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Abstract

The benefits of following a product line approach to develop similar software systems are well docu-
mented. Nevertheless, some case studies have revealed significant barriers to adopt such approach. In
order to minimize the paradigm shift between conventional software engineering and software product
line engineering, this paper presents a new development process where the products of a domain are
made by analogy to an existing product. Furthermore, this paper discusses the capabilities and limita-
tions of different techniques to implement the analogy relation and proposes a new language to overcome
such limitations.

1 Introduction

Software Product Line (SPL) engineering has become an important and widely used approach for the effi-
cient development of whole portfolios of software products [1, 2]. The fundamental idea of the approach
is to undertake the development of a set of products as a single, coherent development activity. Although
the benefits of using a SPL in matter of quality, productivity and time-to-market are well documented
[3, 4, 5], some case studies have revealed significant barriers to adopt the SPL approach. For example, in its
successful Diesel Engine SPL, Cummins stopped all product deployments for six months [6]. As Krueger
argues [7], many organizations can not afford to slow or stop production for six months, even if the poten-
tial return of investment is huge. In order to minimize the paradigm shift between conventional software
engineering and SPL engineering, Krueger identifies three prominent adoption models:

1. The proactive approach, also named big bang approach [8], is like the waterfall approach to conven-
tional software: all product variations on the foreseeable horizon up front are analyzed, designed,
and implemented.

2. The reactive approach is like the spiral or extreme programming approach to conventional software:
one or several product variations on each development spiral are analyzed, designed and imple-
mented.

3. The extractive approach reuses one or more existing software products for the product line initial
baseline.
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The reactive approach is appropriated when it is difficult to predict the requirements for product variations
or if organizations must maintain aggressive production schedules with few additional resources during
the transition to a product line approach. The extractive approach is very effective for an organization that
wants to quickly transition from conventional to SPL engineering.

In this paper, we propose the Exemplar Driven Development (EDD) process to develop SPLs, which
adopts reactive and extractive approaches. EDD takes advantage of the similarities among domain prod-
ucts to make them by analogy. The starting point of EDD is any domain product built using conventional
software engineering. Implicitly, this exemplar implements the intersection of all the domain product re-
quirements. Next, the exemplar is flexibilized to satisfy the domain variable requirements that are out of
the intersection. That is, an analogy relation is defined in a formal way to derive products automatically
from the exemplar. The result of the exemplar flexibilization is a Domain Specific Language (DSL) compiler
[9, 10], which is used during application engineering to get the products automatically. EDD is extractive
because reuses existing exemplars as product line initial baseline and is reactive because proposes do-
main engineering [11] as an incremental activity where flexibilization layers, which implement variable SPL
requirements, are added to the exemplar in successive development cycles.

Furthermore, this paper shows how to implement the exemplar flexibilization. Code Generation is
an increasing popular technique for implementing SPLs that produces code from abstract specifications
written in DSLs [12, 13, 14]. The next paradox usually comes up when a DSL compiler is developed: a DSL
is a specialized, problem-oriented language. From the point of view of the DSL user, it is interesting that DSL
is as abstract as possible (supporting the domain terminology and removing the low-level implementation
details). On the other hand, from the point of view of the compiler developer, the DSL abstraction makes
harder to build the compiler. That is, the further DSL specifications are from the final code, the more difficult
is to transform them into final code.

We propose to solve such paradox by taking advantage of a common property to all DSL compilers: the
similarities among the final products (i.e., domain product commonalities are the main reason to develop
the products jointly as a family, instead of one by one). Instead of synthesizing the final code from scratch
or transforming a distant input specification, we suggest to obtain the final products adapting a previously
developed domain product to satisfy the input DSL specifications: the exemplar. Figure 1 illustrates this
approach, where the generator of a DSL compiler is another compiler which is used to adapt an exemplar
according to the DSL source specifications. The figure also represents a possible decomposition of this
subcompiler into subgenerators responsible of different sorts of variability.

Template languages, such as XPand of openArchitectureWare1[15] or XVCL [16], implicitly use this ap-
proach, since a text template can be viewed as a piece of an exemplar with slots. The exemplar code
that is common to all the domain products is maintained in the template, whereas the variable code is
replaced by slots, that are filled with metacode which specifies how code must change. Unfortunately,
code and metacode are strongly coupled in templates. Indeed, as argued in [17], some domain variability
should be implemented as crosscutting concerns. When a template engine does not support Aspect Ori-
ented Programming (AOP) [18, 19, 20], templates may suffer metacode tangling (multiple variable concerns
implemented simultaneously in a template) or metacode scattering (a variable concern implemented in
multiple templates).

To overcome the templates coupling problem, the metacode should be kept out of the exemplar code.
In this case, the exemplar might be processed at:

• lexical level, using regular expressions [21]. Nevertheless, though regular expressions can manage
text in an agile way, they have serious limitations because they are internally implemented as state
machines without memory and cannot manage nested or balanced constructs [22].

• syntactical level, using a metaparser such as ANTLR [23] or a transformation language such as Strat-

1see “openArchitectureWare User Guide Version 4.3.1”, available at http://www.openarchitectureware.org
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Figure 1: DSL compiler based on the transformation of a domain exemplar

ego [24] or Tom [25]. However, in most cases the simplicity of the exemplar changes does not justify
to waste time neither defining the exemplar language grammar nor working with Abstract Syntax
Trees (ASTs) [26, 27].

We propose an intermediate solution, the Exemplar Flexibilization Language (EFL) [28], that provides
new operators to overcome the regular expressions limitations. EFL also supports the integration with
parsers to manage marginal complex exemplar modifications. Besides, EFL supports the implementation
of crosscutting generators, that manage variability scattered over the exemplar, and the decomposition and
combination of generators.

The remainder of the paper is structured as follows. Section 2 summarizes EDD. Section 3 describes
EFL. Section 4 exemplifies the flexibilization capabilities and limitations of different techniques that are
currently used to generalize code, and how EFL overcomes such limitations. Finally, section 5 sums up the
conclusions of our work.

2 Exemplar Driven Development

The decision of building a family of systems by using a SPL approach is usually taken when repetitive work
is detected in a domain or when business opportunities are identified in the extension of a successful
product. Therefore, when the SPL development starts there is often available an exemplar of the domain.

Figure 2 depicts EDD, which tries to maximize the reuse of this exemplar applying intensively the idea
of analogy in all the domain engineering activities.

1. Domain analysis. EDD domain analysis is based on the exemplar analysis. Since mandatory features,
common to all domain products, are implemented by the exemplar, domain analysis is focused on
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identifying the variable features, looking for the differences between the exemplar requirements and
the requirements of the remaining products.

2. Domain design. EDD derives SPL architecture from the exemplar architecture. Domain design spec-
ifies what adaptations of the exemplar design are necessary to transform it into any other product
design.

3. Domain implementation. The exemplar is flexibilized to provide its automatic adaptation to satisfy
input DSL specifications. The implementation techniques to flexibilize the exemplar should support
the next desirable capabilities:

(a) Non–invasiveness. Figure 3 shows how EDD integrates with the Boehm’s spiral lifecycle model
[29]. In the first development cycle, an exemplar is built using conventional software engineering.
In the next successive cycles, flexibilization modules are added to the exemplar in order to
introduce the domain variability. When flexibilization modules are not invasive to the exemplar,
there is no manual modification of it, facilitating the SPL evolution.

(b) Crosscutting flexibilizations. As argued in [17], some domain variability should be implemented
as crosscutting concerns. In the EDD context, the case where one flexibilization module adapts
many modules of the exemplar implementation should be supported.

(c) Applicable to any kind of software artifact. It should be supported the flexibilization of the
exemplar documentation, test cases...

(d) Run–time efficient management of the variability. For example, providing the parametrization
of the inter-product variability before the products runtime.

In order to implement the exemplar flexibilization, different techniques commonly used to generalize
code may be used. Such techniques can be classified as internal and external.

1. With internal techniques the flexibilization is implemented using the mechanisms available in the
language where the exemplar is written (e.g., using inheritance, genericity, aspects...).

2. With externals techniques the flexibilization is implemented using a different language or tool.

In section 4, we will show how to flexibilize an exemplar using some internal and external techniques
typically used to generalize code, identifying their limitations. To overcome such limitations we propose
EFL, which is described in the following section.

3 Exemplar Flexibilization Language

A technique for quickly developing a DSL interpreter is embedding it into a dynamic general purpose
language [9]. This way, all the host language capabilities are implicitly available from the DSL. However,
the pay-off is that the DSL concrete syntax has to fit in the host language concrete syntax. EFL is currently
implemented applying this technique: it is a library of the Ruby object oriented language. EFL is freely
available at http://rubyforge.org/projects/efl . As we will see, thanks to Ruby’s extensibility, the
EFL concrete syntax is reasonably usable.
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Figure 2: Overview of the EDD process

Figure 3: EDD integration with the Boehm’s spiral lifecycle model
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3.1 Defining Generators

Figure 4 shows a simplified EFL metamodel. EFL supports the writing of generators that transform input
exemplar files into output final product files according to input DSL specifications. EFL generators are
written as Ruby classes that extend from the Generator class. This way, generators can be easily reused
by mean of the Ruby composition and inheritance capabilities. Alternatively, the following syntactic sugar
to write generators as objects of the Generator class is also available:

my_generator = generator {
<< generator definition >>

}

A generator definition is composed of substitutions, productions and generations:

1. A substitution describes the interchange of an exemplar code pattern, expressed with a regular ex-
pression, to new code. Due to EFL is embedded in Ruby, regular expressions are written in the Ruby
notation (delimited with the / symbol). For instance, my_regexp = /code/. Crosscutting generators
often apply the same substitutions over different exemplar files. To avoid the repetitive writing of
substitutions and support their reuse, substitutions are independent from the exemplar files and the
final product files. The main Generator methods to define substitutions are:

• sub(reg_exp, text, name = nil)

Optionally, substitutions, productions and generations can be named using the name string.

• gsub(reg_exp, text, name = nil)

A local substitution (sub) expresses the interchange of the first occurrence of the reg_exp regular
expression to the text string. A global substitution (gsub) expresses the interchange of all the
reg_exp occurrences. Additionally, the Generator class provides the next methods:

• del and gdel to delete code from the exemplar.

• before and gbefore to insert code before the reg_exp occurrences.

• after and gafter to insert code after the reg_exp occurrences.

Besides, the EFL substitution capabilities can be easily extended adding the correspondending meth-
ods to the Generator class.

2. A production describes the application of a substitution list to an exemplar file to produce a final
product file. Generator provides the next method to define productions:

• prod(input_file, output_file,
sub_list = nil, name = nil) The order of the substitutions in sub_list is irrelevant. If
the sub_list is not specified, it will contain implicitly all the substitutions defined before the
current production.

EFL supports the detection of undesirable overlaps among the code patterns of the sub_list substi-
tutions.

3. A generation executes a list of productions. Generator provides the next method for generations:

• gen(prod_list = nil) The order of the productions in prod_list is irrelevant. If prod_list
is not specified, it will contain implicitly all the productions defined before the current genera-
tion.

EFL supports the detection of undesirable collisions among the productions of a generation.
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Figure 4: Simplified EFL metamodel

3.2 Combining Generators

For writing complex exemplar transformations, EFL provides the next binary operators to combine two
generators g1 and g2:

1. Sequence. Executes g1 first and g2 later:

g1.gen
g2.gen

2. Add. Returns a new generator which substitutions and productions are the union of the substitutions
and productions of g1 and g2:

(g1 + g2).gen

3. Superposition. Updates the substitutions and productions of g1 with the substitutions and produc-
tions of g2. Those with the same name are overwritten and the remaining ones are added:

(g1 << g2).gen

Moreover, these operators can be combined among them. For example, you can write: ((g1 << g2) + g3 + g4).gen

3.3 EFL Capabilities to Overcome the Regular Expressions Limitations

3.3.1 The Zoom Operator

There are two main types of regular expressions engines: the Deterministic Finite Automaton (DFA) and
the Nondeterministic Finite Automaton (NFA). Being irrelevant for DFA engines how the regular expressions
are written, the behaviour of NFA engines, however, depends on the representations of the regular expres-
sions (e.g., a NFA engine follows different ways to match the equivalent regular expressions regexp1 =
/to(ni(ght|te)|knight)/ and regexp2 = /tonite|toknight|tonight/ against the “tonight" string).
According to Friedl [30], most of the programming languages implement NFA engines because give more

7



Draft version of the paper published in Expert Systems with Applications, doi:10.1016/j.eswa.2012.05.004

control to the programmer, since the representation of a regular expression sets the way the NFA engine
backtracks during the matching resolution. Besides, NFA engines provide interesting features, such as
capturing parentheses and the associated backreferences ($1, $2...), and lazy quantifiers.

Writing a complex and time-efficient regular expression for a NFA engine may be quite hard. To simplify
this work, EFL provides the zoom operator (>) that supports the step-by-step writing of regular expressions.
Thanks to this operator, regular expressions can be chained to progressively specify a text pattern; i. e.,
the expression:

regexp1 > regexp2 > regexp3 >
... > regexpN
matches the regexp2 against the text matched by the regexp1, the regexp3 against the text matched

by the regexp2, etcetera.

3.3.2 Anti-patterns

Sometimes, it is useful to express a pattern in negative terms: instead of specifying the features we are
interested in, describing characteristics to exclude some matching candidates. To support the writing of
such anti-patterns, many regular expression engines provide the next constructs:

• The negated character class [^...], which matches any character that is not listed into the character
class.

• The negatives look-ahead (?!...) and look-behind (?<!...) These look-around constructs do not
“consume" any text, but they look forward or backward to “see" if their subexpressions cannot be
matched. For example, the evaluation of the /Ruben (?!Heradio)/ regular expression against the
“Ruben Garcia" string only matches the text “Ruben" (i.e. the negative look-ahead queries if anything
different of “Heradio" follows “Ruben", but does not consume “Garcia"). Unfortunately, Ruby does
not support the negative look-behind construct.

EFL provides two new constructs for writing anti-patterns:

1. Complement (o) is an unary-operator that inverts the matching of a regular expression. That is,
o(regexp1) > regexp2 matches the regexp2 out of the text matched by the regexp1.

2. Minus (-) is a binary-operator that excludes candidates for matching. That is, regexp1 - regexp2
captures the text that is matched by the regexp1 but not matched by the regexp2.

Sometimes, it is quite hard “to find the precise regular expression", general enough to match all the
text of interest and particular enough to ignore the rest. Using the minus operator, this problem can
be solved in several steps: first, a more general regular expression is written without worrying about
catching some undesirable text and, then, the matching is progressively adjusted by subtracting one
or more particular regular expressions.

Figure 5 illustrates several examples of the zoom, complement and minus operators. The top row shows
several regular expressions built combining these operators and the bottom row highlights the result of
matching the regular expressions against a given text.

3.3.3 Managing Nested Constructs

As it was mentioned in the introduction, regular expressions cannot actually manage nested or balanced
constructs because they are internally implemented as state machines without memory. For example, a
regular expression for matching any number of balanced parentheses cannot be written, because when the
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Figure 5: Examples of the zoom, complement and minus operators

state machine finds the first close-parenthesis, is not able to “remember" how many open-parentheses has
processed before. However, it is possible to write a regular expression for matching until a fixed number
of balanced parenthesis. For example, the next three regular expressions match until one, two and three
balanced parentheses respectively:

1. /[(]([^()])*[)]/

2. /[(]([^()] | [(]([^()])*[)] )*[)]/

3. /[(]([^()] | [(]([^()] |
[(]([^()])*[)])*[)])*[)]/

Writing a /[(] ...[)]/ regular expression for each particular case is quite hard and repetitive. For-
tunately, this work can be automatized using the Ruby meta-programming capabilities. For example, the
nested_parentheses function in Figure 6 receives a levels number of balanced parentheses and gener-
ates the corresponding regular expression. For example, a regular expression for ten balanced parentheses
would be obtained with nested_parentheses(10). Internally, this method makes a string that contains
the Ruby code for the corresponding regular expression and, then, calls the eval method for asking to the
Ruby interpreter to evaluate the string (i.e., we are writing Ruby code that: (i) writes more Ruby code and
(ii) executes the new code).

1 def nested_parentheses(levels)
2 eval(’@level0 = "[(]([^()’ + ’])*[)]"’)
3 (1..(levels-2)).reject {|i|
4 eval("@level#{i}" + ’= "[(]([^()’ +
5 ’] | #{@level’ + "#{i-1}" + ’} )*[)]"’)
6 }
7 if levels > 1 then
8 eval("@level#{levels-1}" +
9 ’= /[(]([^()’ +’] | #{@level’ +

10 "#{levels-2}" + ’} )*[)]/mx’)
11 eval "return @level#{levels-1}"
12 else
13 eval "return /#{@level0}/mx"
14 end
15 end

Figure 6: Generating regular expressions to match nested parentheses
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3.3.4 EFL Integration with Parsers and Text Template Engines

Sometimes, regular expressions are not the best way to write certain exemplar changes. You may want to
work at syntactical level (i.e., against a AST) or to use a text template.

Since EFL is embedded in Ruby, EFL generators can integrate parsers (Racc2 and Rockit3) are two cur-
rently available metaparsers for Ruby) and text templates (ERB4 is a valuable text template engine for Ruby).
Figure 7 shows how to do this inside substitutions, maintaining the EFL support for detecting undesirable
overlaps among the substitutions of a production and the possible collisions among the productions of a
generation. The first substitution parameter is a very general regular expression that sets the exemplar
scope for the parser or the template. The second parameter calls the parser or the template engine for
processing the scoped text and producing the new code. Note that the scope is captured with parentheses
and then is passed to the parser or the template through the associate backreference ($1).

Figure 7: Example of how to integrate a parser or a text template with EFL

4 Example: a SPL for List Containers

This section solves a simplified version of the “list container” example proposed in [31] using different
flexibilization techniques. The aim of the example is to develop a portfolio of list containers written in

2http://rubyforge.org/projects/racc/
3http://sourceforge.net/projects/rockit/
4http://raa.ruby-lang.org/project/erb/
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C++. The PL scope is modeled in Figure 8 by a Feature Diagram (FD), which is a widely used notation to
depict the commonalities and variabilities of the products supported by a PL [32, 33]. A FD is represented
as a hierarchically arranged set of features with different relations among those features. Figure 8 includes
three kinds of relations: mandatory (pointed by simple edges ending with a filled circle; e.g., all Lists in the
portfolio have a Ownership feature), alternative (pointed by edges connected by an arc; e.g., External ref-
erence, Owned reference and Copy are the mutually exclusive values for Ownership) and optional (pointed
by simple edges ending with an empty circle; e.g., a List may have the Tracing feature). In this particular
example, the meanings of the features are:

1. ElementType specifies the type of the elements stored in the list.

2. Ownership specifies how a list stores its elements:

(a) External reference: the list keeps references to the original elements and is not responsible for
element deallocation.

(b) Owned reference: the list keeps references and is responsible for element deallocation.

(c) Copy: the list keeps copies of the original elements and is responsible for their allocation and
deallocation.

3. LengthCounter specifies if there is available a counter of type LengthType to know the length of the
list.

4. Tracing indicates if a list traces its operation by logging function calls to the console.

Figure 8: Feature diagram that models a SPL of list containers

Lets suppose that the exemplar of Figure 9, which implements in C++ the shadowed features in Figure
8, is available at the beginning of the SPL development. According to the EDD approach, an analogy relation
will be defined to automatically derive the remaining products from the exemplar.
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1 class List {
2 private:
3 MyClass* head_;
4 List* tail_;
5 int length_;
6 public:
7 List(MyClass&h, List *t=0):
8 head_(0), tail_(t), length_(computedLength())
9 { setHead(h); }

10 ~List()
11 { delete head_; }
12 void setHead(MyClass& h)
13 {
14 cout << "setHead(" << h <<")" << endl;
15 head_ = new MyClass(h);
16 }
17 MyClass& head()
18 {
19 cout << "head()" << endl;
20 return *head_;
21 }
22 void setTail(List *t)
23 {
24 cout << "setTail(t)" << endl;
25 tail_ = t;
26 length_ = computedLength();
27 }
28 List *tail() const
29 {
30 cout << "setTail(t)" << endl;
31 return tail_;
32 }
33 const int& length() const
34 { return length_; }
35 private:
36 int computedLength() const
37 { return tail()?tail()->length()+1:1; }
38 };

Figure 9: An existing exemplar: a list of elements of type MyClass that implements features Copy Owner-
ship, int LengthCounter and Tracing
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4.1 Flexibilization with internal techniques

Internal techniques provide an easy way to express the exemplar adaptations (i.e., they avoid the manipula-
tion of intermediate representations of the exemplar such as abstract syntax trees) and take full advantage
of the built-in facilities of the exemplar implementation language (for example, the host language type
system can help us to detect flexibilization errors). However, this approach has several disadvantages:

• The flexibilization of any kind of software artifact should be supported. Unfortunately, some artifacts
are written in languages with reduced capability to manage the variability (for example, think about
the flexibilization of HTML documentation using HTML).

• Most of the variability mechanisms available in the current programming languages are able to per-
form only a certain kind of flexibilizations. On the other hand, one flexibilization can be made using
different mechanisms. As a consequence, many flexibilizations get complicated because require the
combined use of several mechanisms or choosing among alternative mechanisms (the difficulties to
choose the best variability mechanism for a given problem are illustrated in the chapter 6 of [34],
where Coplien tries to systematize such election).

C++ provides two ways of parametrizing types: genericity and inheritance. Nevertheless, both mecha-
nisms are invasive (i.e., the lines 3, 5, 7, 12, 15, 17, 33 and 36 in the Figure 9 have to be changed). Whereas
the inheritance flexibilization uses abstract classes and late binding, genericity manages the inter-product
variability at compile-time. Figure 10 shows a new version of the exemplar, where feature ElementType is
implemented using genericity (i.e., C++ templates).

Sections 4.1.1 and 4.1.2 discuss how to implement the exemplar flexibilization for the features Owner-
ship, LengthCounter and Tracing by using inheritance and aspects respectively.

4.1.1 Inheritance

The flexibilizations related to Ownership, LengthCounter and Tracing can be implemented in classes that
inherit from the exemplar. These classes will non-invasively adapt the exemplar adding and overwriting
methods and attributes. However, the flexibilization requires the following adaptations, not supported by
the inheritance mechanism:

1. Removing attributes, expressions, sentences and methods from the base class. For example, to gen-
erate a list container without length counter the next elements should be deleted in Figure 9: at-
tribute length_ in line 5, expression length_(computedLength()) in line 8, sentence length_ =
computedLength() in line 26 and, methods length and computedLength in lines 33–37.

2. Changing the private attributes and methods on the base class to protected, to make them accessible
from the derived classes.

3. Modifying the base class destructor. The C++ compiler ensures that all destructors are always called
(see chapter 14 in [35]). Base class destructor ~List should be modified to prevent the element
deallocation in list containers with external reference.

Therefore, inheritance has a limited flexibilization power that involves changing the exemplar by hand
(i.e., it is invasive). Figure 10 shows the new exemplar resulting from such manipulation.

Figure 11 shows a flexibilization of the new exemplar based on multiple inheritance, where classes
ExtRefList, OwnRefList and CopyList implement feature Ownership; class LengthCounterList imple-
ments feature LengthCounter; and class TracingList class implements feature Tracing. Figure 11 also
exemplifies how to get a list container MyList with Copy ownership, LengthCounter and Tracing.

13



Draft version of the paper published in Expert Systems with Applications, doi:10.1016/j.eswa.2012.05.004

1 template <class ElementType>
2 class List {
3 protected:
4 ElementType* head_;
5 List<ElementType>* tail_;
6 public:
7 List(ElementType&h, List<ElementType> *t=0)
8 {
9 setHead(h);

10 setTail(t);
11 }
12 virtual void setHead(ElementType& h) = 0 {};
13 virtual ElementType& head()
14 {
15 return *head_;
16 }
17 virtual void setTail(List<ElementType> *t)
18 {
19 tail_ = t;
20 }
21 List<ElementType> *tail() const
22 { return tail_; }
23 };

Figure 10: Exemplar manipulated to make possible the flexibilizations based on inheritance and AOP (using
AspectC++)

Figure 11: Exemplar flexibilization based on multiple inheritance

14



Draft version of the paper published in Expert Systems with Applications, doi:10.1016/j.eswa.2012.05.004

However, this solution has a drawback: multiple inheritance introduces ambiguity that the compiler
can not solve. For example, when method setTail of the class MyList is called, the compiler is unable to
decide between the execution of the method setTail of LengthCounterList or the execution of setTail
of TracingList. This ambiguity can be solved using single inheritance instead of multiple inheritance.
But, as Figure 12 shows, such solution introduces excessive redundancy (i.e., a combinatory explosion of
classes). Finally, Figure 13 shows how the multiple inheritance and the single inheritance redundancy
can be avoided applying parametrized inheritance (i.e., using genericity to parametrize the base classes of
LengthCounterList and TracingList).

Figure 12: Exemplar flexibilization based on single inheritance
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Figure 13: Exemplar flexibilization based on parametrized inheritance
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4.1.2 Aspect Oriented Programming

The flexibilizations related to Ownership, LengthCounter and Tracing can be implemented as aspects that
crosscut the exemplar. However, the available Aspect Oriented Programming (AOP) extensions to pro-
gramming languages often have limitations that hinder totally non-invasive flexibilizations. For example,
the only structural changes that AspectC++ supports are: (1) the addition of attributes and methods to a
class, and (2) the change of the base class of a given class5. So, an ApectC++ flexibilization would imply to
manipulate the exemplar to transform it into Figure 10. Besides, AspecC++ weaving is restricted to non-
templated code6. Therefore, the implementation of features ElementType and LengthType using genericity
should be substituted by an inefficient implementation based on inheritance.

4.2 Flexibilization with external techniques

4.2.1 Text templates

A template can be viewed as a piece of an exemplar with slots. The exemplar code that is common to all
the domain products is maintained in the template, whereas the variable code is replaced by slots, that
are filled with metacode which specifies how code must change. Figure 14 shows a piece of the exemplar
flexibilization applying the ERB Ruby library for text templates, where metacode (i.e., the Ruby code that
implements the variable domain features) is embraced within symbols <% and %>.

The main drawback of this template–based solution is that code and metacode are strongly coupled.
Indeed, if the template engine does not support AOP, templates may suffer metacode tangling (multiple
variable concerns implemented simultaneously in a template) or metacode scattering (a variable concern
implemented in multiple templates). For example, the flexibilization showed in Figure 11 suffers metacode
tangling because metacode in lines 1, 3, 4, 9, 10 and 11 manages the ElementType variability, whereas the
metacode in lines 5, 6, 7, 13 and 15 manages the LengthCounter variability.

1 class <%=@list_specificacion[’Element Type’]%>List {
2 private:
3 <%=@list_specificacion[’Element Type’]%>* head_;
4 <%=@list_specificacion[’Element Type’]%>List* tail_;
5 <% if @list_specificacion[’Length Counter Type’]%>
6 <%=@list_specificacion[’Length Counter Type’]%> length_;
7 <% end %>
8 public:
9 <%=@list_specificacion[’Element Type’]%>List

10 (<%=@list_specificacion[’Element Type’]%>&h,
11 <%=@list_specificacion[’Element Type’]%>List *t=0):
12 head_(0), tail_(t)
13 <% if @list_specificacion[’Length Counter Type’]%>
14 , length_(computedLength())
15 <% end %>
16 { setHead(h); }
17 ...

Figure 14: Exemplar flexibilization using text templates

4.2.2 EFL

Figure 15 shows an exemplar flexibilization using the available EFL implementation in Ruby, where the Ele-
mentType, Ownership, LengthCounter and Tracing are managed by the generators ElementType, Ownership,

5see page 28 of “AspectC++ Language Reference. Version 1.6”, available at http://www.aspectc.org/fileadmin/documentation/ac-language
6see page 19 of “AspectC++ Compiler Manual. Version 1.1”, available at http://www.aspectc.org/fileadmin/documentation/ac-compilerma
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LengthCounter and Tracing. Such flexibilization has good modularity, is concise, non-invasive and
manages the inter-product variability before runtime. Generators in Figure 15 include substitutions (e.g.,
line 3 defines the substitution of all the occurrences of the MyClass code pattern for the value of the
element_type string) and productions (e.g., line 18 defines a production that applies the substitutions
defined in lines 11, 12 and 14 to the exemplar file to produce the out file).

1 class ElementType < Generator
2 def initialize(exemplar, out, element_type)
3 gsub(/MyClass/, element_type)
4 prod(exemplar, out)
5 end
6 end
7 class Ownership < Generator
8 def initialize(exemplar, out, ownership_type)
9 case ownership_type

10 when ’External reference’
11 sub /delete head_;/, ’’
12 sub /new MyClass\(h\)/ , ’&h’
13 when ’Owned reference’
14 sub /new MyClass\(h\)/ , ’&h’
15 when ’Copy’
16 # no change
17 end
18 prod(exemplar, out)
19 end
20 end
21 class LengthCounter < Generator
22 def initialize(exemplar, out, length_counter_type)
23 if length_counter_type
24 gsub(/int/, length_counter_type)
25 else
26 gsub(/^.*length.*$/i, ’’)
27 gsub(/\)\:/, ’\0head_(0), tail_(t)’)
28 end
29 prod(exemplar, out)
30 end
31 end
32 class Tracing < Generator
33 def initialize(exemplar, out, tracing)
34 gsub(/cout.+$/, ’’) if !tracing
35 prod(exemplar, out)
36 end
37 end

Figure 15: Exemplar flexibilization using EFL

Finally, Figure 16 depicts how the generators are combined to adapt the exemplar cooperatively. Be-
cause there are overlaps between the substitutions of generators ElementType and Ownership, they are
sequentially combined. On the other hand, generators Ownership, LengthCounter and Tracing are com-
bined with the add operator.

5 Conclusions

We have introduced the EDD process to develop SPLs, which minimizes the product line adoption barrier
by means of a reactive and extractive approach. The EDD starting point is any domain product built using
conventional software engineering. EDD pursues the reuse of this exemplar applying intensively the idea
of analogy to all the domain engineering activities.

We have described how to implement analogy relations to automatically derive all the domain products
from existing exemplars by using techniques widespread applied to generalize code. The limitations of
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Figure 16: Combination of the EFL generators

such techniques have been exposed and the new language EFL has been proposed to overcome those
limitations. At the moment, EDD and EFL have been successfully used to develop: (i) a Data Acquisition
SPL for the Astrophysics Institute of the Canary Islands [36] and (ii) a generative model that produces,
from abstract specifications, change notifications written in PL/SQL for Oracle databases [37].
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