASSEMBLE_COMPONENTS<>

The generator returns (in its public section) the generated matrix type (as RET). The computation
in the generator involves reading the “what to do” flag and calling the appropriate
metafunctions:157

template< class InputDSL = matrix<>, int WhatToDo= do_all >
class MATRIX_GENERATOR
{
   // parse InputDSL (or dummy)
   typedef SWITCH< WhatToDo
                 , CASE< assemble_components,     matrix<>    // dummy
                 , CASE< defaults_and_assemble, matrix<>    // dummy
                 , DEFAULT< InputDSL
           > > > >::RET DSL_Description;
   typedef MATRIX_DSL_PARSER< DSL_Description >::RET ParsedDSL__;

Please note that we have to use the dummies since MATRIX_DSL_ASSIGN_DEFAULTS<> below will
be “executed” in any case. We use the same calling pattern for the remaining two steps:

   // assign defaults to DSL (or to dummy)
   typedef SWITCH< WhatToDo
                 , CASE< assemble_components,     ParsedDSL__  // dummy
                 , CASE< defaults_and_assemble, InputDSL
                 , DEFAULT< ParsedDSL__
           > > > >::RET ParsedDSL_;
   typedef MATRIX_DSL_ASSIGN_DEFAULTS< ParsedDSL_ >::RET CompleteDSL__;

   // assemble components
   typedef SWITCH< WhatToDo
                 , CASE< assemble_components,     InputDSL
                 , CASE< defaults_and_assemble, CompleteDSL__
                 , DEFAULT< CompleteDSL__
           > > > >::RET CompleteDSL_;
   typedef MATRIX_ASSEMBLE_COMPONENTS< CompleteDSL_ > Result;

Finally, we have our public return:

public:
   typedef Result::RET     RET;
};

The following three sections describe the metafunctions implementing the three generation
steps.

Module:
MatrixGenerator.h
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10.3.1.5.1 Configuration DSL Parser

The configuration DSL parser takes a matrix configuration DSL expression and produces
DSLFeatures containing the values of the features explicitly specified in the configuration
expression (the unspecified features have the value unspecified_DSL_feature; see Figure 185).

Before we show you the parser code, we need a small helper metafunction for testing whether a
DLS feature is unspecified or not:

using namespace MatrixDSL;

template<class TYPE> struct IsUnspecifiedDSLFeature {enum { RET=0 };};
template<> struct IsUnspecifiedDSLFeature<unspecified_DSL_feature>{enum { RET=1 };};

The parser retrieves all the features for the DSLFeatures class one at a time from the matrix
configuration (i.e. its parameter DSLDescription) and returns the DSLFeatures:

template<class DSLDescription>
class MATRIX_DSL_PARSER
{ private:

//ElementType
typedef DSLDescription::elementType ElementType;

//Shape
typedef DSLDescription::shape Shape;

//Format
typedef DSLDescription::format Format;

The retrieval code for ArrOrder looks slightly different since this feature is nested only in the
one value array<> of Format. Thus, we first have to check to see if the value of Format is array<...>
and if this is not the case we simply return array<>, otherwise we return the actual value of
Format. Then we use this intermediate result (i.e. ArrayFormat_) to read out the arr_order member.
The intermediate result (i.e. ArrayFormat_) always contains arr_order, but its value is only
relevant if the value of Feature is array<...>. We have to go through all this trouble since both
types passed to a meta IF are actually built and we have to make sure that _ArrayOrder has
arr_order as its member type in all cases. Here is the code:

//ArrOrder
typedef IF<EQUAL<Format::id, Format::array_id>::RET,

Format,
array<> >::RET ArrayFormat_;

typedef IF<EQUAL<Format::id, Format::array_id>::RET,
ArrayFormat_::arr_order,
unspecified_DSL_feature>::RET ArrOrder;

The remaining parameters are simple to retrieve:

//OptFlag
typedef DSLDescription::optFlag OptFlag;

//BoundsChecking
typedef DSLDescription::boundsChecking BoundsChecking;

//IndexType
typedef DSLDescription::indexType IndexType;

Finally, we define DSLFeatures with all the DSL parameters as its member types and return it:

public:
struct DSLFeatures
{

typedef ElementType ElementType;
typedef Shape Shape;

Module:
DSLParser.h
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typedef Format Format;
typedef ArrOrder ArrOrder;
typedef OptFlag OptFlag;
typedef BoundsChecking BoundsChecking;
typedef IndexType IndexType;

};

typedef DSLFeatures RET;
};

10.3.1.5.2 Assigning Defaults to DSL Features

The second generation step is to assign default values to the unspecified features in
DSLFeatures returned by the parser (see Figure 185). Some features are assigned direct default
values and some computed default values. Thus, we first need to specify the direct and the
computed defaults for our DSL.

The direct defaults are listed in Table 101. As already discussed, some choices might be a
matter of taste, but we have to make them in any case (see discussion in Section 10.2.3).

The only computed default is Format and the computation formula is given in Table 102.
According to this table, Format depends on Shape and OptFlag. We only use vector for triangular
and symmetric matrices if the optimization flag is set to space.

There is one more detail we have to specify: It is illegal to set Shape to rect and Format to vector
at the same time. This combination does not seem to be useful and we choose to forbid it
explicitly. This is specified in Table 103.

Given the above specifications, we can move to the C++ implementation now. First, we
implement the table with the direct feature defaults (i.e. Table 101) in a struct. This way we have
all direct defaults in one place, which is desirable for maintenance reasons (in
DSLAssignDefaults.h):

using namespace MatrixDSL;

//DSLFeatureDefaults implements Table 101 (i.e. direct feature defaults)
struct DSLFeatureDefaults
{ typedef double ElementType;

typedef rect<> Shape;
typedef c_like<> ArrOrder;
typedef space<> OptFlag;
typedef check_bounds<> BoundsChecking;

ElementType: double

Shape: rect

ArrayOrder: cLike

OptFlag: space

BoundsChecking: checkBounds

IndexType: unsigned int

Table 101    Direct feature defaults for the demo matrix package

Shape OptFlag Format
rect * array

speed arraylowerTriang
upperTriang
symm

space vector

Table 102    Computing default value for Format

Shape Format
rect vector

Table 103    Illegal feature combination

Module:
DSLAssignDefaults.
h
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typedef unsigned int IndexType;
};

The metafunction for assigning feature defaults does more than just assigning defaults: it also
checks to make sure that the specified feature values are correct and that the feature
combinations are correct. Thus, for example, if we specified the shape of a matrix as speed<>,
this would be the place to catch this error.

The implementation of error checking is a bit tricky. A major deficiency of template
metaprogramming is that we do not have any means to report a string to the programmer during
compilation. In our code, we use the following partial solution to this problem: If we want to
report an error, we access the nonexistent member SOME_MEMBER of some type SOME_TYPE
which, of course, causes the compiler to issue a compilation error that says something like:
“’SOME_MEMBER’ is not a member of ’SOME_TYPE’”. Now, the idea is to use the name of the kind
of error we want to report as SOME_TYPE and to encode the error text in the name of
SOME_MEMBER.

Here is the implementation of the “SOME_TYPE”, which, in our case, we call
DSL_FEATURE_ERROR:

struct DSL_FEATURE_ERROR {};

DSL_FEATURE_ERROR is usually returned by a meta IF. Thus, we also need some type to return if
there is no error:

struct nil {}; // nil is just some other type

struct DSL_FEATURE_OK
{

typedef nil WRONG_SHAPE;
typedef nil WRONG_FORMAT_OR_FORMAT_SHAPE_COMBINATION;
typedef nil WRONG_ARR_ORDER;
typedef nil WRONG_OPT_FLAG;
typedef nil WRONG_BOUNDS_CHECKING;

};

As you see, DSL_FEATURE_OK encodes error strings as member type names.

Now, for each DSL parameter, we implement a checking metafunction, which checks if the value
of the parameter is one of the valid values according to the DSL grammar (see Figure 182):

template<class Shape>
struct CheckShape
{

typedef IF< EQUAL<Shape::id, Shape::rect_id>::RET ||
EQUAL<Shape::id, Shape::lower_triang_id>::RET ||
EQUAL<Shape::id, Shape::upper_triang_id>::RET ||
EQUAL<Shape::id, Shape::symm_id>::RET,

DSL_FEATURE_OK,
DSL_FEATURE_ERROR>::RET::WRONG_SHAPE RET;

};

Thus, if Shape is neither rect<>, nor lower_triang<>, nor upper_triang<>, nor symm<>, the meta IF
returns DSL_FEATURE_ERROR and trying to access WRONG_SHAPE of DSL_FEATURE_ERROR
results in a compilation error. In the other case, we return DSL_FEATURE_OK, which, as we
already saw, defines WRONG_SHAPE as its member.

In practice, our error reporting approach looks as follows: If we try to compile the following line:

typedef MATRIX_GENERATOR< matrix< double, speed<> > >::RET MyMatrixType;

the C++ compiler (in our case VC++5.0) will issue the following error:

error C2039: 'WRONG_SHAPE' : is not a member of 'DSL_FEATURE_ERROR'
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This error indicates that the second parameter to MATRIX_GENERATOR<> is not a valid shape
value. This is a useful hint. Unfortunately, it does not tell us the source line where we used the
wrong parameter value but rather the line where the erroneous member access occurred.

The checking of Format is a bit more complex since we need to implement Table 103. This table
stated that we do not want to allow a rectangular matrix to be stored in a vector. Thus, the
following metafunction takes Format and Shape as its parameters:

template<class Format, class Shape>
struct CheckFormatAndFormatShapeCombination
{

typedef IF<(EQUAL<Shape::id, Shape::rect_id>::RET &&
EQUAL<Format::id, Format::array_id>::RET) ||

  ((EQUAL<Shape::id, Shape::lower_triang_id>::RET ||
EQUAL<Shape::id, Shape::upper_triang_id>::RET ||
EQUAL<Shape::id, Shape::symm_id>::RET) &&

(EQUAL<Format::id, Format::vector_id>::RET ||
 EQUAL<Format::id, Format::array_id>::RET)),

DSL_FEATURE_OK,
DSL_FEATURE_ERROR>::RET::WRONG_FORMAT_OR_FORMAT_SHAPE_COMBINATION RET;

};

Here are the checking metafunctions for the remaining three DSL parameters:

template<class ArrOrder>
struct CheckArrOrder
{

typedef IF< EQUAL<ArrOrder::id, ArrOrder::c_like_id>::RET ||
EQUAL<ArrOrder::id, ArrOrder::fortran_like_id>::RET,

DSL_FEATURE_OK,
DSL_FEATURE_ERROR>::RET::WRONG_ARR_ORDER RET;

};

template<class OptFlag>
struct CheckOptFlag
{

typedef IF< EQUAL<OptFlag::id, OptFlag::speed_id>::RET ||
EQUAL<OptFlag::id, OptFlag::space_id>::RET,

DSL_FEATURE_OK,
DSL_FEATURE_ERROR>::RET::WRONG_OPT_FLAG RET;

};

template<class BoundsChecking>
struct CheckBoundsChecking
{

typedef IF< EQUAL<BoundsChecking::id, BoundsChecking::check_bounds_id>::RET ||
EQUAL<BoundsChecking::id, BoundsChecking::no_bounds_checking_id>::RET,

DSL_FEATURE_OK,
DSL_FEATURE_ERROR>::RET::WRONG_BOUNDS_CHECKING RET;

};

Please note that we do not provide checking for element type and index type. The reason is that
we do not want to unnecessarily limit the number of types that can be used in their place. This
is particularly true of element type since we also would like to be able to create matrices of some
user-defined types. If we use matrix expressions, the element type will also have to implement
numeric operators such as +, *, -, +=, etc. If it does not, the C++ compiler will report an error
from within the matrix operator code.

Finally, we are ready to implement our metafunction for assigning defaults:
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template<class ParsedDSLDescription>
class MATRIX_DSL_ASSIGN_DEFAULTS
{ private:

//define a short alias for the parameter
typedef ParsedDSLDescription ParsedDSL;

//ElementType
typedef IF<IsUnspecifiedDSLFeature<ParsedDSL::ElementType>::RET,

DSLFeatureDefaults::ElementType,
ParsedDSL::ElementType>::RET ElementType;

If the element type is unspecified, the code above assigns it the direct default from Table 101.
We do the same for IndexType, Shape, ArrOrder, OptFlag, and BoundsChecking:

//IndexType
typedef IF<IsUnspecifiedDSLFeature<ParsedDSL::IndexType>::RET,

DSLFeatureDefaults::IndexType,
ParsedDSL::IndexType>::RET IndexType;

//Shape
typedef IF<IsUnspecifiedDSLFeature<ParsedDSL::Shape>::RET,

DSLFeatureDefaults::Shape,
ParsedDSL::Shape>::RET Shape;

typedef CheckShape<Shape>::RET check_shape_;

The last typedef calls the checking metafunction for Shape. We always call the checking
metafunction after assigning the default value:

//ArrOrder
typedef IF<IsUnspecifiedDSLFeature<ParsedDSL::ArrOrder>::RET,

DSLFeatureDefaults::ArrOrder,
ParsedDSL::ArrOrder>::RET ArrOrder;

typedef CheckArrOrder<ArrOrder>::RET check_arr_order_;

//OptFlag
typedef IF<IsUnspecifiedDSLFeature<ParsedDSL::OptFlag>::RET,

DSLFeatureDefaults::OptFlag,
ParsedDSL::OptFlag>::RET OptFlag;

typedef CheckOptFlag<OptFlag>::RET check_opt_flag_;

//BoundsChecking
typedef IF<IsUnspecifiedDSLFeature<ParsedDSL::BoundsChecking>::RET,

DSLFeatureDefaults::BoundsChecking,
ParsedDSL::BoundsChecking>::RET BoundsChecking;

typedef CheckBoundsChecking<BoundsChecking>::RET check_bounds_checking_;

Format is a special case since it does not have a direct default value. Its default value is
determined based on Shape and OptFlag, as specified in Table 102:

//Format
typedef

IF<(EQUAL<Shape::id, Shape::lower_triang_id>::RET ||
 EQUAL<Shape::id, Shape::upper_triang_id>::RET ||
 EQUAL<Shape::id, Shape::symm_id>::RET) &&

EQUAL<OptFlag::id, OptFlag::space_id>::RET,

vector<>,
array<> >::RET ComputedFormat_;

typedef IF<IsUnspecifiedDSLFeature<ParsedDSL::Format>::RET,
ComputedFormat_,
ParsedDSL::Format>::RET Format;

Next, we need to check the format-shape combination (cf. Table 103):
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typedef CheckFormatAndFormatShapeCombination<Format, Shape>::RET
 check_format_and_format_shape_combination_;

Finally, we return the DSLFeatures containing all DSL parameters:

public:
struct DSLFeatures
{

typedef ElementType ElementType;
typedef Shape Shape;
typedef Format Format;
typedef ArrOrder ArrOrder;
typedef OptFlag OptFlag;
typedef BoundsChecking BoundsChecking;
typedef IndexType IndexType;

};

typedef DSLFeatures RET;
};

10.3.1.5.3 Matrix Component Assembler

The final step in the matrix type generation is assembling the matrix implementation components
according to the matrix type record (i.e. DSLFeatures) produced in the earlier stages (see Figure
185).

First, we need to specify how to compute the ICCL parameters from the DSL parameters.
According to the ICCL grammar in Figure 184, we have the following ICCL parameters with
alternative values:

Array
Format
OptSymmetricMatrix
OptBoundsCheckedMatrix

Their computation from the DSL parameters is specified in Table 104 through Table 107.

ArrOrder Array
cLike Dyn2DCContainer
fortranLike Dyn2DFContainer

Table 104    Table for computing the ICCL
parameter Array

Shape Format (DSL) Format (ICCL)
* array ArrFormat
lowerTriangular
symmetric

vector LoTriangVecFormat

upperTriangular vector UpTriangVecFormat

Table 105    Table for computing the ICCL parameter Format

Shape OptSymmetricMatrix
symm Symm

* = Format (ICCL)

Table 106    Table for computing the ICCL parameter
OptSymmetricMatrix
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According to the ICCL grammar, the value of Vector is Dyn1DContainer[Config]. Finally, the types
provided by the configuration repository (i.e. Config, see Figure 183) are determined using Table
108 and Table 109.

The metafunction for assembling components is implemented as follows (in
AssembleComponents.h):

using namespace MatrixDSL;
using namespace MatrixICCL;

template<class CompleteDSLDescription>
class MATRIX_ASSEMBLE_COMPONENTS
{ private:

//introduce the alias Generator for itself
typedef MATRIX_ASSEMBLE_COMPONENTS<CompleteDSLDescription> Generator;
//introduce short alias for the parameter
typedef CompleteDSLDescription DSLFeatures;

Now, each of the following typedefs implements one ICCL parameter (we cite the corresponding
specification tables in the comments):

//ElementType (see Table 108)
typedef DSLFeatures::ElementType ElementType;

//IndexType (see Table 108)
typedef DSLFeatures::IndexType IndexType;

//Vector (see Figure 184)
typedef Dyn1DContainer<Generator> Vector;

//Array (see Table 104)
typedef IF<EQUAL<DSLFeatures::ArrOrder::id, DSLFeatures::ArrOrder::c_like_id>::RET,

Dyn2DCContainer<Generator>,
Dyn2DFContainer<Generator> >::RET Array;

Please note that we passed Generator to the basic containers in the above typedefs for Vector
and Array . Here are the remaining ICCL parameters:

//Format (see Table 105)
typedef

BoundsChecking OptBoundsCheckedMatrix
checkBounds BoundsChecker

noBoundsChecking = OptSymmetricMatrix

Table 107    Table for computing the ICCL parameter
OptBoundsCheckedMatrix

ElementType (ICCL) = ElementType (DSL)
IndexType (ICCL) = IndexType (DSL)

Table 108    Table for computing the ICCL
parameters ElementType and IndexType

ArrOrder CommaInitializer
cLike DenseCCommaInitializer

fortranLike DenseFCommaInitializer

Table 109    Table for computing the ICCL
parameter CommaInitializer

Module:
AssembleComponents
.h
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IF<(EQUAL<DSLFeatures::Shape::id, DSLFeatures::Shape::lower_triang_id>::RET ||
 EQUAL<DSLFeatures::Shape::id, DSLFeatures::Shape::symm_id>::RET) &&

EQUAL<DSLFeatures::Format::id, DSLFeatures::Format::vector_id>::RET,
LoTriangVecFormat<Vector>,

IF<EQUAL<DSLFeatures::Shape::id, DSLFeatures::Shape::upper_triang_id>::RET &&
EQUAL<DSLFeatures::Format::id, DSLFeatures::Format::vector_id>::RET,

UpTriangVecFormat<Vector>,

ArrFormat<Array> >::RET>::RET Format;

//OptSymmetricMatrix (see Table 106)
typedef IF<EQUAL<DSLFeatures::Shape::id, DSLFeatures::Shape::symm_id>::RET,

Symm<Format>,
Format>::RET OptSymmetricMatrix;

//OptBoundsCheckedMatrix (see Table 107)
typedef IF<EQUAL<DSLFeatures::BoundsChecking::id,

  DSLFeatures::BoundsChecking::check_bounds_id>::RET,
BoundsChecker<OptSymmetricMatrix>,
OptSymmetricMatrix>::RET OptBoundsCheckedMatrix;

//MatrixType;
typedef Matrix<OptBoundsCheckedMatrix> MatrixType;

//CommaInitializer (see Table 109)
typedef

IF<EQUAL<DSLFeatures::ArrOrder::id, DSLFeatures::ArrOrder::c_like_id>::RET,
DenseCCommaInitializer<Generator>,
DenseFCommaInitializer<Generator> >::RET CommaInitializer;

Finally, we return the Config and the generated matrix type. Since we passed Generator to the
basic containers, they have access to Config. They also pass it to the components of the upper
layers.

public:
struct Config
{

//DSL features
typedef DSLFeatures DSLFeatures;

//ICCL features
typedef ElementType ElementType;
typedef IndexType IndexType;

//MatrixType
typedef MatrixType MatrixType;

typedef CommaInitializer CommaInitializer;
};

typedef MatrixType RET; //here is our generated matrix type!!!
};

10.3.1.6 A More Intentional Alternative to Nested IFs
As you saw in the previous two sections, the implementation of assigning defaults and
assembling components involves implementing the dependency tables for computing defaults
and for computing ICCL parameters. The technique we used for implementing those tables were
nested meta IFs. This technique was satisfactory for our demo matrix component, but the tables
for the full matrix component specified in Section 10.2 are much bigger.

We demonstrate our point using the still relatively simple table for computing the ICCL
parameter Array  from Section 10.2.5.1 (i.e. Table 59):
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The nested-meta-IF implementation of this table looks like this:

This is certainly not very readable. We can improve the situation by providing a metafunction
allowing us to encode the tables more directly. This metafunction takes two parameters:

EVAL_DEPENDENCY_TABLE<HeadRow, TableBody>

HeadRow  represents the head row of the dependency table (i.e. the first, gray row) and
TableBody represents the remaining rows. Both parameters are implemented as lists (by nesting
class templates). Here is an example:

EVAL_DEPENDENCY_TABLE<> does the following: It looks for a row in TableBody whose cells
match the cells of TableHead starting with the first row in TableBody. If it finds a matching row, it
returns the corresponding return type (i.e. the type wrapped in RET<>; you can nest RETs in
order to return more than one type, e.g. RET<Foo1, RET<Foo2> >). If it does not find a matching
row, it reports an error. You can use anyValue as an asterisk (i.e. a value that matches anything).

Using this metafunction, we can rewrite our table as follows:

Malloc ArrOrder Array
cLike Fix2DCContainerfix
fortranLike Fix2DFContainer
cLike Dyn2DCContainerdyn
fortranLike Dyn2DFContainer

//Arr
typedef IF<EQUAL<DSLFeatures::Malloc::id, DSLFeatures::Malloc::fix_id>::RET,

IF<EQUAL<DSLFeatures::ArrOrder::id, DSLFeatures::ArrOrder::c_like_id>::RET,
Fix2DCContainer<Size, Generator>,

IF<EQUAL<DSLFeatures::ArrOrder::id, DSLFeatures::ArrOrder::fortran_like_id>::RET,
Fix2DFContainer<Size, Generator>,

invalid_ICCL_feature>::RET>::RET,

IF<EQUAL<DSLFeatures::Malloc::id, DSLFeatures::Malloc::dyn_id>::RET,
IF<EQUAL<DSLFeatures::ArrOrder::id, DSLFeatures::ArrOrder::c_like_id>::RET,

Dyn2DCContainer<Generator>,
IF<EQUAL<DSLFeatures::ArrOrder::id, DSLFeatures::ArrOrder::fortran_like_id>::RET,

Dyn2DFContainer<Generator>,
invalid_ICCL_feature>::RET>::RET,

invalid_ICCL_feature>::RET>::RET Arr;

typedef EVAL_DEPENDENCY_TABLE

               <       CELL< 1,   CELL< 2                  > >

               , ROW< CELL< 4,   CELL< 3,   RET< Foo1   > > >
               , ROW< CELL< 1,   CELL< 5,   RET< Foo2   > > >
               , ROW< CELL< 1,   CELL< 2,   RET< Foo3   > > >
               , ROW< CELL< 2,   CELL< 3,   RET< Foo4   > > >

> > > >  >::RET result; // result is Foo3
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The implementation of this function is given in Section 10.5.

Unfortunately, compared to the nested-IFs solution, the use of EVAL_DEPENDENCY_TABLE<>
increases compilation times of the matrix component by an order of magnitude
(EVAL_DEPENDENCY_TABLE<> uses recursion).

10.3.1.7 Matrix Operations
We implement matrix operations such as multiplication and addition using the technique of
expression templates [Vel95]. We already explained the basic idea behind this implementation in
Sections 10.2.6.1 and 10.2.6.2. We give you the C++ code in six parts:

1. matrix operator templates: operator templates implementing the operators + and * for
matrices;

2. matrix expression templates: class templates for representing addition and multiplication
expressions;

3. matrix cache: cache for implementing matrix multiplication (see the lazy-with-cache variant
in Section 10.2.6.1);

4. getElement() for expressions: getElement() returns one element of a matrix expression; there
will be different implementations for different shape combinations of the argument matrices;

5. metafunctions for computing result types of expressions: metafunctions for computing the
matrix type of an expression, i.e. the type which is appropriate for storing the result of
evaluating the expression;

6. assignment functions for assigning expressions and matrices to matrices: there will be
different implementation of the assignment functions for different shapes of the source
matrix (or expression).

We only consider the implementation of matrix addition and multiplication since matrix
subtraction is similar to matrix addition.

typedef DSLFeatures::Malloc Malloc_;
typedef DSLFeatures::ArrOrder ArrOrder_;
typedef invalid_ICCL_feature invalid;

enum {
   mallocID  = Malloc_::id,
   dyn        = Malloc_::dyn_id,
   fix       = Malloc_::fix_id,

   arrOrdID  = ArrOrder_::id,
   cLike     = ArrOrder_::c_like_id,
   fortranLike  = ArrOrder_::fortran_like_id
}

// Arr
   typedef EVAL_DEPENDENCY_TABLE                                // tables 16, 20
   //**********************************************************************************
   <        CELL< mallocID, CELL< arrOrdID                                             > >

   , ROW< CELL< fix,      CELL< cLike,    RET< Fix2DCContainer< Size, Generator > > > >
   , ROW< CELL< fix,      CELL< fortranL, RET< Fix2DFContainer< Size, Generator > > > >
   , ROW< CELL< dyn,      CELL< cLike,    RET< Dyn2DCContainer< Generator >       > > >
   , ROW< CELL< dyn,      CELL< fortranL, RET< Dyn2DFContainer< Generator >       > > >
   , ROW< CELL< anyValue, CELL< anyValue, RET< invalid                            > > >
   //**********************************************************************************
   > > > > > >::RET Arr;
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10.3.1.7.1 Matrix Operator Templates

The main idea behind expression templates is the following: if you add two matrices, e.g. A+B,
you do not return the result matrix, but an object representing the addition expression instead. If
you have a more complicated expression, e.g. (A+B)*(C+D), you return a nested expression
object (see Figure 177). This is done as follows: You first execute the two plus operators. They
both return a matrix addition expressions. Finally, you execute the multiplication operator, which
returns a multiplication expression pointing to the other two addition expressions as its
argument objects. An expression object can be accessed using getElement() – just as any matrix.

Thus, in any case, you end up with an expression object. Since we implement the operators +
and * using overloaded operator templates, we will know the complete type of a complex
expression at compile time. The expression type describes the structure of the expression and
we can pass it to metafunctions analyzing the expression structure and generating optimized
code for the methods of the expression. However, the matrix expression optimization we
implement later will involve the inspection of two expression argument types at a time rather
than analyzing whole expression structures (the latter could be necessary for other kinds of
optimizations). Depending on the shape combination of the arguments, we will select different
implementations of the getElement() (i.e. the function for computing expression elements).

According to the approach outlined above, we need the following operator implementations:

• + for two matrices, e.g. A+B

• + for a matrix and an addition expression, e.g. A+(B+C)

• + for an addition expression and a matrix, e.g. (A+B)+C

• + for two addition expressions, e.g. (A+B)+(C+D)

Furthermore, we would need a similar set of four implementations of * and implementations for
all the combinations of addition and multiplication expressions, e.g. (A+B)*C, (A+B)*(C+D),
etc.

We can avoid this combinatorial explosion by wrapping the multiplication and the addition
expressions into binary expressions. In this case, we only need four implementations of + and
four implementations of *. The C++ implementation looks as follows (in MatrixOperTemplates.h):

/*** Addition **/

//Matrix + Matrix
template <class M1, class M2>
inline BinaryExpression<AdditionExpression<Matrix<M1>, Matrix<M2> > >
operator+(const Matrix<M1>& m1, const Matrix<M2>& m2)
{ return BinaryExpression<AdditionExpression<Matrix<M1>, Matrix<M2> > >(m1, m2);
}

//Expression + Matrix
template <class Expr, class M>
inline BinaryExpression<AdditionExpression<BinaryExpression<Expr>, Matrix<M> > >
operator+(const BinaryExpression<Expr>& expr, const Matrix<M>& m)
{ return BinaryExpression<AdditionExpression<BinaryExpression<Expr>, Matrix<M> > >(expr, m);
}

//Matrix + Expression
template <class M, class Expr>
inline BinaryExpression<AdditionExpression<Matrix<M>, BinaryExpression<Expr> > >
operator+(const Matrix<M>& m, const BinaryExpression<Expr>& expr)
{ return BinaryExpression<AdditionExpression<Matrix<M>, BinaryExpression<Expr> > >(m, expr);
}

//Expression + Expression
template <class Expr1, class Expr2>

Module:
MatrixOperTemplates.
h
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inline BinaryExpression<AdditionExpression<BinaryExpression<Expr1>, BinaryExpression<Expr2> > >
operator+(const BinaryExpression<Expr1>& expr1, const BinaryExpression<Expr2>& expr2)
{ return BinaryExpression<AdditionExpression< BinaryExpression<Expr1>,
 BinaryExpression<Expr2> > >(expr1, expr2);
}

/*** Multiplication **/

//Matrix * Matrix
template <class M1, class M2>
inline BinaryExpression<MultiplicationExpression<Matrix<M1>, Matrix<M2> > >
operator*(const Matrix<M1>& m1, const Matrix<M2>& m2)
{ return BinaryExpression<MultiplicationExpression<Matrix<M1>, Matrix<M2> > >(m1, m2);
}

//Expression * Matrix
template <class Expr, class M>
inline BinaryExpression<MultiplicationExpression<BinaryExpression<Expr>, Matrix<M> > >
operator*(const BinaryExpression<Expr>& expr, const Matrix<M>& m)
{ return BinaryExpression<MultiplicationExpression<BinaryExpression<Expr>, Matrix<M> > >(expr, m);
}

//Matrix * Expression
template <class M, class Expr>
inline BinaryExpression<MultiplicationExpression<Matrix<M>, BinaryExpression<Expr> > >
operator*(const Matrix<M>& m, const BinaryExpression<Expr>& expr)
{ return BinaryExpression<MultiplicationExpression<Matrix<M>, BinaryExpression<Expr> > >(m, expr);
}

//Expression * Expression
template <class Expr1, class Expr2>
inline BinaryExpression<MultiplicationExpression<BinaryExpression<Expr1>, BinaryExpression<Expr2> >
>
operator*(const BinaryExpression<Expr1>& expr1, const BinaryExpression<Expr2>& expr2)
{ return BinaryExpression<MultiplicationExpression< BinaryExpression<Expr1>,

BinaryExpression<Expr2> > >(expr1, expr2);
}

The operator templates can be thought of as a parsing facility. For example, given the above
operator templates and the two matrices RectMatrix1 and RectMatrix2 of type

Matrix<BoundsChecker<ArrFormat<Dyn2DCContainer<MATRIX_ASSEMBLE_COMPONENTS<...>>>>>

the C++ compiler derives for the following expression

(RectMatrix1 + RectMatrix2)*(RectMatrix1 + RectMatrix2)

the following type:

BinaryExpression<
MultiplicationExpression<

BinaryExpression<
AdditionExpression<

Matrix<BoundsChecker<ArrFormat<Dyn2DCContainer<MATRIX_ASSEMBLE_COMPONENTS<...>>>>
>,

Matrix<BoundsChecker<ArrFormat<Dyn2DCContainer<MATRIX_ASSEMBLE_COMPONENTS<...>>>>
>
>

>,
BinaryExpression<

AdditionExpression<
Matrix<BoundsChecker<ArrFormat<Dyn2DCContainer<MATRIX_ASSEMBLE_COMPONENTS<...>>>>

>,
Matrix<BoundsChecker<ArrFormat<Dyn2DCContainer<MATRIX_ASSEMBLE_COMPONENTS<...>>>>

>
>

>
>

>
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10.3.1.7.2 Matrix Expression Templates

The class template AdditionExpression<> represents the addition of two arguments,
MultiplicationExpression<> represents the multiplication of two operands, and BinaryExpression<> is
used to wrap the previous two to make them look alike.

We start with the implementation of AdditionExpression<> (in MatrixExprTemplates.h):

template<class A, class B>
class AdditionExpression
{ public:

typedef A LeftType;
typedef B RightType;

Any of LeftType and RightType can be either a matrix type or a binary expression type. Next, we
need to compute the result matrix type of the addition expression, i.e. matrix type which would
be appropriate for storing the result of the evaluation of this expression. We compute the result
type using the metafunction ADD_RESULT_TYPE<>, which we discuss later. We publish the
configuration repository of the result type in the member Config of AdditionExpression<>. Thus, an
addition expression has a Config describing its matrix type – just as any matrix type does.
Indeed, ADD_RESULT_TYPE<> uses the Config of the operands in order to compute the Config of
the result:

typedef ADD_RESULT_TYPE<LeftType, RightType>::RET::Config Config;

Next, we read out the element type and the index type for this expression from the resulting
Config:

typedef Config::ElementType ElementType;
typedef Config::IndexType IndexType;

The addition expression needs two variables to point to its operands:

private:
const LeftType& _left;
const RightType& _right;

protected:
const IndexType rows_, cols_;

The constructor initializes the expression variables and checks if the dimensions of the
operands are compatible:

public:
AdditionExpression(const LeftType& m1, const RightType& m2)

: _left(m1), _right(m2),
rows_(m1.rows()), cols_(m1.cols())

{ if (m1.cols() != m2.cols() || m1.rows() != m2.rows())
throw "argument matrices are incompatible";

}

The addition expression defines a getElement() method for accessing its matrix elements as any
matrix does. However, in this case, each element is computed from the operands rather than
stored directly. We use a metafunction to select the most appropriate implementation of
getElement() based on the shape of the operands (we will discuss this function later):

ElementType getElement( const IndexType & i, const IndexType & j ) const
{ return MATRIX_ADD_GET_ELEMENT<LeftType, RightType>::RET::getElement(i, j, this, _left, _right);
}

IndexType rows() const {return rows_;}
IndexType cols() const {return cols_;}

};

Module:
MatrixExprTemplates.h
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The beginning of MultiplicationExpression looks similarly to AdditionExpression, except that we
additionally read out the left and the right matrix type to be used for deriving operand caches
later:

template<class A, class B>
class MultiplicationExpression
{ public:

typedef A LeftType;
typedef B RightType;
typedef LeftType::Config::MatrixType LeftMatrixType;
typedef RightType::Config::MatrixType RightMatrixType;

typedef MULTIPLY_RESULT_TYPE<LeftType, RightType>::RET::Config Config;

typedef Config::ElementType ElementType;
typedef Config::IndexType IndexType;

As we explained in Section 10.2.6.1, in the case of matrix multiplication, we need to use caches
for those operands which are expressions themselves. The reason was that matrix multiplication
accesses each element of the operands more than one time and by using a cache we avoid the
recalculation of the elements of the operand expression on each access. The type of the caches
is computed from the corresponding operand types by a metafunction, which we discuss later.
Finally, we provide variables for keeping track of the operands and the caches (if any):

private:
typedef CACHE_MATRIX_TYPE<LeftMatrixType>::RET LeftCacheMatrixType;
typedef CACHE_MATRIX_TYPE<RightMatrixType>::RET RightCacheMatrixType;

const LeftType& _left;
const RightType& _right;

LeftCacheMatrixType* _left_cache_matrix;
RightCacheMatrixType* _right_cache_matrix;

protected:
const IndexType rows_, cols_;

The multiplication expression needs four constructors, each of them for one of the following
combinations:

• both operands are simple matrices;

• left operand is a matrix and right operand is an expression;

• right operand is an expression and left operand is a matrix;

• both operands are expressions.

We start with two matrices. In this case we do not need any caches:

public:
template<class M1, class M2>
MultiplicationExpression(const Matrix<M1>& m1, const Matrix<M2>& m2)

: _left(m1), _right(m2),
_left_cache_matrix(NULL), _right_cache_matrix(NULL),
rows_(m1.rows()), cols_(m2.cols())

{ ParameterCheck(m1, m2);
}

The following two constructors have to create a cache for one of the two operands:

template<class Expr, class M2>
MultiplicationExpression(const BinaryExpression<Expr>& expr, const Matrix<M2>& m)

: _left(expr), _right(m),
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_right_cache_matrix(NULL),
rows_(expr.rows()), cols_(m.cols())

{ ParameterCheck(expr, m);
_left_cache_matrix = new LeftCacheMatrixType(expr.rows(), expr.cols());

}

template<class M, class Expr>
MultiplicationExpression(const Matrix<M>& m, const BinaryExpression<Expr>& expr)

:_left(m), _right(expr),
_left_cache_matrix(NULL),
rows_(m.rows()), cols_(expr.cols())

{ ParameterCheck(m, expr);
_right_cache_matrix = new RightCacheMatrixType(expr.rows(), expr.cols());

}

Finally, the fourth constructor creates two caches, each one for one of its operands:

template<class Expr1, class Expr2>
MultiplicationExpression(const BinaryExpression<Expr1>& expr1, const BinaryExpression<Expr2>&

expr2)
:_left(expr1), _right(expr2),
rows_(expr1.rows()), cols_(expr2.cols())

{ ParameterCheck(expr1, expr2);
_left_cache_matrix = new LeftCacheMatrixType(expr1.rows(), expr1.cols());
_right_cache_matrix = new RightCacheMatrixType(expr2.rows(), expr2.cols());

}

Since the expressions are returned by the operator templates by copy, we need to implement a
copy constructor for the multiplication expression. When the expression is copied, the cache
variables of the new copy will point to the caches of the old expression. Thus, we need to reset
the cache variables in the old expression to NULL, so that its destructor does not destroy the
caches:

MultiplicationExpression(MultiplicationExpression& old)
: _left(old._left), _right(old._right),
_left_cache_matrix(old._left_cache_matrix),
_right_cache_matrix(old._right_cache_matrix),
rows_(old.rows()), cols_(old.cols())

{ old._left_cache_matrix= NULL;
old._right_cache_matrix= NULL;

}

The destructor deletes the caches, if any:

~MultiplicationExpression()
{

delete _left_cache_matrix;
delete _right_cache_matrix;

}

Finally, we have the getElement() function which also uses a metafunction to select the most
appropriate implementation based on the shape of the operands:

ElementType getElement(const IndexType & i, const IndexType & j) const
{ return MATRIX_MULTIPLY_GET_ELEMENT<LeftType, RightType>::RET::getElement(i, j,

this, _left, _right, _left_cache_matrix, _right_cache_matrix);
}

IndexType rows() const {return rows_;}
IndexType cols() const {return cols_;}

private:
void ParameterCheck(const A& m1, const B& m2)
{ if (m1.cols() != m2.rows())

throw "argument matrices are incompatible";
}
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};

The last class template is BinaryExpression<>. It is derived from its parameter, i.e.
ExpressionTemplate. Thus, it inherits Config and the getElement() method from the expression it
wraps.

template<class ExpressionType>
class BinaryExpression : public ExpressionType
{ public:

typedef ExpressionType::LeftType LeftType;
typedef ExpressionType::RightType RightType;
typedef ExpressionType::Config::MatrixType MatrixType;
typedef ExpressionType::IndexType IndexType;

BinaryExpression(const LeftType& __op1, const RightType& __op2)
: ExpressionType(__op1, __op2)

{}

The following method implements assignment and is called from the assignment operator
implementation in Matrix<> (Section 10.3.1.4.4):

template<class Res>
Matrix<Res>* assign(Matrix<Res>* const result) const
{ MATRIX_ASSIGNMENT<MatrixType>::RET::assign(result, this);

return result;
}

ostream& display(ostream& out) const
{ IndexType r= rows(), c= cols();

for( IndexType i = 0; i < r; ++i )
{ for( IndexType j = 0; j < c; ++j )

out << getElement( i, j ) << "   ";
out << endl;

}
return out;

}
};

template <class Expr>
ostream& operator<<(ostream& out, const BinaryExpression<Expr>& expr)
{ return expr.display(out);
}

10.3.1.7.3 Matrix Cache

As stated, matrix multiplication uses a cache to avoid recomputing the elements of an operand
expression. We implement the cache as a matrix whose elements are cache elements rather than
numbers. A cache element has a variable for storing the cached element value and a flag
indicating if the value is in cache or not (in MatrixCache.h):

template<class ElementType>
struct CacheElementType
{ bool valid; //if true, the value is already cached (cache-hit); if false, it isn't

ElementType element;

CacheElementType() : element(ElementType(0)), valid(false) {}

CacheElementType(const ElementType& elem)
: element(elem), valid(false) {}

bool operator==(const CacheElementType& scnd) const
{return (valid == scnd.valid && element == scnd.element);}

bool operator!=(const CacheElementType& scnd) const
{return (valid != scnd.valid || element != scnd.element);}

Module:
MatrixCache.h
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ostream& display(ostream& out) const
{ out << "(" << element << "; " << valid << ")";

return out;
}

};

template <class A>
ostream& operator<<(ostream& out, const CacheElementType<A>& elem)
{ return elem.display(out);
}

Next, we implement a metafunction which takes a matrix type and returns the corresponding
matrix cache type. The only difference between these two types is the element type: the element
type of the cache is CacheElementType<> parameterized with the element type of the original
matrix type. The cache type derivation involves reading out the description of the matrix type,
i.e. DSLFeatures, and deriving a new type from this description, which overrides the inherited
element type with the new cache element type, and finally passing DSLFeatures to the matrix
generator. In order to be able to do the derivation, we need a little workaround since it is not
possible to derive a class from a typename defined by a typedef:

struct DerivedDSLFeatures : public DSLFeatures
{};

And here is the metafunction:

template<class MatrixType>
struct CACHE_MATRIX_TYPE
{ private:

typedef MatrixType::Config Config;
typedef Config::DSLFeatures DSLFeatures;

public:
//override ElementType:
struct CachedMatrixDSL : public DerivedDSLFeatures<DSLFeatures>
{ typedef CacheElementType<DSLFeatures::ElementType> ElementType;
};

typedef MATRIX_GENERATOR<CachedMatrixDSL, assemble_components>::RET RET;
};

10.3.1.7.4 Implementation of getElement()

The implementation of getElement() for the addition expression and for the multiplication
expression depends on the shape of the operands. Therefore, we will use the same technique as
in the case of nonZeroRegion() of ArrFormat in Section 10.3.1.4.2: we implement the method
variants as static methods of separate structs and select the structs using metafunctions.

In the case of addition, we provide three algorithms: one general for adding rectangular matrices
(which also works in all other cases), one for adding lower triangular matrices, and one for
adding upper triangular matrices (in GetElement.h):

struct RectAddGetElement
{ template<class IndexType, class ResultType, class LeftType, class RightType>

static ResultType::ElementType
getElement(const IndexType& i, const IndexType& j,

const ResultType* res, const LeftType& left, const RightType& right)
{

return left.getElement(i, j) + right.getElement(i, j);
}

};

struct LowerTriangAddGetElement
{

template<class IndexType, class ResultType, class LeftType, class RightType>
static ResultType::ElementType

Module:
GetElement.h
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getElement(const IndexType& i, const IndexType& j,
const ResultType* res, const LeftType& left, const RightType& right)

{
return i >= j ? left.getElement(i, j) + right.getElement(i, j)

: ResultType::ElementType(0);
}

};

struct UpperTriangAddGetElement
{

template<class IndexType, class ResultType, class LeftType, class RightType>
static ResultType::ElementType
getElement(const IndexType& i, const IndexType& j,

const ResultType* res, const LeftType& left, const RightType& right)
{

return i <= j ? left.getElement(i, j) + right.getElement(i, j)
: ResultType::ElementType(0);

}
};

The following metafunction selects the appropriate algorithm: it takes LowerTriangAddGetElement
for two lower triangular matrices, UpperTriangAddGetElement for two upper triangular matrices,
and RectAddGetElement for all the other combinations:

template<class Matrix1, class Matrix2>
struct MATRIX_ADD_GET_ELEMENT
{

typedef Matrix1::Config::DSLFeatures::Shape Shape1;
typedef Matrix2::Config::DSLFeatures::Shape Shape2;

typedef IF< EQUAL<Shape1::id, Shape1::lower_triang_id>::RET &&
EQUAL<Shape2::id, Shape2::lower_triang_id>::RET,

LowerTriangAddGetElement,

IF<EQUAL<Shape1::id, Shape1::upper_triang_id>::RET &&
EQUAL<Shape2::id, Shape2::upper_triang_id>::RET,

UpperTriangAddGetElement,

RectAddGetElement>::RET>::RET RET;
};

The following is the getElement() for the multiplication of two rectangular matrices:

struct RectMultiplyGetElement
{

template<class _IndexType,
class ResultType, class LeftType, class RightType,
class LeftCacheType, class RightCacheType>

static ResultType::ElementType getElement(const _IndexType& i, const _IndexType& j,
const ResultType* res, const LeftType& left, const RightType& right,
LeftCacheType* left_cache= NULL, RightCacheType* right_cache= NULL)

{
typedef ResultType::Config Config;
typedef Config::ElementType ElementType;
typedef Config::IndexType IndexType;

ElementType result= ElementType(0);

for(IndexType k= left.cols(); k--;)
result+= getCachedElement(i, k, left, left_cache) * getCachedElement(k, j, right, right_cache);

return result;
}

private:
template<class IndexType, class MatrixType, class CacheType>
static MatrixType::ElementType
getCachedElement(const IndexType& i, const IndexType& j,

const MatrixType& matrix, CacheType* cache)
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{
if (cache == NULL) return matrix.getElement(i, j);
else
{

CacheType::ElementType tmpCacheElem= cache->getElement(i, j);
if (!tmpCacheElem.valid)
{

tmpCacheElem.element= matrix.getElement(i, j);
tmpCacheElem.valid= true;
cache->setElement(i, j, tmpCacheElem);

}

return tmpCacheElem.element;
}

}
};

The variant of getElement() for multiplying two lower triangular matrices and the other variant for
two upper triangular matrices are analogous and not shown here.

Here is the metafunction for selecting the algorithms:

/****************************** Selecting algorithms for multiplication ******************************/
template<class Matrix1, class Matrix2>
struct MATRIX_MULTIPLY_GET_ELEMENT
{

typedef Matrix1::Config::DSLFeatures::Shape Shape1;
typedef Matrix2::Config::DSLFeatures::Shape Shape2;

typedef IF< EQUAL<Shape1::id, Shape1::lower_triang_id>::RET &&
EQUAL<Shape2::id, Shape2::lower_triang_id>::RET,

LowerTriangMultiplyGetElement,

IF<EQUAL<Shape1::id, Shape1::upper_triang_id>::RET &&
EQUAL<Shape2::id, Shape2::upper_triang_id>::RET,

UpperTriangMultiplyGetElement,

RectMultiplyGetElement>::RET>::RET RET;
};

10.3.1.7.5 Metafunctions for Computing Result Types of Expressions

As you remember, the addition expression and multiplication expression class templates call the
metafunctions for computing the matrix result type of addition and multiplication:

ADD_RESULT_TYPE<class class MatrixType1, class MatrixType2>
MULTIPLY_RESULT_TYPE<class MatrixType1, class MatrixType2>

The metafunctions work as follows: They take the DSLFeatures from each of the operands,
compute the result DSLFeatures and call the matrix generator with the result DSLFeatures to
generate the result matrix type.

We first need to specify how to compute the result DSLFeatures from the argument DSLFeatures.
As you remember, DSLFeatures contains the following features:

ElementType
Shape
Format
ArrayOrder
OptFlag
BoundsChecking
IndexType
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Thus, we need to compute these features for the result matrix from the features of the argument
matrices. The following features are computed in the same way for both addition and
multiplication:

ElementType
Format
ArrayOrder
OptFlag
BoundsChecking
IndexType

ElementType and IndexType are computed using the numeric promote metafunction shown in
Figure 178. The table for computing Format is given later. The other features are computed as
follows: If the value of the given feature in one argument matrix is equal to the value of the same
feature in the other argument matrix, the resulting feature value is equal to the other two values.
If this is not the case, the resulting feature value is unspecified_DSL_feature (see Table 110). This
is useful, since we can let the matrix generator assign the default value for the unspecified
features.

The resulting shape is computed differently for addition and for multiplication. This is shown in
Table 111 and Table 112.

Format depends not only on the Format of the operands, but also on the shape of the result. In
particular, adding a lower-triangular matrix to an upper-triangular one yields a rectangular matrix.
If the format of both operands is vector, we cannot simply assume vector for the result since a
rectangular matrix is better stored in an array. This is specified in Table 113.

We start with a metafunction implementing the general formula from Table 110 (in
ComputeResultType.h):

Feature1 Feature2 Result
(value) (value) =(value)

* * unspecified_DSL_feature

Table 110    General formula for computing result values of
nonmathematical DSL features

Shape1 Shape2 Shape Result
symm symm symm

lowerTriang lowerTriang lowerTriang

upperTriang upperTriang upperTriang

* * rect

Table 111    Computing the resulting shape for matrix addition

Shape1 Shape2 Shape Result
lowerTriang lowerTriang lowerTriang

upperTriang upperTriang upperTriang

* * rect

Table 112    Computing the resulting shape for matrix
multiplication

Shape Result Format1 Format2 Format Result
rect vector vector unspecified_DSL_feature

* (value) (value) =(value)

* * * unspecified_DSL_feature

Table 113    Computing the resulting format

Module:
ComputeResultType.
h
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template<class Feature1, class Feature2>
struct DEFAULT_RESULT
{ typedef

IF<EQUAL<Feature1::id, Feature2::id>::RET,
Feature1,
unspecified_DSL_feature>::RET RET;

};

RESULT_FORMAT<> implements Table 113:

template<class Shape, class Format1, class Format2>
struct RESULT_FORMAT
{

typedef
IF<EQUAL<Shape::id, Shape::rect_id>::RET &&

EQUAL<Format1::id, Format1::vector_id>::RET &&
EQUAL<Format2::id, Format2::vector_id>::RET,
unspecified_DSL_feature,

IF<EQUAL<Format1::id, Format2::id>::RET,
Format1,

unspecified_DSL_feature>::RET>::RET RET;
};

The following metafunction computes result shape for matrix addition (Table 111):

//compute result shape for addition (
template<class Shape1, class Shape2>
struct ADD_RESULT_SHAPE
{

typedef
IF<EQUAL<Shape1::id, Shape1::symm_id>::RET &&

EQUAL<Shape2::id, Shape2::symm_id>::RET,
symm<>,

IF<EQUAL<Shape1::id, Shape1::lower_triang_id>::RET &&
EQUAL<Shape2::id, Shape2::lower_triang_id>::RET,
lower_triang<>,

IF<EQUAL<Shape1::id, Shape1::upper_triang_id>::RET &&
EQUAL<Shape2::id, Shape2::upper_triang_id>::RET,
upper_triang<>,

rect<> >::RET>::RET>::RET RET;

};

ADD_RESULT_DSL_FEATURES<> computes result DSLFeatures from two argument DSLFeatures.
We refer to the resulting DSLFeatures as ParsedDSL since it may contain some unspecified
features (thus, it has the same form as the DSLFeatures returned by the DSLParser).

template<class DSLFeatures1, class DSLFeatures2>
class ADD_RESULT_DSL_FEATURES
{

private:
//ElementType (PROMOTE_NUMERIC_TYPE<> is shown in Figure 178)
typedef PROMOTE_NUMERIC_TYPE<DSLFeatures1::ElementType, DSLFeatures2::ElementType>::RET

 ElementType;

//IndexType
typedef PROMOTE_NUMERIC_TYPE<DSLFeatures1::IndexType, DSLFeatures2::IndexType>::RET

IndexType;

//Shape
typedef ADD_RESULT_SHAPE<DSLFeatures1::Shape, DSLFeatures2::Shape>::RET Shape;
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//OptFlag
typedef DEFAULT_RESULT<DSLFeatures1::OptFlag, DSLFeatures2::OptFlag>::RET OptFlag;

//BoundsChecking
typedef DEFAULT_RESULT<DSLFeatures1::BoundsChecking, DSLFeatures2::BoundsChecking>::RET

 BoundsChecking;

//Format
typedef RESULT_FORMAT<Shape, DSLFeatures1::Format, DSLFeatures2::Format>::RET Format;

//ArrOrder
typedef DEFAULT_RESULT<DSLFeatures1::ArrOrder, DSLFeatures2::ArrOrder>::RET ArrOrder;

public:
struct ParsedDSL
{

typedef ElementType ElementType;
typedef Shape Shape;
typedef Format Format;
typedef ArrOrder ArrOrder;
typedef OptFlag OptFlag;
typedef BoundsChecking BoundsChecking;
typedef IndexType IndexType;

};

typedef ParsedDSL RET;
};

ADD_RESULT_TYPE<> returns the result matrix type for addition. It calls the above metafunction
in order to compute the resulting DSL features and the matrix generator to generate the matrix
type:

template<class MatrixType1, class MatrixType2>
struct ADD_RESULT_TYPE
{

typedef ADD_RESULT_DSL_FEATURES < MatrixType1::Config::DSLFeatures,
 MatrixType2::Config::DSLFeatures> BaseClass;

typedef MATRIX_GENERATOR<BaseClass::ParsedDSL, defaults_and_assemble>::RET RET;
};

The code for computing the result type of multiplication is similar:

//this function implements Table 112
template<class Shape1, class Shape2>
struct MULTIPLY_RESULT_SHAPE
{

typedef

IF<EQUAL<Shape1::id, Shape1::lower_triang_id>::RET &&
EQUAL<Shape2::id, Shape2::lower_triang_id>::RET,
lower_triang<>,

IF<EQUAL<Shape1::id, Shape1::upper_triang_id>::RET &&
EQUAL<Shape2::id, Shape2::upper_triang_id>::RET,
upper_triang<>,

rect<> >::RET>::RET RET;
};

template<class DSLFeatures1, class DSLFeatures2>
struct MULTIPLY_RESULT_DSL_FEATURES
{

private:
//ElementType
typedef PROMOTE_NUMERIC_TYPE<DSLFeatures1::ElementType, DSLFeatures2::ElementType>::RET

ElementType;
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//IndexType
typedef PROMOTE_NUMERIC_TYPE<DSLFeatures1::IndexType, DSLFeatures2::IndexType>::RET

IndexType;

//Shape
typedef MULTIPLY_RESULT_SHAPE<DSLFeatures1::Shape, DSLFeatures2::Shape>::RET Shape;

//OptFlag
typedef DEFAULT_RESULT<DSLFeatures1::OptFlag, DSLFeatures2::OptFlag>::RET OptFlag;

//BoundsChecking
typedef DEFAULT_RESULT<DSLFeatures1::BoundsChecking, DSLFeatures2::BoundsChecking>::RET

 BoundsChecking;

//Format
typedef RESULT_FORMAT<Shape, DSLFeatures1::Format, DSLFeatures2::Format>::RET Format;

//ArrOrder
typedef DEFAULT_RESULT<DSLFeatures1::ArrOrder, DSLFeatures2::ArrOrder>::RET ArrOrder;

public:
struct ParsedDSL
{

typedef ElementType ElementType;
typedef Shape Shape;
typedef Format Format;
typedef ArrOrder ArrOrder;
typedef OptFlag OptFlag;
typedef BoundsChecking BoundsChecking;
typedef IndexType IndexType;

};

typedef ParsedDSL RET;
};

template<class MatrixType1, class MatrixType2>
struct MULTIPLY_RESULT_TYPE
{

typedef MULTIPLY_RESULT_DSL_FEATURES < MatrixType1::Config::DSLFeatures,
 MatrixType2::Config::DSLFeatures> BaseClass;

typedef MATRIX_GENERATOR<BaseClass::ParsedDSL, defaults_and_assemble>::RET RET;
};

10.3.1.7.6 Matrix Assignment

The implementation of matrix assignment depends on the shape of the source matrix (or source
expression). In general, our assignment implementations perform two steps: initializing the
target matrix with zero elements and assigning the nonzero elements from the source matrix
(thus, we have to iterate over the nonzero region of the source matrix). We provide an
assignment implementation for assigning a rectangular matrix, lower triangular, and upper
triangular (the symmetric case is covered by the rectangular case; see Table 114).

Here is the C++ code for the assignment variants (in Assignment.h):

struct RectAssignment
{

template<class Res, class M>

Shape (source
matrix)

Assignment

lower_triang LowerTriangAssignment

upper_triang UpperTriangAssignment

* RectAssignment

Table 114    Selecting the assignment algorithm

Module:
Assignment.h
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static void assign(Res* res, M* m)
{

typedef Res::Config::IndexType IndexType;

for (IndexType i= m->rows(); i--;)
for (IndexType j= m->cols(); j--;)

res->setElement(i, j, m->getElement(i, j));
}

};

struct LowerTriangAssignment
{

template<class Res, class M>
static void assign(Res* res, M* m)
{

typedef Res::Config::IndexType IndexType;

for(IndexType i= 0; i< res->rows(); ++i)
for(IndexType j= 0; j<=i; ++j)

res->setElement(i, j, m->getElement(i, j));
}

};

struct UpperTriangAssignment
{

template<class Res, class M>
static void assign(Res* res, M* m)
{

typedef Res::Config::IndexType IndexType;

for(IndexType i= 0; i< res->rows(); ++i)
for(IndexType j= i; j< res->rows(); ++j)

res->setElement(i, j, m->getElement(i, j));
}

};

The following metafunction implements Table 114:

template<class RightMatrixType>
struct MATRIX_ASSIGNMENT
{ typedef RightMatrixType::Config::DSLFeatures::Shape Shape;

typedef
IF<EQUAL<Shape::id, Shape::lower_triang_id>::RET,

LowerTriangAssignment,

IF<EQUAL<Shape::id, Shape::upper_triang_id>::RET,
UpperTriangAssignment,

RectAssignment>::RET>::RET RET;
};

This concludes the implementation of the demo matrix component.

10.3.1.8 Full Implementation of the Matrix Component
The full implementation of the matrix component specified in Section 10.2 comprises 7500 lines
of C++ code (6000 lines for the configuration generator and the matrix components and 1500
lines for the operations).158 The full implementation illustrated a number of important points:

• Separation between problem and solution space: The use of a configuration DSL
implemented by a separate set of templates hides the internal library architecture (i.e. the
ICCL) from the application programmer. It is possible to change the ICCL (e.g. add new
components or change the structure of the ICCL) without having to modify the existing
client code. All we have to do is to map the existing DSL onto the new ICCL structure,
which requires changes in the configuration generator. To a certain extent, we can even
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extend the configuration DSL without invalidating the existing client code. The kind of
possible changes include

- enlarging the value scope of existing DSL parameters (e.g. adding new matrix shapes)

- appending new parameters to existing parameter lists (e.g. we could add new parameters
at the end of the matrix parameter list and the structure parameter list; furthermore, we
could also add new subfeatures to any of the leave nodes of the DSL feature diagram
since all DSL features are implemented as templates).

In fact, during the performance optimization phase in the development of the matrix
component, we had to modify the structure of the ICCL by splitting some components and
merging others. Since the functionality scope did not change, we did not have to modify
the DSL at all. If we used a library design without a configuration DSL (e.g. as in the STL),
we would have to modify the existing application using the library since the applications
would hardwire ICCL expressions in their code. Thus, the separation into the configuration
DSL and the ICCL supports software evolution.

• More declarative specification: The client code can request a matrix using a configuration
DSL expression which specifies exactly as much detail as the client wishes to specify. Since
the configuration DSL tries to derive reasonable feature defaults from the explicitly
specified features, the client code does not have to specify the details that do not concern
it directly. Consider the following situation as an analogy: When you buy a car, you do not
have to specify all the bolts and wires. There is a complex machinery between you and the
car factory to figure out how to satisfy your abstract needs. On the other hand, if you need
the car for a race, you may actually want to request some specially-customized parts
(provided you have the technical knowledge to do so). The same applies to a configuration
DSL: You should be able to specify any detail about the ICCL expression you want. Being
forced to specify too much detail (this is the case if you do not have a configuration DSL),
makes you dependent on the implementation of the library. If the client code, on the other
hand, cannot specify all the details provided by the ICCL, it may well happen that the code
will run slower compared to what is possible giving its context knowledge. For example, if
you know that the shape of your matrix will not exceed lower triangular shape during the
execution, you can specify this property at compile time. If the matrix configuration DSL
does not let you do this, the generated component will certainly not run the more efficient
lower-triangular algorithms on the matrix data.

• Minimal redundancy within the library: Parameterizing out differences allows you to
avoid situations where two components contain largely the same code except for a few
details that are different. Furthermore, there is a good chance that the “little” components
implementing these details can be reused as parameters of more than one parameterized
component. Thanks to an aggressive parameterization, we were able to cover the
functionality of the matrix component specified in Section 10.2 with only 7500 lines of C++
code. The use of a configuration DSL enables us to hide some of the fragmentation caused
by this parameterization from the user.

• Coverage of a large number of variants: The matrix configuration DSL covers some 1840
different kinds of matrices. This number does not take element type, index type, and all the
number-valued parameters such as number of rows or the static scalar value into account.
Given the 7500 lines of code implementing the matrix component, the average number of
lines of code per matrix variant is four. If you count the nine different element types and the
nine different index types, the number of matrix variants increases to 149 040. The different
possible values for extension, diagonal range, scalar value, etc. (they all can be specified
statically or dynamically) increase this number even more.

• Very good performance: Despite the large number of provided matrix variants, the
performance of the generated code is comparable with the performance of manually coded
variants. This is achieved by the exclusive use of static binding, which is often combined
with inlining. We did not implement any special matrix optimizations such as register
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blocking or cache blocking. However, the work in [SL98b] demonstrates that by
implementing blocking optimizations using template metaprogramming, it is possible to
parallel the performance of highly tuned Fortran 90 matrix libraries.

Unfortunately, the presented C++ techniques also have a number of problems:

• Debugging: Debugging template metaprograms is hard. There is no such thing as a
debugger for the C++ compilation process. Over time, we had to develop a number of tricks
and strategies for getting the information we need (e.g. requesting a nonexistent member of
a type in order to force the compiler to print out the contents of a typename in an error
report; this corresponds to inspecting the value of a variable in a regular program).
Unfortunately, they are not always effective. For example, many compilers would not show
you the entire type in the error report if the name exceeds a certain number of characters
(e.g. 255). The latter situation is very common in template metaprogramming, where
template nesting depths may quickly reach very large numbers (see Figure 186).

• Error reporting: There is no way for a template metaprogram to output a string during
compilation. On the other hand, template metaprograms are used for structure checking
(e.g. parsing the configuration DSL) and other compilation tasks, and we need to be able to
report problems about the data the metaprogram works on. In Section 10.3.1.5.2, we saw
just a partial solution. This solution is unsatisfactory since there is no way to specify the
place where the logical error occurred. In order to do this, we would need access to the
internal parse tree of the compiler.

• Readability of the code: The readability of template metacode is not very high. We were
able to improve on this point by providing explicit control structures (see Section 8.6) and
using specialized metafunctions such as the table evaluation metafunction in Section
10.3.1.6. Despite all of this, the code remains still quite peculiar and obscure. Template
metaprogramming is not a result of a well-thought out metalanguage design, but rather an
accident.

• Compilation times: Template metaprograms may extend compilation times by orders of
magnitude. The compilation time of particular metacode depends on its complexity and the
programming style. However, in any case, the conclusion is that template metaprogramming
greatly extends compilation times. There are at least two reasons for this situation:

- template metacode is interpreted rather than compiled,

- C++ compilers are not tuned for this kind of use (or abuse).

• Compiler limits: Since, in template metaprogramming, the computation is done quasi “as a
byproduct” of type construction and inference, complex computations quickly lead to very
complex types. The complexity and size limits of different compilers are different, but, in
general, the limits are quickly reached. Thus, the complexity of the computations is also
limited (e.g. certain loops cannot iterate more than some limited number of times).

• Portability: Template metaprogramming is based on many advanced C++ language
features, which are not (yet) widely supported by many compilers. There are even
differences in how some of these features are supported by a given compiler. Thus,
currently, template metaprograms have a very limited portability. This situation will
hopefully change over the next few years when more and more compiler vendors start to
support the newly completed ISO C++ standard.

In general, we conclude that the complexity of template metaprograms is limited by compiler
limits, compilation times, and debugging problems.
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10.3.2 Implementing the Matrix Component in IP
This section gives a short overview of a prototype implementation of the matrix component in
the Intentional Programming System (see Section 6.4.3).159 The prototype covers only a small
subset of the functionality specified in Section 10.2. Its scope is comparable to the scope of the
demo matrix component (Sections 10.3.1.2 through 10.3.1.7). More precisely, the prototype
covers the following matrix parameters: element type, shape (rectangular, diagonal, lower
triangular, upper triangular, symmetric, and identity), format (array and vector), and dynamic or
static row and column numbers.

The implementation consists of two IP files:

• interface file containing the declaration of the matrix intentions (e.g. matrix type, matrix
operations, configuration DSL parameters and values) and

• implementation file containing implementation modules with rendering, editing, and
transforming methods.

The implementation file is compiled into an extension DLL. The interface file and the DLL are
given to the application programmer who wants to write some matrix code.

Figure 187 shows some matrix application code written using the intentions defined in our
prototype matrix library. The code displayed in the editor is rendered by the rendering methods
contained in the extension DLL. The DLL also provides editing methods, which, for example,
allow us to tab through the elements of the matrix literal used to initialize the matrix variable
mFoo (i.e. it behaves like a spreadsheet).

MultiplicationExpression<class LazyBinaryExpression<class AdditionExpression<class
MatrixICCL::Matrix<class MatrixICCL::BoundsChecker<class MatrixICCL::ArrFormat<class
MatrixICCL::StatExt<struct MatrixDSL::int_number<int,7>,struct MatrixDSL::int_number<int,7>>,class
MatrixICCL::Rect<class MatrixICCL::StatExt<struct MatrixDSL::int_number<int,7>,struct
MatrixDSL::int_number<int,7>>>,class MatrixICCL::Dyn2DCContainer<class
MATRIX_ASSEMBLE_COMPONENTS<class MATRIX_DSL_ASSIGN_DEFAULTS<class
MATRIX_DSL_PARSER<struct MatrixDSL::matrix<int,struct MatrixDSL::structure<struct
MatrixDSL::rect<struct MatrixDSL::stat_val<struct MatrixDSL::int_number<int,7>>,struct
MatrixDSL::stat_val<struct MatrixDSL::int_number<int,7>>,struct
MatrixDSL::unspecified_DSL_feature>,struct MatrixDSL::dense<struct
MatrixDSL::unspecified_DSL_feature>,struct MatrixDSL::dyn<struct
MatrixDSL::unspecified_DSL_feature>>,struct MatrixDSL::speed<struct
MatrixDSL::unspecified_DSL_feature>,struct MatrixDSL::unspecified_DSL_feature,struct
MatrixDSL::unspecified_DSL_feature,struct MatrixDSL::unspecified_DSL_feature,struct
MatrixDSL::unspecified_DSL_feature>>::DSLConfig>::DSLConfig>>>>>,class MatrixICCL::Matrix<class
MatrixICCL::BoundsChecker<class MatrixICCL::ArrFormat<class MatrixICCL::StatExt<struct
MatrixDSL::int_number<int,7>,struct MatrixDSL::int_number<int,7>>,class MatrixICCL::Rect<class
MatrixICCL::StatExt<struct MatrixDSL::int_number<int,7>,struct MatrixDSL::int_number<int,7>>>,class
MatrixICCL::Dyn2DCContainer<class MATRIX_ASSEMBLE_COMPONENTS<class
MATRIX_DSL_ASSIGN_DEFAULTS<class MATRIX_DSL_PARSER<struct MatrixDSL::matrix<int,struct
MatrixDSL::structure<struct MatrixDSL::rect<struct MatrixDSL::stat_val<struct
MatrixDSL::int_number<int,7>>,struct MatrixDSL::stat_val<struct MatrixDSL::int_number<int,7>>,struct
MatrixDSL::unspecified_DSL_feature>,struct MatrixDSL::dense<struct
MatrixDSL::unspecified_DSL_feature>,struct Ma...

Figure 186    Fraction of the type generated by the C++ compiler for the matrix expression
(A+B)*C



Case Study: Generative Matrix Computation Library (GMCL) 415

In order to appreciate the effect of the displaying methods, Figure 188 demonstrates how the
same matrix code looks like when the extension library is not loaded. In this case, the source tree
is displayed using the default rendering methods, which are provided by the system. These
methods render the source tree in a functional style.

The prototype allows you to declare a matrix as follows:

matrixConfig(elementType(float), shape(msRect), format(mfCArray), rows(dynamic_size),
cols(dynamic_size)) MATRIX aRectangularMatrix;

MATRIX denotes the matrix type. It is annotated by matrixConfig, which specifies matrix
parameters. This declaration is quite similar to what we did in the C++ implementation. The main
difference is that, in contrast to the C++ template solution, the parameter values are specified by
name in any order.

A matrix expression looks exactly like in C++, e.g.:

mFoo = mBar * (mBletch + mFoo - mBar - (mBar * mFoo + mBletch) + (mFoo - mBar));

Figure 187    Sample matrix program using the IP implementation of the matrix component
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Table 115 gives an overview of the library implementation.

Figure 188    Sample matrix program (from Figure 187) displayed using the default rendering
(mmult is the name of the intention representing matrix multiplication and madd the name of the
intention representing matrix addition)

IP document (i.e.
IP file)

Module Contents

ADTs declares intentions representing matrix type, matrix literal,
and all the matrix operations (multiplication, addition,
subtraction, number of rows, number of columns,
subscripts, initialization, etc.)

Config declares intentions representing the DSL parameters and
parameter values (e.g. elementType, shape, format, rect,
lowerTriang, etc.)

matrix interface
(Matrix.ip)

VIs declares virtual intentions for the matrix type (see Section
6.4.3.3)

RenderingAndEditing implements the rendering and editing methods for matrix
type, matrix literal, matrix operations, and matrix
configuration DSL specifications

MatrixTypeTransforms implements processing of a matrix configuration (structure
check, computing defaults, providing a flat configuration
record), generating the data structures for a matrix
according (e.g. C structs) to the configuration record

OperationTransforms implements checking and transforming matrix expressions,
computing the result type of expressions, and generating
operation implementations in C

matrix
implementation
(MatrixImpl.ip)

UI implements a number of dialog boxes, e.g. for entering
matrix configuration descriptions using radio buttons
(optional)  and for setting the number of rows and
columns of a matrix literal

Table 115    Overview of the IP implementation of the matrix library
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The functionality covered by the module MatrixTypeTransforms  corresponds to the configuration
generator and the matrix configuration components. However, there are two main differences:

• The generating part in MatrixTypeTransforms  uses regular C code (mainly if and case
statements) to do the configuration-DSL-to-ICCL mapping.

• Rather than being able to implement the matrix implementation components as class
templates (which are convenient to compose), the MatrixTypeTransforms  has reduce matrix
application code to C, which is much more complex to implement (at the time of developing
the prototype, the implementation of C++ in IP was not complete).

The module OperationTransforms  implements the functionality covered in the operations section
of the C++ implementation (i.e. Section 10.3.1.7). There are functions for computing result types
of expressions, for checking the structure and optimizing an expression, and for generating C
code.

RenderingAndEditing is the only implementation module that does not have its counterpart in the
C++ implementation. This is so since C++ matrix programs are represented by ASCII text and no
special support is needed to display them. On the other hand, the IP prototype provides a more
natural intention for a matrix literal (i.e. the spreadsheet-like initializer of mFoo) than the textual
and passive comma-separated list of numbers provided by the C++ solution (see Section
10.2.5.5). This might seem like a detail, but if we consider adding some specialized mathematical
symbols (e.g. Figure 90), the advantages of the IP editing approach outweigh the simplicity of
the textual, ASCII-based approach.

Compared to template metaprogramming, implementing the matrix library in IP had the following
advantages:

• Metacode is easier to write since you can write it as usual C code.

• Debugging is easier since you can debug metacode using a debugger. You can also debug
the generated code at different levels of reduction.

• You can easily issue error reports and warnings. They can be attached to the source tree
node that is next to where the error occurred.

• It allows you to design new syntax for domain specific abstractions (e.g. the matrix literal).

There were also two main points on the negative side:

• The transformation scheduling protocol of IP used to be quite limiting (see Section 6.4.3.4)
and required complicated and obscure tricks to resolve circular dependencies between
intentions. However, as of writing, the scheduling part of IP has been completely reworked
to remove these limitations.

• The IP APIs for rendering, editing, and transforming are still quite low level. Also, the fact
that we had to reduce to C added a lot of complexity.

A more detailed comparison between the template metaprogramming and the IP approach is
given in Table 116. Please note that the comparison applies to the current C++ compilers and
the current IP System and may look differently in future. Also, this comparison is done in the
context of our programming experiment. There are other features of IP such as code refactoring
and code reengineering which are not considered here.
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10.4 Appendix: Glossary of Matrix Computation Terms
Banded A banded matrix has its nonzero elements within a ‘band’ about the diagonal. The
bandwidth of a matrix A is defined as the maximum of |i-j| for which aij is nonzero. The upper
bandwidth is the maximum j-i for which aij is nonzero and j>i. See diagonal, tridiagonal and
triangular matrices as particular cases. [MM]

Condition number The condition number of a matrix A is the quantity ||A||2 * ||A-1||2. It is a
measure of the sensitivity of the solution of Ax=b to perturbations of A or b. If the condition
number of A is ‘large’, A is said to be ill-conditioned. If the condition number is one, A is said

Criterion Template Metaprogramming Intentional Programming
complexity
limits

The complexity of metaprograms is
limited by the limits of current C++
compilers in handling very deeply
nested templates.

There are no such limits.

debugging
support

There is no debugging support. Metacode can be debugged using a
debugger. Also the generated code can be
debugged at different levels of reduction.

error reporting Inadequate. Error reports and warnings can be attached
directly to source tree nodes close to the
locations where the problems occur.

programming
effort

Due to the lack of debugging
support, error-prone syntax (e.g. lots
of angle brackets), and current
compiler limits, template
metaprograms may require significant
programming effort. On the other
hand, the code to be generated can
be represented as easy-to-configure
class templates.

The current IP system also requires
significant programming effort. This is due
to the low level APIs, e.g. tree editing,
displaying, etc. The system provides only
few declarative mechanisms (e.g. tree quote
and simple pattern matching). Also the
unavailability of the C++ mechanisms
(classes, templates, etc.) adds programming
complexity. On the other hand, the system
can be extended with declarative
mechanisms at any time. This is more
scalable than the template
metaprogramming approach.

readability of
the metacode

Low. Due to the (currently) low-level APIs, the
readability is also low.

compilation
speed

Larger metaprograms (esp. with
recursion) may have unacceptable
compilation times. Template
metaprograms are interpreted.

Since IP has been designed for supporting
metaprogramming, there are no such
problems as with template
metaprogramming (e.g. IP metaprograms are
compiled). Nevertheless, compiling a C
program using a commercial C compiler is
much faster than compiling it using the
current version of IP. This situation is
expected to improve in future versions of IP.

portability/
availability

Potentially wide available, but better
support for the C++ standard is
required. The same applies to
portability.

The IP system is not yet commercially
available. In future, the portability will
depend on the availability of such systems
and interoperability standards.

performance of
the generated
code

Comparable to manually written
code. The complexity of
optimizations is limited by the
complexity limits of template
metaprograms.

Comparable to manually written code or
better. This is so since very complex
optimizations are possible.

displaying and
editing

ASCII Supports two-dimensional displaying,
bitmaps, special symbols, graphics, etc.

Table 116    Comparison between template metaprogramming and IP
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to be perfectly conditioned. The Matrix Market provides condition number estimates based on
Matlab’s condest() function which uses Higham’s modification of Hager’s one-norm method.
[MM]

Defective A defective matrix has at least one defective eigenvalue, i.e. one whose algebraic
multiplicity is greater than its geometric multiplicity. A defective matrix cannot be transformed to
a diagonal matrix using similarity transformations. [MM]

Definiteness A matrix A is positive definite if xT A x > 0 for all nonzero x. Positive definite
matrices have other interesting properties such as being nonsingular, having its largest element
on the diagonal, and having all positive diagonal elements. Like diagonal dominance, positive
definiteness obviates the need for pivoting in Gaussian elimination. A positive semidefinite
matrix has xT A x >= 0 for all nonzero x. Negative definite and negative semidefinite matrices
have the inequality signs reversed above. [MM]

Dense A dense matrix or vector contains a relatively large number of nonzero elements.

Diagonal A diagonal matrix has its only nonzero elements on the main diagonal.

Diagonal Dominance A matrix is diagonally dominant if the absolute value of each diagonal
element is greater than the sum of the absolute values of the other elements in its row (or
column). Pivoting in Gaussian elimination is not necessary for a diagonally dominant matrix.
[MM]

Hankel A matrix A is a Hankel matrix if the anti-diagonals are constant, that is, aij = fi+j for some
vector f. [MM]

Hessenberg A Hessenberg matrix is ‘almost’ triangular, that is, it is (upper or lower) triangular
with one additional off-diagonal band (immediately adjacent to the main diagonal). A
unsymmetric matrix can always be reduced to Hessenberg form by a finite sequence of similarity
transformations. [MM]

Hermitian A Hermitian matrix A is self adjoint, that is AH = A, where AH, the adjoint, is the
complex conjugate of the transpose of A. [MM]

Hilbert The Hilbert matrix A has elements aij = 1/(i+j-1). It is symmetric, positive definite, totally
positive, and a Hankel matrix. [MM]

Idempotent A matrix is idempotent if A2 = A. [MM]

Ill conditioned An ill-conditioned matrix is one where the solution to Ax=b is overly sensitive to
perturbations in A or b. See condition number. [MM]

Involutary A matrix is involutary if A2 = I. [MM]

Jordan block The Jordan normal form of a matrix is a block diagonal form where the blocks are
Jordan blocks. A Jordan block has its nonzeros on the diagonal and the first upper off diagonal.
Any matrix may be transformed to Jordan normal form via a similarity transformation. [MM]

M-matrix A matrix is an M-matrix if aij <= 0 for all i different from j and all the eigenvalues of A
have nonnegative real part. Equivalently, a matrix is an M-matrix if aij <= 0 for all i different from j
and all the elements of A-1 are nonnegative. [MM]

Nilpotent A matrix is nilpotent if there is some k such that Ak = 0. [MM]

Normal A matrix is normal if A AH = AH A, where AH is the conjugate transpose of A. For real
A this is equivalent to A AT = AT A. Note that a complex matrix is normal if and only if there is a
unitary Q such that QH A Q is diagonal. [MM]
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Orthogonal A matrix is orthogonal if AT A = I. The columns of such a matrix form an orthogonal
basis. [MM]

Rank The rank of a matrix is the maximum number of independent rows or columns. A matrix of
order n is rank deficient if it has rank < n. [MM]

Singular  A singular matrix has no inverse. Singular matrices have zero determinants. [MM]

Sparse A sparse matrix or vector contains only a relatively small number of nonzero elements
(often less than 1%).

Symmetric/ Skew-symmetric A symmetric matrix has the same elements above the diagonal as
below it, that is, aij =  aj i, or A = AT. A skew-symmetric matrix has aij = -aj i, or A = -AT;
consequently, its diagonal elements are zero. [MM]

Toeplitz A matrix A is a Toeplitz if its diagonals are constant; that is, aij = fj-i for some vector f.
[MM]

Totally Positive/Negative  A matrix is totally positive (or negative, or non-negative) if the
determinant of every submatrix is positive (or negative, or non-negative). [MM]

Triangular An upper triangular matrix has its only nonzero elements on or above the main
diagonal, that is aij=0 if i>j. Similarly, a lower triangular matrix has its nonzero elements on or
below the diagonal, that is aij=0 if i<j. [MM]

Tridiagonal A tridiagonal matrix has its only nonzero elements on the main diagonal or the off-
diagonal immediately to either side of the diagonal. A symmetric matrix can always be reduced
to a symmetric tridiagonal form by a finite sequence of similarity transformations.

Unitary A unitary matrix has AH = A-1. [MM]

10.5 Appendix: Metafunction for Evaluating Dependency
Tables
The following metafunction evaluates dependency tables (see Section 10.3.1.6). This
implementation does not use partial template specialization.

/*******************************************************************************
         file:       table.h

         author:     Krzysztof Czarnecki, Johannes Knaupp
         date:       August 25, 1998

         contents: declaration of meta function EVAL_DEPENDENCY_TABLE which
                     finds the first matching entry in a selection table.
*******************************************************************************/

#ifndef TABLE_H
#define TABLE_H

#pragma warning( disable : 4786 )      // disable warning: identifier shortened
                                       // to 255 chars in debug information

#include "IF.H"

//****************************** helper structs ********************************

struct Nil {};

//endValue is used to mark the end of a list
//anyValue represents a value that matches anything
enum { endValue = ~(~0u >> 1),         // least signed integer value
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       anyValue = endValue + 1        // second least int
     };

//End represents the end of a list
struct End
{
   enum    { value = endValue };
   typedef End Head;
   typedef End Tail;
};

// ResultOfRowEval is used a struct for returning two result values
template< int found_, class ResultList_ >
struct ResultOfRowEval
{
   enum    { found = found_ };
   typedef ResultList_ ResultList;
};

//helper struct for error reporting
struct ERROR__NoMatchingTableRow
{
   typedef ERROR__NoMatchingTableRow ResultType;
};

//***************************** syntax elements ********************************

template< class ThisRow, class FollowingRows = End >
struct ROW
{
   typedef ThisRow         Head;
   typedef FollowingRows   Tail;
};

template< int value_, class FurtherCells = End >
struct CELL
{
   enum    { value = value_ };
   typedef FurtherCells  Tail;
};

template< class ThisResultType, class FurtherResultTypes = End >
struct RET
{
   typedef ThisResultType        ResultType;
   typedef FurtherResultTypes    Tail;
   enum    { value = endValue };
};

//************************* metafunction for evaluating a single row ***************************

template< class HeadRow, class TestRow >
class EVAL_ROW
{  //replace later by a case statement
      typedef HeadRow::Tail HeadTail;
      typedef TestRow::Tail RowTail;

      enum { headValue = HeadRow::value,
             testValue = TestRow::value,
             isLast    = (HeadTail::value == endValue),
             isMatch   = (testValue == anyValue) || (testValue == headValue)
           };

      typedef IF< isLast,
                  ResultOfRowEval< true, RowTail >,
                  EVAL_ROW< HeadTail, RowTail >::RET
                >::RET ResultOfFollowingCols;
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   public:
      typedef IF< isMatch,
                  ResultOfFollowingCols,
                  ResultOfRowEval< false, ERROR__NoMatchingTableRow >
                >::RET RET;
};

template<>
class EVAL_ROW< End, End >
{
public:
   typedef Nil RET;
};

//******************* meta function EVAL_DEPENDENCY_TABLE **********************

template< class HeadRow, class TableBody >
class EVAL_DEPENDENCY_TABLE
{
      typedef EVAL_ROW< HeadRow, TableBody::Head >::RET RowResult;
      typedef RowResult::ResultList  ResultList;
      typedef TableBody::Tail        FurtherRows;

      enum { found    = RowResult::found,
             isLastRow = (FurtherRows::Head::value == endValue)
           };

      //this IF is used in order to map the recursion termination case onto <End, End>.
      typedef IF< isLastRow, End, HeadRow >::RET HeadRow_;

      typedef IF< isLastRow,
                  ERROR__NoMatchingTableRow,
                  EVAL_DEPENDENCY_TABLE< HeadRow_, FurtherRows >::RET_List
                >::RET NextTry;

   public:
      //returns the whole result row (i.e. the RET cells of the matching row)
      typedef IF< found, ResultList, NextTry >::RET RET_List;

      //returns the first RET cell of the matching row
      typedef RET_List::ResultType RET;
};

template<>
class EVAL_DEPENDENCY_TABLE< End, End >
{
public:
   typedef Nil RET_List;
};

#endif   // #ifndef TABLE_H

The following file demonstrates the use of EVAL_DEPENDENCY_TABLE:

/*******************************************************************************
         File:       table.cpp
         Author:     Krzysztof Czarnecki, Johannes Knaupp
         Date:       August 25, 1998

         Contents:   test of meta function EVAL_DEPENDENCY_TABLE which
                     finds the first matching entry in a selection table.
*******************************************************************************/

#include "iostream.h"
#include "table.h"
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//a couple of types for testing
template< int val_ >
struct Num
{
   enum { val = val_ };
};

typedef Num< 1 > One;
typedef Num< 2 > Two;
typedef Num< 3 > Three;
typedef Num< 4 > Four;

void main ()
{
   // test with a single return type
   typedef EVAL_DEPENDENCY_TABLE
           //***********************************************************
           <            CELL<    1,    CELL<    2                                        > >

           , ROW< CELL<    1,    CELL<    3,       RET<    One     > > >
           , ROW< CELL<    1,    CELL<    3,       RET<    Two     > > >
           , ROW< CELL<    1,    CELL<    2,       RET<    Three  > > >
           , ROW< CELL<    1,    CELL<    3,       RET<    Four    > > >
           //***********************************************************
           > > > > >::RET Table_1;

   cout << Table_1::val << endl; //prints “3”

   // test with two return types
   typedef EVAL_DEPENDENCY_TABLE
           //*******************************************************************
           <            CELL<     4,    CELL<   7                                                       > >

           , ROW< CELL<     3,    CELL<   7,      RET< Three,  RET<  Four > > > >
           , ROW< CELL<     4,        CELL<   5,      RET<  Four, RET< Three > > > >
           , ROW< CELL< anyValue, CELL<   7,      RET<  One, RET< Two  > > > >
           , ROW< CELL< anyValue, CELL< anyValue, RET<  Two, RET< One  > > > >
           //*******************************************************************
           > > > > >::RET_List ResultRow;

   typedef ResultRow::      ResultType ReturnType_1;
   typedef ResultRow::Tail::ResultType ReturnType_2;

   cout << ReturnType_1::val << '\t' << ReturnType_2::val << endl; //prints “1 2”

}
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Chapter 11 Conclusions and Outlook

The goal of this work was both to develop the concepts behind Generative Programming (GP)
and to test them on a case study. However, it should be noted that GP is in its early
development stage and much more theoretical and practical work is required. Nonetheless, this
thesis provides a number of useful results and conclusions:

• Currently the only methods adequately addressing the issue of development for reuse are
Domain Engineering (DE) methods. Furthermore, most existing DE methods have
essentially the same structure. We found Organization Domain Modeling (Section 3.7.2) to
be a well-documented, publicly available DE method which integrates aspects of many
other DE methods.

• The main difference between OOA/D methods and DE methods is that the first focus on
developing single systems while the latter on developing families of systems.

• DE methods and OOA/D methods are perfect candidates for integration. OOA/D methods
provide useful notations and techniques for system engineering, but they do not address
development for reuse. The integration of DE and OOA/D provides us with effective
engineering methods for reuse that have the benefits of OOA/D methods.

• Feature modeling is the main contribution of Domain Engineering to OOA/D. Feature
models represent the configurability aspect of reusable software at an abstract level, i.e.
without committing to any particular implementation technique such as inheritance,
aggregation, or parameterized classes. Developers construct the initial models of the
reusable software in the form of feature models and use them to guide the design and
implementation. To a reuser, on the other hand, feature models represent an overview of
the functionality of the reusable software and a guide to configuring it for a specific usage
context.

• Achieving high intentionality, reusability, and performance in the implementation requires
capabilities traditionally absent in programming languages such as domain-specific
optimizations, domain-specific error handling, domain-specific syntax extensions, new
composition mechanisms, etc. Modularly extensible compilers and programming
environments allow programmers to incorporate these capabilities into the compilation
process. Some tools also support domain-specific debugging, displaying, and editing.

• Template metaprogramming in C++ represents a practical alternative to extensible
compilers. This approach allows us to build a wide range of generators in C++ without the
need to modify the compiler. Template metaprogramming can be combined with many
different generic and component-based C++ programming techniques based on templates.
Unfortunately, the complexity of template metaprograms is limited by current compiler
limits, compilation times, and debugging problems. The problems with compiler limits and
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portability will decrease as more and more compilers will conform to the ANSI/ISO
standard.

• Aspect-Oriented Programming (AOP) provides concepts and techniques for achieving a
better separation of concerns both in the design and in the implementation of a piece of
software. AOP can be incorporated into Domain Analysis by means of feature starter sets.
On the implementation side, AOP fits very well with the idea of modularly extendible
compilers and programming environments.

• We found that different categories of domains will require different, specialized DE
approaches. In this thesis, we developed DEMRAL, a concrete approach for the category
of algorithmic domains.

• The Domain Engineering Method for Reusable Algorithmic Libraries (DEMRAL) covers the
analysis, design, and implementation of algorithmic libraries such as numerical libraries,
image processing libraries, and container libraries. It is based on novel concepts such as
feature starter sets and configuration and expression DSLs.

• DEMRAL was tested by applying it to the domain of matrix computation libraries. The
result is the Generative Matrix Computation Library (GMCL). The C++ implementation of
the matrix component (which is a part of C++ GMCL) comprises only 7500 lines of C++
code, but it is capable of generating more than 1840 different kinds of matrices. Despite the
large number of provided matrix variants, the performance of the generated code is
comparable with the performance of manually coded variants. The application of template
metaprogramming allowed a highly intentional library API and a highly efficient library
implementation at the same time. The implementation of GMCL within the Intentional
Programming system (IP) demonstrates the advantages of IP, particularly in the area of
debugging and displaying, and shows the need for providing higher-level programming
abstractions in IP.

Areas for future work include the following:

• Analysis and Design for GP;

- methods for different categories of domains (e.g. distributed and business information
systems);

- testing DEMRAL on other algorithmic domains (e.g. image processing);

• industrial strength extendible compilers and programming environments;

• testing techniques and metrics for GP.
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